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Overview

© Introduction
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o Consider a class of parametried partial differential equations (P?DEs)

Oru(t; ) + Flu(t;pu); ] =0 (1)

where 1 € RY a parameter vector.
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o Consider a class of parametried partial differential equations (P?DEs)

Oru(t; ) + Flu(t;pu); ] =0 (1)

where 1 € RY a parameter vector.
o Characterize the system in terms of material, geometry, control etc.
o For /1 € Piain C RY, we know the solution u(p): snapshots.
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o Consider a class of parametried partial differential equations (P?DEs)

Oru(t; ) + Flu(t;pu); ] =0 (1)

where 1 € RY a parameter vector.
o Characterize the system in terms of material, geometry, control etc.
o For /1 € Piain C RY, we know the solution u(p): snapshots.

e Find a space Xy = span{t;}i=1,.« from these solutions.
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o Consider a class of parametried partial differential equations (P?DEs)

Oru(t; ) + Flu(t;pu); ] =0 (1)

where 1 € RY a parameter vector.
Characterize the system in terms of material, geometry, control etc.
For 11 € Perain C RY, we know the solution u(p): snapshots.

Find a space Xy = span{t;}i=1, .« from these solutions.

For a given new parameter fipew,

u(,unew) Mnew Z Oﬂl(MneW vi; (2)
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o Consider a class of parametried partial differential equations (P?DEs)

Oru(t; ) + Flu(t;pu); ] =0 (1)

where 1 € RY a parameter vector.
Characterize the system in terms of material, geometry, control etc.
For 11 € Perain C RY, we know the solution u(p): snapshots.

Find a space Xy = span{t;}i=1, .« from these solutions.

For a given new parameter fipew,

u(,unew) Mnew Z Oﬂl(MneW vi; (2)

@ Question: how to find X,? Reduced Basis Method.
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Complexity Reduction

Definition
Let X be a normed linear space, S be a subset of X and X, be a generic
n-dimensional subspace of X . The deviation of S from X, is

E(S; Xp) =sup inf ||u— vyl x (3)
ueS Vn€Xn

The Kolmogorov n-width of S in X is given by

dn(S, X) =infsup inf [u— vyl x (4)

Xn UeS Vn €Xn
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Complexity Reduction

@ The n-width of S thus measures the extent to which S may be
approximated by a n-dimensional subspace of X.

o S={u(;p); v € Prrain} called solution manifold.

o We further assume that S has a small Kolmogorov n-width 2.

@ PDEs hyperbolic always have a large Kolmogorov n-width.

°If F is a bounded linear operator mapping the Banach space X into the
Banach space Y and D is a compact set in X , then the Kolmogorov widths of
the image L(D) do not exceed those of D multiplied by the norm of L.

Liudi LU, Julien SALOMON Model Reduction for Burgers Equation May 28, 2019



Example

The homogeneous advection equation

{ Ot + cOxu = 0;
ult—o = up;
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The homogeneous advection equation

{ Ot + cOxu = 0; (5)
ult—o = up;

POD (Proper Orthogonal Decomposition) or SVD (Singular Value
Decomposition) bring us the eigenvalues and the eigenvectors associated.
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The homogeneous advection equation

{ Ot + cOxu = 0;
ult—o = up;

(5)

POD (Proper Orthogonal Decomposition) or SVD (Singular Value
Decomposition) bring us the eigenvalues and the eigenvectors associated.

Decay of the eigenvaules for the Gramian

Logarithm of the eigenvalues

N,
,

o 50 200 250

100 150
Total number of snapshots

(a) Typical Kolmogorov n-width for PDE
hyperbolic
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Example

The homogeneous advection equation

{{ Gy cou=0 5)
U|t:0 = Uo;

POD (Proper Orthogonal Decomposition) or SVD (Singular Value
Decomposition) bring us the eigenvalues and the eigenvectors associated.

o Decay of the eigenvaules for the Gramian
10 | Decay of the eigenvaules for the Gramian

Logarithm of the eigenvalues

N,
,

o 50 200 250

100 150 s
Total number of snapshots o 50

100 150
‘Total number of snapshots

(a) Typical Kolmogorov n-width for PDE

, (b) A sequence of small dimensional
hyperbolic

subspaces(in red)
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Overview

© Inviscid Burgers 1D
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Inviscid Burgers 1D

Let (x,t) € Q x [0, T], we focus on the Cauchy problem:

{ Oru+ udyu =0
u(x, 0; p1) = uo(x; p)

LAV YAS Ptrain - Rd
) U0(~,M) S [:OO(Q)
@ Non-linear hyperbolic PDE

@ The initial data u° to be parameter-separable

Quo

uo(x; i) = Z Hq(ﬂ)fq(x)
g=1
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Method of characteristics

Definition

The characteristic for the dynamic of v is an absolutely continuous function
T — X(7; x, t) which satisfies X(t; x, t) = x and the ordinary differential
equation

dX(7;x,t)

I u(X(7;x,t),7) (7)
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Method of characteristics

Definition

The characteristic for the dynamic of v is an absolutely continuous function
T — X(7; x, t) which satisfies X(t; x, t) = x and the ordinary differential
equation

dX(7;x,t)

I u(X(7;x,t),7) (7)

With the help of the characteristic, the solution can be written as :

u(x,t) = ug(X(0; x, t)). (8)

9/25

Liudi LU, Julien SALOMON Model Reduction for Burgers Equation May 28, 2019



Method of characteristics

Definition

The characteristic for the dynamic of v is an absolutely continuous function
T — X(7; x, t) which satisfies X(t; x, t) = x and the ordinary differential
equation

dX(7;x,t)

I u(X(7;x,t),7) (7)

With the help of the characteristic, the solution can be written as :
u(x,t) = ug(X(0; x, t)). (8)

To be solved:
x — X(0; x,t) = up(X(0; x, t))t 9)
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Method of characteristics

o We emphasize that through the method of characteristics, the
parameter-dependent variable for the problem has been changed from

U(‘, M) to XO('? N);
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Method of characteristics

o We emphasize that through the method of characteristics, the
parameter-dependent variable for the problem has been changed from
u(-, i) to Xo(-, ),

@ To ensure the well-posedness of the problem, we need
T llug(, )l poo(y < Lv
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Method of characteristics

o We emphasize that through the method of characteristics, the
parameter-dependent variable for the problem has been changed from
u(-, i) to Xo(-, ),

@ To ensure the well-posedness of the problem, we need
T llug(, )l poo(y < Lv

@ ug(-, ) may very well be non-linear function, which makes the
complexity of the computation is still very high.
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Empirical Interpolation Method?

Step n=1:
vi = argmax||v/||
Find ves
Lxl = arg max |vy(x)]
x€Q
Vi ( lization)
g1 = normalization
vi(xy)

and set Pi =[x}

Xy :=span{vi} = span{q1}

1Y Maday et al. An ‘empirical interpolation’ method: application to efficient
reduced-basis discretization of partial differential equations. Comptes Rendus
Mathematique. Volume 339, Issue 9, 1 November 2004, Pages 667-672
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Empirical Interpolation Method?

Step n > 1:
Vp = argmax ||v — Z,_1[v]||
Find ves
Xp = arg max |vp(x)|
xEN
( Vh — Z.n—l[Vn] .
= normalization
I BT R A e )
and se
P,:=P,_1 U {Xl}
an = Span{Xn—h qn}

2Y.Maday et al. An ‘empirical interpolation’ method: application to efficient
reduced-basis discretization of partial differential equations. Comptes Rendus

Mathematique. Volume 339, Issue 9, 1 November 2004, Pages 667-672
Liudi LU, Julien SALOMON
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Empirical Interpolation Method

In:
@ A large set of snapshots X0 . := {Xo(-,u,-)}l{vz"f‘", which is

train
precomputed for a training set of parameter ;.
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Empirical Interpolation Method

In:
o A large set of snapshots X2, := {Xo(-,u,-)}l{vz"f‘", which is
precomputed for a training set of parameter ;.
Out:

o a set of interpolation points Py = {xn}M_, € Q

e a corresponding nodel interpolation basis Qu := {gm}M_; i.e.
qm(Xm’) = 5m,m’y 1< m, m' <M.
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Numerical Test

Q =10,1] and T =1, the grid decomposition for Q x [0, T] is 100 x 100,
w random in [0, 1] and Niain = 120.
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Numerical Test

Q =10,1] and T =1, the grid decomposition for Q x [0, T] is 100 x 100,
w random in [0, 1] and Niain = 120.

200m of the eigenvalue of 120 snapshots

t

(a) Eigenvalues of POD or SVD
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Numerical Test

Q =10,1] and T =1, the grid decomposition for Q x [0, T] is 100 x 100,
w random in [0, 1] and Niain = 120.

© o 5 lsumm' o SMDSM‘:S 20 5 o o 5 10 15 20 oot iz rrrrrr 30 35 40 45 50
(a) Eigenvalues of POD or SVD (b) Error of the EIM algorithm
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Numerical Test

Figure: The exact solution with the approximate solution for xg and absolute error.
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Overview

© Viscid Burgers 2D
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Viscid Burgers 2D

Oru+u-Vu—pAu=0
u(x,0) = uo(x)

@ add some diffusive effects in the current model.
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Viscid Burgers 2D

Oru+u-Vu—pAu=0
u(x,0) = uo(x)

@ add some diffusive effects in the current model.

@ the solution u will be more smooth.
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Viscid Burgers 2D

Oru+u-Vu—pAu=0
U(Xa 0) = UO(X)

@ add some diffusive effects in the current model.
@ the solution u will be more smooth.

@ no longer a hyperbolic PDE but a parabolic PDE.
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Viscid Burgers 2D

Oru+u-Vu—pAu=0
U(Xa 0) = UO(X)

o add some diffusive effects in the current model.
@ the solution u will be more smooth.
@ no longer a hyperbolic PDE but a parabolic PDE.

@ the method of characteristics is no longer available.
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Inspiration 3
ou UV du
LUV > —
ot dt

30.Pironneau. On the Transport Diffusion Algorithm and Its Applications to the
Navier-Stokes Equations. Numer. Math. 38, 309-332 (1982)
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Inspiration 3
ou u
9t +u-Vu— T
Splitting scheme:
dX
{ E = U(X, t) t E]t,,, tn+1[ (11)
(Unt1,v) + pAt(Vupi1, Vv) = (un(Xa())), v) v € H(Q)

30.Pironneau. On the Transport Diffusion Algorithm and Its Applications to the
Navier-Stokes Equations. Numer. Math. 38, 309-332 (1982)

Liudi LU, Julien SALOMON Model Reduction for Burgers Equation May 28, 2019 18 /25



Inspiration 3

Splitting scheme:

dX

{ Fr u(X,t) t €]tn, in+1[ (11)
(Unt1,v) + pAt(Vupi1, Vv) = (un(Xa(')), v) v € Hp(Q)

Full order problem:

{ x — Xn(x) = un(Xn(x))At

(tns1, V) + pAt(Vuns1, Vv) = (ua(Xa(4)),v), veW (12)

30.Pironneau. On the Transport Diffusion Algorithm and Its Applications to the
Navier-Stokes Equations. Numer. Math. 38, 309-332 (1982)
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Inspiration 3

ou du
E—I-U-Vu—)E

Splitting scheme:
dX
. — X ns tn
{ == u(X.1) bl
(Unt1,v) + pAt(Vupi1, Vv) = (un(Xa(')), v) v € Hp(Q)

Full order problem:

{ x — Xn(x) = un(Xn(x))At (12)
(unt1, V) + pAt(Vupi1, Vv) = (un(Xn()),v), veWw
Reduced order problem:
{ x — Xp(x) = ul(Xn(x))At (13)
(1. V) + WALV, V) = (U(Xn() V), v € Wi

30.Pironneau. On the Transport Diffusion Algorithm and Its Applications to the
Navier-Stokes Equations. Numer. Math. 38, 309-332 (1982)
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Numerical Test

Numerical settings®:
Q=10,2] x [0,1], T = 0.3, the grid decomposition is 120 x 60 and

dt = 0.01. Initial condition: ug(x,y) = (1 + sin(2mx)sin(27y))
Simulation:

Click for video

*B. Haasdonk and M. Ohlberger. Reduced Basis Method for Explicit Finite Volume

Approximations of Nonlinear Conservation Laws. Proceedings of Symposia in Applied
Mathematics. 2008
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Overview

@ Estimation a-posteriori
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Heat equation:
{&u—,uAu:O inQ2x(0,7) (14)

u(0) = uo in Q
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Heat equation:

Oru—pAu=0 inQx(0,T)
{ u(0) = wo in Q (14)
F.E method:
(Un—i—la V) + ,lLAt(VUn+1, VV) = (Um V)’ Ve W (15)
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Heat equation:

Oru —pAu=0 inQx(0,T)
{ u(0) = uo in Q (14)

F.E method:

(Un—i—la V) + ,lLAt(VUn+1, VV) = (Um V)’ Ve W (15)

Reduced problem:

(upi1,v) + pAt(Vuy, 1, Vv) = (up,v), veEWy (16)
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Heat equation:
{ Oru —pAu=0 inQx(0,T)

u(0) = uo in Q (14)
F.E method:
(Unt1,v) + uAt(Vups1,Vv) = (up,v), veW (15)
Reduced problem:
(Up+1,v) + At (Vupig, Vv) = (up,v), v EWy (16)

Residual:

pAtRL(v) = (ujyq,v) + pAt(Vuy 1, Vv) = (u),v), veW (17)
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A-posteriori error bound:

fu(p) = u" (@], < AF (1) (18)
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A-posteriori error bound:

fu(p) = u" (@], < AF (1) (18)

Define epq1 := U}, 1 — Upy1, then (17) — (15) and replace v by eny1:
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A-posteriori error bound:

fu(p) = u" (@], < AF (1) (18)

Define epq1 := U}, 1 — Upy1, then (17) — (15) and replace v by eny1:

(ent1,€nt1) + uAt(Veny1, Venr1) = (en, ent1) + pAtRy(enr1)  (19)
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A-posteriori error bound:
Ju(p) — u" ()], < AT (1) (18)
Define epq1 := U}, 1 — Upy1, then (17) — (15) and replace v by eny1:
(ent1,€nt1) + uAt(Veny1, Venr1) = (en, ent1) + pAtRy(enr1)  (19)

Cauchy-Schwartz and Young's inequality for (ep, e,41), we find

1 1
(ena en+1) S i(em en) + E(enJrlv en+1)
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A-posteriori error bound:
Ju(p) — u" ()], < AT (1) (18)
Define epq1 := U}, 1 — Upy1, then (17) — (15) and replace v by eny1:
(ent1,€nt1) + uAt(Veny1, Venr1) = (en, ent1) + pAtRy(enr1)  (19)

Cauchy-Schwartz and Young's inequality for (ep, e,41), we find

1 1
i(ena en) + E(enJrlv en+1)

Cauchy-Schwartz, Young and Poincaré inequality for Rn(en+1), we find

(ena en+1) S

Rn(ent1) < *HR I*+3 HVen+1H
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A-posteriori error bound:
Ju(p) — u" ()], < AT (1) (18)
Define epq1 := U}, 1 — Upy1, then (17) — (15) and replace v by eny1:
(ent1,€nt1) + uAt(Veny1, Venr1) = (en, ent1) + pAtRy(enr1)  (19)

Cauchy-Schwartz and Young's inequality for (ep, e,41), we find

1 1
i(ena en) + E(enJrlv en+1)

Cauchy-Schwartz, Young and Poincaré inequality for Rn(en+1), we find

(ena en+1) S

Rn(ent1) < *HR I*+3 HVen+1H

Finally, sommation over n

N—-1

lewl? +uAtZHVenH < |leoll* + nCAL Y ||Rall? (20)
n=1 n=0
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POD-Greedy®

Let £ > 0 a given error tolerance, set Xp := {0}, ®¢ := ()
while ¢, := max,ep,,.., A(Xn, 1) > €40 do

p™tl = arg maxuepmin A(X,,, )
u£+1 =u k(,u ”+1)) k =0,---,K solution of the full problem
en+1 =u n+1 PXn n+1' k = O

¢nt1 = POD1({ef 11K o)
G =0, U {¢n+1}
Xn+1 = Xp + Span(¢n+1)
end

5B.Haasdonk. and M.Ohlberger. Reduced Basis Method for Finite Volume
approximations of parametrized linear evolution equations. ESAIM: M2AN 42 (2008)
277-302
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Overview

© Conclusion

Liudi LU, Julien SALOMON Model Reduction for Burgers Equation May 28, 2019 24 /25



Conclusion

What we have done:
@ RB-method with method of characteristics
@ Splitting scheme
@ RB-method on our scheme
What we need to do:
@ Estimation a-posteriori for this problem

@ What happens when we have shocks
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