Liudi LU^{1,2,3}

Supervisiors: J.Sainte-Marie^{1,2,3,4} J.Salomon^{1,2,3}

¹Sorbonne Université ²INRIA Paris, ANGE ³Laboratoire Jacques-Louis Lions ⁴CEREMA

December 12, 2018

1 Introduction

- 2 Background on Reduced-Order Modeling
- 3 Characteristic method for Burgers' equation
- 4 Lagrangian approach for Saint-Venant system
- 5 Conclusion

Motivation

 Considering a class of parametried partial differential equations (P²DEs)

$$\partial_t u(t;\mu) + \mathscr{F}[u(t;\mu);\mu] = 0 \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\mu \in \mathbf{R}^d$ a parameter vector.

Motivation

 Considering a class of parametried partial differential equations (P²DEs)

$$\partial_t u(t;\mu) + \mathscr{F}[u(t;\mu);\mu] = 0 \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\mu \in \mathbf{R}^d$ a parameter vector.

For $\mu \in \mathscr{P}_{train} \subset \mathbf{R}^d$, we know the solution $u(\mu)$: snapshots.

Motivation

 Considering a class of parametried partial differential equations (P²DEs)

$$\partial_t u(t;\mu) + \mathscr{F}[u(t;\mu);\mu] = 0 \tag{1}$$

where $\mu \in \mathbf{R}^d$ a parameter vector.

For $\mu \in \mathscr{P}_{train} \subset \mathbf{R}^d$, we know the solution $u(\mu)$: snapshots.

Find a space $X_k = \text{span}\{\psi_i\}_{i=1,...,k}$ from these solutions.

Motivation

 Considering a class of parametried partial differential equations (P²DEs)

$$\partial_t u(t;\mu) + \mathscr{F}[u(t;\mu);\mu] = 0 \tag{1}$$

where $\mu \in \mathbf{R}^d$ a parameter vector.

- For $\mu \in \mathscr{P}_{train} \subset \mathbf{R}^d$, we know the solution $u(\mu)$: snapshots.
- Find a space $X_k = \text{span}\{\psi_i\}_{i=1,...,k}$ from these solutions.
- For a given new parameter μ_{new} ,

$$u(\mu_{new}) \simeq \tilde{u}(\mu_{new}) = \sum_{i=1}^{K} lpha_i(\mu_{new}) \psi_i;$$

Motivation

 Considering a class of parametried partial differential equations (P²DEs)

$$\partial_t u(t;\mu) + \mathscr{F}[u(t;\mu);\mu] = 0 \tag{1}$$

where $\mu \in \mathbf{R}^d$ a parameter vector.

- For $\mu \in \mathscr{P}_{train} \subset \mathbf{R}^d$, we know the solution $u(\mu)$: snapshots.
- Find a space $X_k = \text{span}\{\psi_i\}_{i=1,\dots,k}$ from these solutions.
- For a given new parameter μ_{new} ,

$$u(\mu_{new}) \simeq \tilde{u}(\mu_{new}) = \sum_{i=1}^{K} \alpha_i(\mu_{new}) \psi_i;$$

• Question: how to find X_k ? Reduced Basis Method.

Complexity Reduction

Definition

Let X be a normed linear space, S be a subset of X and X_n be a generic *n*-dimensional subspace of X. The deviation of S from X_n is

$$E(S; X_n) = \sup_{u \in S} \inf_{v_n \in X_n} \|u - v_n\|_X$$

The Kolmogorov n-width of S in X is given by

$$d_n(S,X) = \inf_{X_n} \sup_{u \in S} \inf_{v_n \in X_n} \|u - v_n\|_X$$
(2)

Complexity Reduction

Remark

- The n-width of S thus measures the extent to which S may be approximated by a n-dimensional subspace of X.
- $S = \{u(.; \mu); \mu \in \mathscr{P}_{train}\}$ called solution manifold.
- We further assume that S has a small Kolmogorov n-width ¹.
- PDEs hyperbolic always have a large Kolmogorov n-width.

¹If \mathscr{F} is a bounded linear operator mapping the Banach space X into the Banach space Y and D is a compact set in X, then the Kolmogorov widths of the image L(D) do not exceed those of D multiplied by the norm of L.

Exemple

The homogeneous advection equation

$$\begin{array}{l} \partial_t u + c \partial_x u = 0; \\ u|_{t=0} = u_0; \\ u \quad periodic \end{array}$$

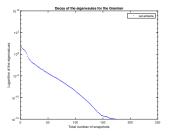
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exemple

The homogeneous advection equation

$$\begin{array}{l} \partial_t u + c \partial_x u = 0; \\ u|_{t=0} = u_0; \\ u \quad periodic \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

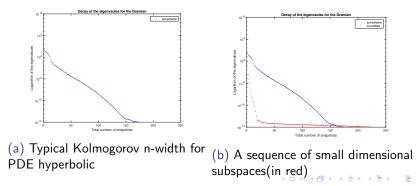


(a) Typical Kolmogorov n-width for PDE hyperbolic

Exemple

The homogeneous advection equation

$$\begin{array}{l} \partial_t u + c \partial_x u = 0 \\ u|_{t=0} = u_0; \\ u \quad periodic \end{array}$$



Background on Reduced-Order Modeling

Overview

1 Introduction

2 Background on Reduced-Order Modeling

- 3 Characteristic method for Burgers' equation
- 4 Lagrangian approach for Saint-Venant system

5 Conclusion

Background on Reduced-Order Modeling

Primary Problem

$$\begin{cases} \frac{d}{dt}u(t) = Au(t) + F(u(t)), \\ u(0) = u_0, \end{cases}$$
(3)

- $u(t) = u(t; \mu) \in \mathbf{R}^N$: a state vector;
- $u_0 \in \mathbf{R}^N$: a fixed initial condition;

•
$$A \in \mathbf{R}^{N \times N}$$
: a square matrix;

• $F : \mathbf{R}^N \mapsto \mathbf{R}^N$: a non-linear function,

•
$$\mu \in \mathscr{P}_{train}$$
, a parameter.

Background on Reduced-Order Modeling

Primary Problem

$$\begin{cases} \frac{d}{dt}u(t) = Au(t) + F(u(t)), \\ u(0) = u_0, \end{cases}$$
(3)

- $u(t) = u(t; \mu) \in \mathbf{R}^N$: a state vector;
- $u_0 \in \mathbf{R}^N$: a fixed initial condition;

•
$$A \in \mathbf{R}^{N \times N}$$
: a square matrix;

•
$$F : \mathbf{R}^N \mapsto \mathbf{R}^N$$
: a non-linear function,

• $\mu \in \mathscr{P}_{train}$, a parameter.

The minimization problem:

$$\int_0^ au ||u(t;\mu) - \Pi_k u(t;\mu)||_2^2 dt = J(\Pi_k), k \in \mathbf{N}$$

Background on Reduced-Order Modeling

Primary Problem

$$\begin{cases} \frac{d}{dt}u(t) = Au(t) + F(u(t)), \\ u(0) = u_0, \end{cases}$$
(3)

- $u(t) = u(t; \mu) \in \mathbf{R}^N$: a state vector;
- $u_0 \in \mathbf{R}^N$: a fixed initial condition;

•
$$A \in \mathbf{R}^{N \times N}$$
: a square matrix;

•
$$F : \mathbf{R}^N \mapsto \mathbf{R}^N$$
: a non-linear function,

• $\mu \in \mathscr{P}_{train}$, a parameter.

The minimization problem:

$$\int_0^ au ||u(t;\mu)-\Pi_k u(t;\mu)||_2^2 dt = J(\Pi_k), k\in \mathbf{N}$$

Best solution: POD!

Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

$$\mathcal{G}_{ij} := \int_0^{ au} u(t;\mu_i)^{\mathsf{T}} u(t;\mu_j) dt$$
, with $\mu_i,\mu_j \in \mathscr{P}_{train}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

 $G_{ij} := \int_0^\tau u(t; \mu_i)^T u(t; \mu_j) dt, \text{ with } \mu_i, \mu_j \in \mathscr{P}_{train}.$ $\blacksquare \text{ Let } \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{N_{\mu}} \ge 0 \text{ denote the ordered eigenvalues} \text{ of } G \text{ and } \phi_i \in \mathbf{R}^{N_{\mu}} \text{ , } i = 1, \cdots, N_{\mu} \text{ denote their associated} \text{ eigenvectors which are also referred to as the POD modes}$

$$G\phi_i = \lambda_i \phi_i$$

(日) (同) (三) (三) (三) (○) (○)

Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

 $G_{ij} := \int_0^\tau u(t; \mu_i)^T u(t; \mu_j) dt, \text{ with } \mu_i, \mu_j \in \mathscr{P}_{train}.$ $\blacksquare \text{ Let } \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{N_{\mu}} \ge 0 \text{ denote the ordered eigenvalues} \text{ of } G \text{ and } \phi_i \in \mathbf{R}^{N_{\mu}} \text{ , } i = 1, \cdots, N_{\mu} \text{ denote their associated} \text{ eigenvectors which are also referred to as the POD modes}$

$$G\phi_i = \lambda_i \phi_i$$

• Let S denote the snapshot matrix $S := \{\sqrt{\alpha_k}u(t; \mu_i)\}_{i=1}^{N_{\mu}}$, with $\alpha_k, k = 1, \dots, N$ the quadrature weights;

Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

 $G_{ij} := \int_0^\tau u(t; \mu_i)^T u(t; \mu_j) dt, \text{ with } \mu_i, \mu_j \in \mathscr{P}_{train}.$ $\blacksquare \text{ Let } \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{N_{\mu}} \ge 0 \text{ denote the ordered eigenvalues} \text{ of } G \text{ and } \phi_i \in \mathbf{R}^{N_{\mu}} \text{ , } i = 1, \cdots, N_{\mu} \text{ denote their associated} \text{ eigenvectors which are also referred to as the POD modes}$

$$G\phi_i = \lambda_i \phi_i$$

- Let S denote the snapshot matrix $S := \{\sqrt{\alpha_k}u(t;\mu_i)\}_{i=1}^{N_{\mu}}$, with $\alpha_k, k = 1, \dots, N$ the quadrature weights;
- The Gramian matrix can then be written $G := S^T S$

Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

 $G_{ij} := \int_0^\tau u(t; \mu_i)^T u(t; \mu_j) dt, \text{ with } \mu_i, \mu_j \in \mathscr{P}_{train}.$ • Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{N_{\mu}} \ge 0$ denote the ordered eigenvalues of G and $\phi_i \in \mathbf{R}^{N_{\mu}}$, $i = 1, \cdots, N_{\mu}$ denote their associated eigenvectors which are also referred to as the POD modes

$$G\phi_i = \lambda_i \phi_i$$

- Let S denote the snapshot matrix $S := \{\sqrt{\alpha_k}u(t; \mu_i)\}_{i=1}^{N_{\mu}}$, with $\alpha_k, k = 1, \dots, N$ the quadrature weights;
- The Gramian matrix can then be written $G := S^T S$
- The POD modes $\Psi := S\Phi \Lambda^{-\frac{1}{2}}$;

Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

 $G_{ij} := \int_0^\tau u(t; \mu_i)^T u(t; \mu_j) dt, \text{ with } \mu_i, \mu_j \in \mathscr{P}_{train}.$ $\blacksquare \text{ Let } \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{N_{\mu}} \ge 0 \text{ denote the ordered eigenvalues} \text{ of } G \text{ and } \phi_i \in \mathbf{R}^{N_{\mu}} \text{ , } i = 1, \cdots, N_{\mu} \text{ denote their associated} \text{ eigenvectors which are also referred to as the POD modes}$

$$G\phi_i = \lambda_i \phi_i$$

- Let S denote the snapshot matrix $S := \{\sqrt{\alpha_k}u(t; \mu_i)\}_{i=1}^{N_{\mu}}$, with $\alpha_k, k = 1, \dots, N$ the quadrature weights;
- The Gramian matrix can then be written $G := S^T S$
- The POD modes $\Psi := S\Phi \Lambda^{-\frac{1}{2}}$;
- We then define our projector Π_k by taking the first k POD basis of Ψ with a smaller dimension k.

Background on Reduced-Order Modeling

Reduced Problem

With this projector Π_k , we can project the solution onto the this subspace $X_k = span\{\psi_1, \cdots, \psi_k\}$

$$u(t) = \underbrace{\Psi_k}_{N imes k} \underbrace{\widetilde{u}(t)}_{k imes 1}$$

Reduced Problem

With this projector Π_k , we can project the solution onto the this subspace $X_k = span\{\psi_1, \cdots, \psi_k\}$

$$u(t) = \underbrace{\Psi_k}_{N imes k} \underbrace{\widetilde{u}(t)}_{k imes 1}$$

Then we define the reduced problem:

$$\frac{d}{dt}\tilde{u}(t) = \underbrace{\Psi_k^T A \Psi_k}_{k \times k} \tilde{u}(t) + \Psi_k^T F(\underbrace{\Psi_k \tilde{u}(t)}_{N \times 1}), \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reduced Problem

With this projector Π_k , we can project the solution onto the this subspace $X_k = span\{\psi_1, \cdots, \psi_k\}$

$$u(t) = \underbrace{\Psi_k}_{N imes k} \underbrace{\widetilde{u}(t)}_{k imes 1}$$

Then we define the reduced problem:

$$\frac{d}{dt}\tilde{u}(t) = \underbrace{\Psi_k^T A \Psi_k}_{k \times k} \tilde{u}(t) + \Psi_k^T F(\underbrace{\Psi_k \tilde{u}(t)}_{N \times 1}), \tag{4}$$

Let $f(t) := F(\Psi_k \tilde{u}(t))$ the non-affine parameter dependent part, we would like to find an approximation

$$f(t) \simeq \underbrace{U}_{N \times m} \underbrace{c(t)}_{m \times 1}$$
, with $m \ll N$

Reduced Problem

With this projector Π_k , we can project the solution onto the this subspace $X_k = span\{\psi_1, \cdots, \psi_k\}$

$$u(t) = \underbrace{\Psi_k}_{N \times k} \underbrace{\widetilde{u}(t)}_{k \times 1}$$

Then we define the reduced problem:

$$\frac{d}{dt}\tilde{u}(t) = \underbrace{\Psi_k^T A \Psi_k}_{k \times k} \tilde{u}(t) + \Psi_k^T F(\underbrace{\Psi_k \tilde{u}(t)}_{N \times 1}), \tag{4}$$

Let $f(t) := F(\Psi_k \tilde{u}(t))$ the non-affine parameter dependent part, we would like to find an approximation

$$f(t) \simeq \underbrace{U}_{N \times m} \underbrace{c(t)}_{m \times 1}$$
, with $m \ll N$

Algorithm 1 DEIM

Input: the projection basis U **Output:** the interpolation indices $\vec{\rho}$ 1: $[\rho, \rho_1] = max\{|u_1|\};$ 2: $\vec{\rho} := [\rho_1], \mathbf{U} := [u_1];$ 3: for $i = 2, \dots, m$ do 4: $u = u_i$; 5: $\mathbf{U}_{\vec{o}}c = u_{\vec{o}};$ 6: $r := u - \mathbf{U}c$: 7: $[\rho, \rho_i] = max\{|r|\};$ $\mathbf{U} := [\mathbf{U}, u], \ \vec{\rho} := [\vec{\rho}, \rho_i]$ 8: 9: end for

Background on Reduced-Order Modeling

Reduced problem

Let $P = [e_{\varrho_1}, \cdots, e_{\varrho_m}]$ where e_i is the standard basis of \mathbf{R}^N . $P^T f(t) = \underbrace{(P^T U)}_{m \times m} c(t);$

Background on Reduced-Order Modeling

Reduced problem

Let
$$P = [e_{\varrho_1}, \cdots, e_{\varrho_m}]$$
 where e_i is the standard basis of \mathbf{R}^N .
 $P^T f(t) = \underbrace{(P^T U)}_{c(t)} c(t);$

 $m \times m$

The reduced problem becomes

$$\frac{d}{dt}\tilde{u}(t) = \underbrace{\Psi_k^T A \Psi_k}_{k \times k} \tilde{u}(t) + \underbrace{\Psi_k^T U(P^T U)^{-1}}_{k \times m} P^T F(\Psi_k \tilde{u}(t)),$$
$$\underbrace{\frac{d}{dt}\tilde{u}(t)}_{k \times k} \tilde{u}(t) = \underbrace{\Psi_k^T A \Psi_k}_{k \times k} \tilde{u}(t) + \underbrace{\Psi_k^T U(P^T U)^{-1}}_{k \times m} F(\underbrace{P^T \Psi_k}_{m \times k} \tilde{u}(t)),$$

Reduced problem

Let
$$P = [e_{\varrho_1}, \cdots, e_{\varrho_m}]$$
 where e_i is the standard basis of \mathbf{R}^N .
 $P^T f(t) = \underbrace{(P^T U)}_{c(t)} c(t);$

 $m \times m$

The reduced problem becomes

$$\Psi_k \in \mathbf{R}^{N imes k} \Rightarrow P^T \Psi_k \in \mathbf{R}^{m imes k}$$
 , where $\mathbb{R}^{m imes k}$

Characteristic method for Burgers' equation

Overview

1 Introduction

- 2 Background on Reduced-Order Modeling
- 3 Characteristic method for Burgers' equation
- 4 Lagrangian approach for Saint-Venant system

5 Conclusion

Characteristic method for Burgers' equation

Simple Model

Homogenous Burgers' Equation:

$$\begin{array}{l}
\left(\begin{array}{c}
\partial_t u + u \partial_x u = 0 \\
u(x,0) = u^0(x) \\
u \quad \text{periodic}
\end{array}\right) (5)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characteristic method for Burgers' equation

Simple Model

Homogenous Burgers' Equation:

$$\begin{cases} \partial_t u + u \partial_x u = 0\\ u(x,0) = u^0(x)\\ u \text{ periodic} \end{cases}$$
(5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: let us consider a parametric u^0 in the form

$$u^{0}(x) = \mu_{1}u_{1}^{0}(x) + \mu_{2}u_{2}^{0}(x) + \mu_{3}u_{3}^{0}(x);$$
(6)

with $\mu = [\mu_1, \mu_2, \mu_3] \in [0, 1]^3$ (we denote $\mathscr{P} := [0, 1]^3$) and

$$u_1^0(x) = \arctan(x), u_2^0(x) = \exp(x), u_3^0(x) = x^3;$$

Characteristic method for Burgers' equation

Simple Model

Homogenous Burgers' Equation:

$$\begin{cases} \partial_t u + u \partial_x u = 0\\ u(x,0) = u^0(x)\\ u \quad \text{periodic} \end{cases}$$
(5)

Example: let us consider a parametric u^0 in the form

$$u^{0}(x) = \mu_{1}u_{1}^{0}(x) + \mu_{2}u_{2}^{0}(x) + \mu_{3}u_{3}^{0}(x);$$
(6)

with $\mu = [\mu_1, \mu_2, \mu_3] \in [0, 1]^3$ (we denote $\mathscr{P} := [0, 1]^3$) and

$$u_1^0(x) = \arctan(x), u_2^0(x) = \exp(x), u_3^0(x) = x^3;$$

The characteristic curves

$$x = x_0 + u^0(x_0)t. (7)$$

Characteristic method for Burgers' equation

Simple Model

Homogenous Burgers' Equation:

$$\begin{cases} \partial_t u + u \partial_x u = 0\\ u(x,0) = u^0(x)\\ u \quad \text{periodic} \end{cases}$$
(5)

Example: let us consider a parametric u^0 in the form

$$u^{0}(x) = \mu_{1}u_{1}^{0}(x) + \mu_{2}u_{2}^{0}(x) + \mu_{3}u_{3}^{0}(x);$$
(6)

with $\mu = [\mu_1, \mu_2, \mu_3] \in [0, 1]^3$ (we denote $\mathscr{P} := [0, 1]^3$) and

$$u_1^0(x) = \arctan(x), u_2^0(x) = \exp(x), u_3^0(x) = x^3;$$

The characteristic curves

$$x = x_0 + u^0(x_0)t. (7)$$

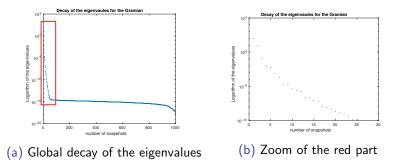
< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Unknown: $u(x, t) \rightarrow x_0 = x_0(x, t; \mu)$.

Characteristic method for Burgers' equation

Numerical test

We take a space $\mathscr{P}_{train} = \mathscr{P}^{1000}$, and a discretization of 10 steps both in time and space.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The POD provides a space with small dimension X_k and a projector Ψ_k .

$$x_0 = \Psi_k \tilde{x_0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The POD provides a space with small dimension X_k and a projector Ψ_k .

$$x_0 = \Psi_k \tilde{x_0}$$

The reduced problem with k POD modes

$$\tilde{x_0} = \Psi_k^T x - \Psi_k^T u^0 (\Psi_k \tilde{x_0}) t,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The POD provides a space with small dimension X_k and a projector Ψ_k .

$$x_0 = \Psi_k \tilde{x_0}$$

The reduced problem with k POD modes

$$\tilde{x_0} = \Psi_k^T x - \Psi_k^T u^0 (\Psi_k \tilde{x_0}) t,$$

Algorithm DEIM treats the non linear term u^0

$$\tilde{x_0} = \Psi_k^T x - \Psi_k^T U(P^T U)^{-1} u^0 (P^T \Psi_k \tilde{x_0}) t,$$

The POD provides a space with small dimension X_k and a projector Ψ_k .

$$x_0 = \Psi_k \tilde{x_0}$$

The reduced problem with k POD modes

$$\tilde{x_0} = \Psi_k^T x - \Psi_k^T u^0 (\Psi_k \tilde{x_0}) t,$$

Algorithm DEIM treats the non linear term u^0

$$\tilde{x_0} = \Psi_k^\mathsf{T} x - \Psi_k^\mathsf{T} U (P^\mathsf{T} U)^{-1} u^0 (P^\mathsf{T} \Psi_k \tilde{x_0}) t,$$

With k = 20 POD modes, we proceed the approximation below.

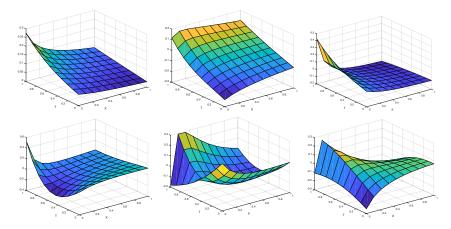


Figure: The first-six POD modes.

・ロト ・聞ト ・ヨト ・ヨト

э

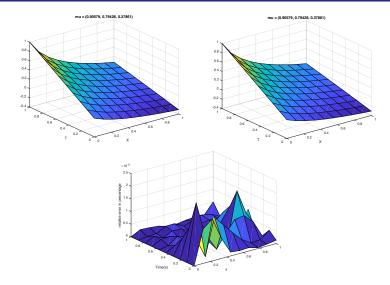


Figure: Compare the exact solution (a) with the approximate solution (b) for x_0 for the same parameters and relative error in percentage (c).

Further test, we now take a space $\mathscr{P}_{train} = \mathscr{P}^{120}$ with a discretization of 50 steps in space and in time.

k	8	15	30	60	120
Accuracy	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	10^{-7}	10 ⁻⁸
Computation	5.21	21.81	100.13	334.54	1262.5
time(s)					

Lagrangian approach for Saint-Venant system

Overview

1 Introduction

- 2 Background on Reduced-Order Modeling
- 3 Characteristic method for Burgers' equation
- 4 Lagrangian approach for Saint-Venant system

5 Conclusion

Lagrangian approach for Saint-Venant system

Physical phenomenon: Avalanche

Lagrangian approach for Saint-Venant system

Background

- Physical phenomenon: Avalanche
- Mathematical modeling: 2D Saint-Venant model

$$\begin{cases} \partial_t H + div(H\mathbf{u}) = 0, \\ \partial_t H\mathbf{u} + div(H\mathbf{u} \otimes \mathbf{u}) + \frac{1}{2}\nabla g H^2 = -gh\nabla z_b - \mu g H sgn(\mathbf{u}), \end{cases}$$
(8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lagrangian approach for Saint-Venant system

Background

- Physical phenomenon: Avalanche
- Mathematical modeling: 2D Saint-Venant model

$$\begin{cases} \partial_t H + div(H\mathbf{u}) = 0, \\ \partial_t H\mathbf{u} + div(H\mathbf{u} \otimes \mathbf{u}) + \frac{1}{2}\nabla g H^2 = -gh\nabla z_b - \mu g Hsgn(\mathbf{u}), \end{cases}$$
(8)

Objectif: Apply the ROM into this model

Lagrangian approach for Saint-Venant system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Real Avalanche

Lagrangian approach for Saint-Venant system

Numerical Avalanche with FreshKiss1D

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lagrangian approach for Saint-Venant system

The 1D Saint-Venant system in the Eulerian form with the coulomb friction:

$$\begin{cases} \partial_t h + \partial_x h u = 0, \\ \partial_t h u + \partial_x (h u^2 + g \frac{h^2}{2}) = -\mu ghsgn(u), \end{cases}$$
(9)

We consider the change of variable: $(t,x)\mapsto (au,y)$

$$au = t ext{ and } y(x,t) = \int_{-\infty}^{x} h(s,t) ds;$$
 (10)

The 1D Saint-Venant system in the Lagrangian representation:

$$\begin{cases} \partial_{\tau} \frac{1}{h} - \partial_{y} u = 0, \\ \partial_{\tau} u + gh \partial_{y} h = -\mu gsgn(u), \end{cases}$$
(11)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙

Lagrangian approach for Saint-Venant system

The Gramian matrix with L^2 inner product, X = (h, hu) and Y = (h, u).

$$||X||^2 = \int_x (h^2 + (hu)^2) dx \quad ||Y||^2 = \int_y (h^2 + u^2) dy$$

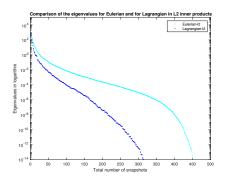


Figure: The eigenvalues in the Eulerian form(cyan) and the Lagrangian form(blue).

Lagrangian approach for Saint-Venant system

The Gramian matrix with energy inner product, $X = (h, \sqrt{h}u)$ and $Y = (\sqrt{h}, u)$.

$$||X||^2 = \int_x (h^2 + hu^2) dx \quad ||Y||^2 = \int_y (h + u^2) dy$$

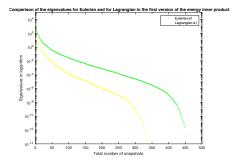


Figure: The eigenvalues in the Eulerian form(green) and the Lagrangian form(yellow).

Lagrangian approach for Saint-Venant system

The Gramian matrix with energy inner product,

$$X = (\sqrt{\frac{g(h+2z_b)^2 - z_b^2}{2}}, \sqrt{h}u) \text{ and } Y = (\sqrt{\frac{g}{2}}(h+2z_b), u).$$
$$\int_x hu^2 + \frac{g(h+z_b)^2 - z_b^2}{2} dx \quad \int_y u^2 + \frac{g(h+2z_b)^2}{2} dy$$

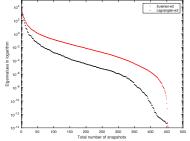
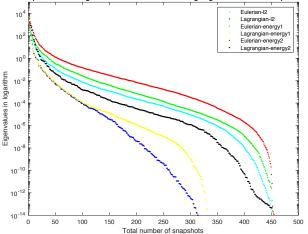


Figure: The eigenvalues in the Eulerian form(red) and the Lagrangian form(black).

Lagrangian approach for Saint-Venant system



Comparison of the eigenvalues for Eulerian and for Lagrangian in different inner products

Figure: The eigenvalues in the Eulerian form and the Lagrangian form for different inner products.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Conclusion

Overview

1 Introduction

- 2 Background on Reduced-Order Modeling
- 3 Characteristic method for Burgers' equation
- 4 Lagrangian approach for Saint-Venant system

5 Conclusion

- Conclusion

What we have done

- 1 Studied two ROM methods: POD and DEIM;
- **2** Combination of the characteristic method with the ROM method, and apply for Burger's equation;
- **3** Compared the reduction of SV system under two different representations.

What we may do in the future

Complete the RB for the Lagrangian representation with different inner products;

2 Use the ROM method for viscous Burgers' equation.