Model Reduction for hyperbolic Equations

Liudi LU ${ }^{1,2,3}$
Supervisiors: J.Sainte-Marie ${ }^{1,2,3,4}$ J.Salomon ${ }^{1,2,3}$
${ }^{1}$ Sorbonne Université
${ }^{2}$ INRIA Paris, ANGE
${ }^{3}$ Laboratoire Jacques-Louis Lions
${ }^{4}$ CEREMA

December 12, 2018

Overview

1 Introduction

2 Background on Reduced-Order Modeling

3 Characteristic method for Burgers' equation

4 Lagrangian approach for Saint-Venant system

5 Conclusion

Motivation

■ Considering a class of parametried partial differential equations ($P^{2} D E s$)

$$
\begin{equation*}
\partial_{t} u(t ; \mu)+\mathscr{F}[u(t ; \mu) ; \mu]=0 \tag{1}
\end{equation*}
$$

where $\mu \in \mathbf{R}^{d}$ a parameter vector.

Motivation

■ Considering a class of parametried partial differential equations ($P^{2} D E s$)

$$
\begin{equation*}
\partial_{t} u(t ; \mu)+\mathscr{F}[u(t ; \mu) ; \mu]=0 \tag{1}
\end{equation*}
$$

where $\mu \in \mathbf{R}^{d}$ a parameter vector.
■ For $\mu \in \mathscr{P}_{\text {train }} \subset \mathbf{R}^{d}$, we know the solution $u(\mu)$: snapshots.

Motivation

■ Considering a class of parametried partial differential equations ($P^{2} D E s$)

$$
\begin{equation*}
\partial_{t} u(t ; \mu)+\mathscr{F}[u(t ; \mu) ; \mu]=0 \tag{1}
\end{equation*}
$$

where $\mu \in \mathbf{R}^{d}$ a parameter vector.
■ For $\mu \in \mathscr{P}_{\text {train }} \subset \mathbf{R}^{d}$, we know the solution $u(\mu)$: snapshots.
■ Find a space $X_{k}=\operatorname{span}\left\{\psi_{i}\right\}_{i=1, \ldots, k}$ from these solutions.

Motivation

■ Considering a class of parametried partial differential equations ($P^{2} D E s$)

$$
\begin{equation*}
\partial_{t} u(t ; \mu)+\mathscr{F}[u(t ; \mu) ; \mu]=0 \tag{1}
\end{equation*}
$$

where $\mu \in \mathbf{R}^{d}$ a parameter vector.
■ For $\mu \in \mathscr{P}_{\text {train }} \subset \mathbf{R}^{d}$, we know the solution $u(\mu)$: snapshots.
■ Find a space $X_{k}=\operatorname{span}\left\{\psi_{i}\right\}_{i=1, \ldots, k}$ from these solutions.
■ For a given new parameter $\mu_{\text {new }}$,

$$
u\left(\mu_{\text {new }}\right) \simeq \tilde{u}\left(\mu_{\text {new }}\right)=\sum_{i=1}^{K} \alpha_{i}\left(\mu_{n e w}\right) \psi_{i}
$$

Motivation

■ Considering a class of parametried partial differential equations ($P^{2} D E s$)

$$
\begin{equation*}
\partial_{t} u(t ; \mu)+\mathscr{F}[u(t ; \mu) ; \mu]=0 \tag{1}
\end{equation*}
$$

where $\mu \in \mathbf{R}^{d}$ a parameter vector.

- For $\mu \in \mathscr{P}_{\text {train }} \subset \mathbf{R}^{d}$, we know the solution $u(\mu)$: snapshots.

■ Find a space $X_{k}=\operatorname{span}\left\{\psi_{i}\right\}_{i=1, \ldots, k}$ from these solutions.
■ For a given new parameter $\mu_{\text {new }}$,

$$
u\left(\mu_{\text {new }}\right) \simeq \tilde{u}\left(\mu_{\text {new }}\right)=\sum_{i=1}^{K} \alpha_{i}\left(\mu_{\text {new }}\right) \psi_{i}
$$

■ Question: how to find X_{k} ? Reduced Basis Method.

Complexity Reduction

Definition

Let X be a normed linear space, S be a subset of X and X_{n} be a generic n-dimensional subspace of X. The deviation of S from X_{n} is

$$
E\left(S ; X_{n}\right)=\sup _{u \in S} \inf _{v_{n} \in X_{n}}\left\|u-v_{n}\right\|_{X}
$$

The Kolmogorov n-width of S in X is given by

$$
\begin{equation*}
d_{n}(S, X)=\inf _{X_{n}} \sup _{u \in S} \inf _{v_{n} \in X_{n}}\left\|u-v_{n}\right\|_{X} \tag{2}
\end{equation*}
$$

Complexity Reduction

Remark

- The n-width of S thus measures the extent to which S may be approximated by a n-dimensional subspace of X.
■ $S=\left\{u(. ; \mu) ; \mu \in \mathscr{P}_{\text {train }}\right\}$ called solution manifold.
- We further assume that S has a small Kolmogorov n-width ${ }^{1}$.

■ PDEs hyperbolic always have a large Kolmogorov n-width.
${ }^{1}$ If \mathscr{F} is a bounded linear operator mapping the Banach space X into the Banach space Y and D is a compact set in X, then the Kolmogorov widths of the image $L(D)$ do not exceed those of D multiplied by the norm of L. $\bar{\equiv}$

Exemple

The homogeneous advection equation

$$
\left\{\begin{array}{l}
\partial_{t} u+c \partial_{x} u=0 ; \\
\left.u\right|_{t=0}=u_{0} \\
u \quad \text { periodic }
\end{array}\right.
$$

Exemple

The homogeneous advection equation

$$
\left\{\begin{array}{l}
\partial_{t} u+c \partial_{x} u=0 \\
\left.u\right|_{t=0}=u_{0} \\
u \quad \text { periodic }
\end{array}\right.
$$

(a) Typical Kolmogorov n -width for PDE hyperbolic

Exemple

The homogeneous advection equation

$$
\left\{\begin{array}{l}
\partial_{t} u+c \partial_{x} u=0 ; \\
\left.u\right|_{t=0}=u_{0} ; \\
u \text { periodic }
\end{array}\right.
$$

(a) Typical Kolmogorov n-width for PDE hyperbolic
(b) A sequence of small dimensional subspaces(in red)

- Background on Reduced-Order Modeling

Overview

1 Introduction

2 Background on Reduced-Order Modeling

3 Characteristic method for Burgers' equation

4 Lagrangian approach for Saint-Venant system

5 Conclusion

Primary Problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(t)=A u(t)+F(u(t)) \tag{3}\\
u(0)=u_{0}
\end{array}\right.
$$

■ $u(t)=u(t ; \mu) \in \mathbf{R}^{N}$: a state vector;

- $u_{0} \in \mathbf{R}^{N}$: a fixed initial condition;

■ $A \in \mathbf{R}^{N \times N}$: a square matrix;
■ $F: \mathbf{R}^{N} \mapsto \mathbf{R}^{N}:$ a non-linear function,
■ $\mu \in \mathscr{P}_{\text {train }}$, a parameter.

Primary Problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(t)=A u(t)+F(u(t)) \tag{3}\\
u(0)=u_{0}
\end{array}\right.
$$

■ $u(t)=u(t ; \mu) \in \mathbf{R}^{N}$: a state vector;

- $u_{0} \in \mathbf{R}^{N}$: a fixed initial condition;
- $A \in \mathbf{R}^{N \times N}$: a square matrix;

■ $F: \mathbf{R}^{N} \mapsto \mathbf{R}^{N}$: a non-linear function,
■ $\mu \in \mathscr{P}_{\text {train }}$, a parameter.
The minimization problem:

$$
\int_{0}^{\tau}\left\|u(t ; \mu)-\Pi_{k} u(t ; \mu)\right\|_{2}^{2} d t=J\left(\Pi_{k}\right), k \in \mathbf{N}
$$

Primary Problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(t)=A u(t)+F(u(t)) \tag{3}\\
u(0)=u_{0}
\end{array}\right.
$$

■ $u(t)=u(t ; \mu) \in \mathbf{R}^{N}$: a state vector;

- $u_{0} \in \mathbf{R}^{N}$: a fixed initial condition;

■ $A \in \mathbf{R}^{N \times N}:$ a square matrix;
■ $F: \mathbf{R}^{N} \mapsto \mathbf{R}^{N}$: a non-linear function,
■ $\mu \in \mathscr{P}_{\text {train }}$, a parameter.
The minimization problem:

$$
\int_{0}^{\tau}\left\|u(t ; \mu)-\Pi_{k} u(t ; \mu)\right\|_{2}^{2} d t=J\left(\Pi_{k}\right), k \in \mathbf{N}
$$

Best solution: POD!

- Define the Gramian matrix:

$$
G_{i j}:=\int_{0}^{\tau} u\left(t ; \mu_{i}\right)^{T} u\left(t ; \mu_{j}\right) d t \text {, with } \mu_{i}, \mu_{j} \in \mathscr{P}_{\text {train }} .
$$

POD

- Define the Gramian matrix:

$$
G_{i j}:=\int_{0}^{\tau} u\left(t ; \mu_{i}\right)^{T} u\left(t ; \mu_{j}\right) d t \text {, with } \mu_{i}, \mu_{j} \in \mathscr{P}_{\text {train }} .
$$

■ Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N_{\mu}} \geq 0$ denote the ordered eigenvalues of G and $\phi_{i} \in \mathbf{R}^{N_{\mu}}, i=1, \cdots, N_{\mu}$ denote their associated eigenvectors which are also referred to as the POD modes

$$
G \phi_{i}=\lambda_{i} \phi_{i}
$$

- Define the Gramian matrix:

$$
G_{i j}:=\int_{0}^{\tau} u\left(t ; \mu_{i}\right)^{T} u\left(t ; \mu_{j}\right) d t \text {, with } \mu_{i}, \mu_{j} \in \mathscr{P}_{\text {train }} .
$$

■ Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N_{\mu}} \geq 0$ denote the ordered eigenvalues of G and $\phi_{i} \in \mathbf{R}^{N_{\mu}}, i=1, \cdots, N_{\mu}$ denote their associated eigenvectors which are also referred to as the POD modes

$$
G \phi_{i}=\lambda_{i} \phi_{i}
$$

■ Let S denote the snapshot matrix $S:=\left\{\sqrt{\alpha_{k}} u\left(t ; \mu_{i}\right)\right\}_{i=1}^{N_{\mu}}$, with $\alpha_{k}, k=1, \cdots, N$ the quadrature weights;

- Define the Gramian matrix:

$$
G_{i j}:=\int_{0}^{\tau} u\left(t ; \mu_{i}\right)^{T} u\left(t ; \mu_{j}\right) d t \text {, with } \mu_{i}, \mu_{j} \in \mathscr{P}_{\text {train }} .
$$

■ Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N_{\mu}} \geq 0$ denote the ordered eigenvalues of G and $\phi_{i} \in \mathbf{R}^{N_{\mu}}, i=1, \cdots, N_{\mu}$ denote their associated eigenvectors which are also referred to as the POD modes

$$
G \phi_{i}=\lambda_{i} \phi_{i}
$$

- Let S denote the snapshot matrix $S:=\left\{\sqrt{\alpha_{k}} u\left(t ; \mu_{i}\right)\right\}_{i=1}^{N_{\mu}}$, with $\alpha_{k}, k=1, \cdots, N$ the quadrature weights;
- The Gramian matrix can then be written $G:=S^{T} S$

■ Define the Gramian matrix:

$$
G_{i j}:=\int_{0}^{\tau} u\left(t ; \mu_{i}\right)^{T} u\left(t ; \mu_{j}\right) d t \text {, with } \mu_{i}, \mu_{j} \in \mathscr{P}_{\text {train }} .
$$

■ Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N_{\mu}} \geq 0$ denote the ordered eigenvalues of G and $\phi_{i} \in \mathbf{R}^{N_{\mu}}, i=1, \cdots, N_{\mu}$ denote their associated eigenvectors which are also referred to as the POD modes

$$
G \phi_{i}=\lambda_{i} \phi_{i}
$$

■ Let S denote the snapshot matrix $S:=\left\{\sqrt{\alpha_{k}} u\left(t ; \mu_{i}\right)\right\}_{i=1}^{N_{\mu}}$, with $\alpha_{k}, k=1, \cdots, N$ the quadrature weights;

- The Gramian matrix can then be written $G:=S^{T} S$
- The POD modes $\Psi:=S \Phi \Lambda^{-\frac{1}{2}}$;
- Define the Gramian matrix:

$$
G_{i j}:=\int_{0}^{\tau} u\left(t ; \mu_{i}\right)^{T} u\left(t ; \mu_{j}\right) d t \text {, with } \mu_{i}, \mu_{j} \in \mathscr{P}_{\text {train }} .
$$

■ Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N_{\mu}} \geq 0$ denote the ordered eigenvalues of G and $\phi_{i} \in \mathbf{R}^{N_{\mu}}, i=1, \cdots, N_{\mu}$ denote their associated eigenvectors which are also referred to as the POD modes

$$
G \phi_{i}=\lambda_{i} \phi_{i}
$$

- Let S denote the snapshot matrix $S:=\left\{\sqrt{\alpha_{k}} u\left(t ; \mu_{i}\right)\right\}_{i=1}^{N_{\mu}}$, with $\alpha_{k}, k=1, \cdots, N$ the quadrature weights;
- The Gramian matrix can then be written $G:=S^{T} S$
- The POD modes $\Psi:=S \Phi \Lambda^{-\frac{1}{2}}$;

■ We then define our projector Π_{k} by taking the first k POD basis of ψ with a smaller dimension k.

Reduced Problem

With this projector Π_{k}, we can project the solution onto the this subspace $X_{k}=\operatorname{span}\left\{\psi_{1}, \cdots, \psi_{k}\right\}$

$$
u(t)=\underbrace{\Psi_{k}}_{N \times k} \underbrace{\tilde{u}(t)}_{k \times 1}
$$

Reduced Problem

With this projector Π_{k}, we can project the solution onto the this subspace $X_{k}=\operatorname{span}\left\{\psi_{1}, \cdots, \psi_{k}\right\}$

$$
u(t)=\underbrace{\Psi_{k}}_{N \times k} \underbrace{\tilde{u}(t)}_{k \times 1}
$$

Then we define the reduced problem:

$$
\begin{equation*}
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\Psi_{k}^{T} F(\underbrace{\Psi_{k} \tilde{u}(t)}_{N \times 1}) \tag{4}
\end{equation*}
$$

Reduced Problem

With this projector Π_{k}, we can project the solution onto the this subspace $X_{k}=\operatorname{span}\left\{\psi_{1}, \cdots, \psi_{k}\right\}$

$$
u(t)=\underbrace{\Psi_{k}}_{N \times k} \underbrace{\tilde{u}(t)}_{k \times 1}
$$

Then we define the reduced problem:

$$
\begin{equation*}
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\Psi_{k}^{T} F(\underbrace{\Psi_{k} \tilde{u}(t)}_{N \times 1}) \tag{4}
\end{equation*}
$$

Let $f(t):=F\left(\Psi_{k} \tilde{u}(t)\right)$ the non-affine parameter dependent part, we would like to find an approximation

$$
f(t) \simeq \underbrace{U}_{N \times m} \underbrace{c(t)}_{m \times 1} \text {, with } m \ll N
$$

Reduced Problem

With this projector Π_{k}, we can project the solution onto the this subspace $X_{k}=\operatorname{span}\left\{\psi_{1}, \cdots, \psi_{k}\right\}$

$$
u(t)=\underbrace{\Psi_{k}}_{N \times k} \underbrace{\tilde{u}(t)}_{k \times 1}
$$

Then we define the reduced problem:

$$
\begin{equation*}
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\Psi_{k}^{T} F(\underbrace{\Psi_{k} \tilde{u}(t)}_{N \times 1}), \tag{4}
\end{equation*}
$$

Let $f(t):=F\left(\Psi_{k} \tilde{u}(t)\right)$ the non-affine parameter dependent part, we would like to find an approximation

$$
f(t) \simeq \underbrace{U}_{N \times m} \underbrace{c(t)}_{m \times 1} \text {, with } m \ll N
$$

How to choose a m by m linear system: DEIM!

Algorithm 1 DEIM

Input: the projection basis U
Output: the interpolation indices $\vec{\varrho}$
1: $\left[\rho, \varrho_{1}\right]=\max \left\{\left|u_{1}\right|\right\}$;
2: $\vec{\varrho}:=\left[\varrho_{1}\right], \mathbf{U}:=\left[u_{1}\right]$;
3: for $i=2, \cdots, m$ do
4: $\quad u=u_{i}$;
5: $\quad \mathbf{U}_{\vec{\varrho}} c=u_{\vec{\varrho}} ;$
6: $\quad r:=u-\mathbf{U} c$;
7: $\quad\left[\rho, \varrho_{i}\right]=\max \{|r|\}$;
8: $\quad \mathbf{U}:=[\mathbf{U}, u], \vec{\varrho}:=\left[\vec{\varrho}, \varrho_{i}\right]$
9: end for

Reduced problem

Let $P=\left[e_{\varrho_{1}}, \cdots, e_{\varrho_{m}}\right]$ where e_{i} is the standard basis of \mathbf{R}^{N}.

$$
P^{T} f(t)=\underbrace{\left(P^{T} U\right)}_{m \times m} c(t) ;
$$

Reduced problem

Let $P=\left[e_{\varrho_{1}}, \cdots, e_{\varrho_{m}}\right]$ where e_{i} is the standard basis of \mathbf{R}^{N}.

$$
P^{T} f(t)=\underbrace{\left(P^{T} U\right)}_{m \times m} c(t) ;
$$

The reduced problem becomes

$$
\begin{array}{r}
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\underbrace{\Psi_{k}^{T} U\left(P^{T} U\right)^{-1}}_{k \times m} P^{T} F\left(\Psi_{k} \tilde{u}(t)\right), \\
\Downarrow \\
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\underbrace{\Psi_{k}^{T} U\left(P^{T} U\right)^{-1}}_{k \times m} F(\underbrace{P^{T} \Psi_{k}}_{m \times k} \tilde{u}(t)),
\end{array}
$$

Reduced problem

Let $P=\left[e_{\varrho_{1}}, \cdots, e_{\varrho_{m}}\right]$ where e_{i} is the standard basis of \mathbf{R}^{N}.

$$
P^{T} f(t)=\underbrace{\left(P^{T} U\right)}_{m \times m} c(t) ;
$$

The reduced problem becomes

$$
\begin{array}{r}
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\underbrace{\Psi_{k}^{T} U\left(P^{T} U\right)^{-1}}_{k \times m} P^{T} F\left(\Psi_{k} \tilde{u}(t)\right), \\
\Downarrow \\
\frac{d}{d t} \tilde{u}(t)=\underbrace{\Psi_{k}^{T} A \Psi_{k}}_{k \times k} \tilde{u}(t)+\underbrace{\Psi_{k}^{T} U\left(P^{T} U\right)^{-1}}_{k \times m} F(\underbrace{P^{T} \Psi_{k}}_{m \times k} \tilde{u}(t)),
\end{array}
$$

Now the precomputation can be done and the complexity of the non-linear term

$$
\Psi_{k} \in \mathbf{R}^{N \times k} \Rightarrow P^{T} \Psi_{k} \in \mathbf{R}^{m \times k}
$$

Overview

1 Introduction

2 Background on Reduced-Order Modeling

3 Characteristic method for Burgers' equation

4 Lagrangian approach for Saint-Venant system

5 Conclusion

Simple Model

Homogenous Burgers' Equation:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=0 \tag{5}\\
u(x, 0)=u^{0}(x) \\
u \quad \text { periodic }
\end{array}\right.
$$

Simple Model

Homogenous Burgers' Equation:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=0 \tag{5}\\
u(x, 0)=u^{0}(x) \\
u \quad \text { periodic }
\end{array}\right.
$$

Example: let us consider a parametric u^{0} in the form

$$
\begin{equation*}
u^{0}(x)=\mu_{1} u_{1}^{0}(x)+\mu_{2} u_{2}^{0}(x)+\mu_{3} u_{3}^{0}(x) \tag{6}
\end{equation*}
$$

with $\mu=\left[\mu_{1}, \mu_{2}, \mu_{3}\right] \in[0,1]^{3}$ (we denote $\mathscr{P}:=[0,1]^{3}$) and

$$
u_{1}^{0}(x)=\arctan (x), u_{2}^{0}(x)=\exp (x), u_{3}^{0}(x)=x^{3}
$$

Simple Model

Homogenous Burgers' Equation:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=0 \tag{5}\\
u(x, 0)=u^{0}(x) \\
u \text { periodic }
\end{array}\right.
$$

Example: let us consider a parametric u^{0} in the form

$$
\begin{equation*}
u^{0}(x)=\mu_{1} u_{1}^{0}(x)+\mu_{2} u_{2}^{0}(x)+\mu_{3} u_{3}^{0}(x) \tag{6}
\end{equation*}
$$

with $\mu=\left[\mu_{1}, \mu_{2}, \mu_{3}\right] \in[0,1]^{3}$ (we denote $\mathscr{P}:=[0,1]^{3}$) and

$$
u_{1}^{0}(x)=\arctan (x), u_{2}^{0}(x)=\exp (x), u_{3}^{0}(x)=x^{3}
$$

The characteristic curves

$$
\begin{equation*}
x=x_{0}+u^{0}\left(x_{0}\right) t \tag{7}
\end{equation*}
$$

Simple Model

Homogenous Burgers' Equation:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=0 \tag{5}\\
u(x, 0)=u^{0}(x) \\
u \text { periodic }
\end{array}\right.
$$

Example: let us consider a parametric u^{0} in the form

$$
\begin{equation*}
u^{0}(x)=\mu_{1} u_{1}^{0}(x)+\mu_{2} u_{2}^{0}(x)+\mu_{3} u_{3}^{0}(x) \tag{6}
\end{equation*}
$$

with $\mu=\left[\mu_{1}, \mu_{2}, \mu_{3}\right] \in[0,1]^{3}$ (we denote $\mathscr{P}:=[0,1]^{3}$) and

$$
u_{1}^{0}(x)=\arctan (x), u_{2}^{0}(x)=\exp (x), u_{3}^{0}(x)=x^{3}
$$

The characteristic curves

$$
\begin{equation*}
x=x_{0}+u^{0}\left(x_{0}\right) t \tag{7}
\end{equation*}
$$

Unknown: $u(x, t) \rightarrow x_{0}=x_{0}(x, t ; \mu)$.

Numerical test

We take a space $\mathscr{P}_{\text {train }}=\mathscr{P}^{1000}$, and a discretization of 10 steps both in time and space.

(a) Global decay of the eigenvalues

(b) Zoom of the red part

The POD provides a space with small dimension X_{k} and a projector Ψ_{k}.

$$
x_{0}=\Psi_{k} \tilde{x_{0}}
$$

The POD provides a space with small dimension X_{k} and a projector Ψ_{k}.

$$
x_{0}=\Psi_{k} \tilde{x_{0}}
$$

The reduced problem with k POD modes

$$
\tilde{x_{0}}=\Psi_{k}^{T} x-\Psi_{k}^{T} u^{0}\left(\Psi_{k} \tilde{x_{0}}\right) t
$$

The POD provides a space with small dimension X_{k} and a projector Ψ_{k}.

$$
x_{0}=\Psi_{k} \tilde{x_{0}}
$$

The reduced problem with k POD modes

$$
\tilde{x_{0}}=\Psi_{k}^{T} x-\Psi_{k}^{T} u^{0}\left(\Psi_{k} \tilde{x_{0}}\right) t
$$

Algorithm DEIM treats the non linear term u^{0}

$$
\tilde{x_{0}}=\Psi_{k}^{T} x-\Psi_{k}^{T} U\left(P^{T} U\right)^{-1} u^{0}\left(P^{T} \Psi_{k} \tilde{x_{0}}\right) t
$$

The POD provides a space with small dimension X_{k} and a projector Ψ_{k}.

$$
x_{0}=\Psi_{k} \tilde{x_{0}}
$$

The reduced problem with k POD modes

$$
\tilde{x_{0}}=\Psi_{k}^{T} x-\Psi_{k}^{T} u^{0}\left(\Psi_{k} \tilde{x_{0}}\right) t
$$

Algorithm DEIM treats the non linear term u^{0}

$$
\tilde{x_{0}}=\Psi_{k}^{T} x-\Psi_{k}^{T} U\left(P^{T} U\right)^{-1} u^{0}\left(P^{T} \Psi_{k} \tilde{x_{0}}\right) t
$$

With $k=20$ POD modes, we proceed the approximation below.

Figure: The first-six POD modes.
$\mathrm{mu}=(0.90579,0.79428,0.37861)$

$\mathrm{mu}=(0.90579,0.79428,0.37861)$

Figure: Compare the exact solution (a) with the approximate solution (b) for x_{0} for the same parameters and relative error in percentage (c).

Further test, we now take a space $\mathscr{P}_{\text {train }}=\mathscr{P}^{120}$ with a discretization of 50 steps in space and in time.

k	8	15	30	60	120
Accuracy	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}
Computation time(s)	5.21	21.81	100.13	334.54	1262.5

Overview

1 Introduction

2 Background on Reduced-Order Modeling

3 Characteristic method for Burgers' equation

4 Lagrangian approach for Saint-Venant system

5 Conclusion

Background

■ Physical phenomenon: Avalanche

Background

- Physical phenomenon: Avalanche
- Mathematical modeling: 2D Saint-Venant model

$$
\left\{\begin{array}{l}
\partial_{t} H+\operatorname{div}(H \mathbf{u})=0 \\
\partial_{t} H \mathbf{u}+\operatorname{div}(H \mathbf{u} \otimes \mathbf{u})+\frac{1}{2} \nabla g H^{2}=-g h \nabla z_{b}-\mu g H \operatorname{sgn}(\mathbf{u}),
\end{array}\right.
$$

Background

- Physical phenomenon: Avalanche

■ Mathematical modeling: 2D Saint-Venant model

$$
\left\{\begin{array}{l}
\partial_{t} H+\operatorname{div}(H \mathbf{u})=0 \\
\partial_{t} H \mathbf{u}+\operatorname{div}(H \mathbf{u} \otimes \mathbf{u})+\frac{1}{2} \nabla g H^{2}=-g h \nabla z_{b}-\mu g H \operatorname{sgn}(\mathbf{u}), \tag{8}
\end{array}\right.
$$

■ Objectif: Apply the ROM into this model

Real Avalanche

Numerical Avalanche with FreshKiss1D

The 1D Saint-Venant system in the Eulerian form with the coulomb friction:

$$
\left\{\begin{array}{l}
\partial_{t} h+\partial_{x} h u=0 \tag{9}\\
\partial_{t} h u+\partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-\mu g h \operatorname{sgn}(u)
\end{array}\right.
$$

We consider the change of variable: $(t, x) \mapsto(\tau, y)$

$$
\begin{equation*}
\tau=t \text { and } y(x, t)=\int_{-\infty}^{x} h(s, t) d s \tag{10}
\end{equation*}
$$

The 1D Saint-Venant system in the Lagrangian representation:

$$
\left\{\begin{array}{l}
\partial_{\tau} \frac{1}{h}-\partial_{y} u=0 \tag{11}\\
\partial_{\tau} u+g h \partial_{y} h=-\mu g s g n(u),
\end{array}\right.
$$

The Gramian matrix with L^{2} inner product, $X=(h, h u)$ and $Y=(h, u)$.

$$
\|X\|^{2}=\int_{x}\left(h^{2}+(h u)^{2}\right) d x \quad\|Y\|^{2}=\int_{y}\left(h^{2}+u^{2}\right) d y
$$

Figure: The eigenvalues in the Eulerian form(cyan) and the Lagrangian form(blue).

The Gramian matrix with energy inner product, $X=(h, \sqrt{h} u)$ and $Y=(\sqrt{h}, u)$.

$$
\|X\|^{2}=\int_{x}\left(h^{2}+h u^{2}\right) d x \quad\|Y\|^{2}=\int_{y}\left(h+u^{2}\right) d y
$$

Comparison of the eigenvalues for Eulerian and for Lagrangian in the first version of the energy inner product

Figure: The eigenvalues in the Eulerian form(green) and the Lagrangian form(yellow).

The Gramian matrix with energy inner product,

$$
\begin{aligned}
X= & \left(\sqrt{\frac{g\left(h+2 z_{b}\right)^{2}-z_{b}^{2}}{2}}, \sqrt{h} u\right) \text { and } Y=\left(\sqrt{\frac{g}{2}}\left(h+2 z_{b}\right), u\right) . \\
& \int_{x} h u^{2}+\frac{g\left(h+z_{b}\right)^{2}-z_{b}^{2}}{2} d x \int_{y} u^{2}+\frac{g\left(h+2 z_{b}\right)^{2}}{2} d y
\end{aligned}
$$

Comparison of the eigenvalues for Eulerian and for Lagrangian in the second version of the energy inner product

Figure: The eigenvalues in the Eulerian form(red) and the Lagrangian form(black).

Figure: The eigenvalues in the Eulerian form and the Lagrangian form for different inner products.

Overview

1 Introduction

2 Background on Reduced－Order Modeling

3 Characteristic method for Burgers＇equation

4 Lagrangian approach for Saint－Venant system

5 Conclusion

What we have done
1 Studied two ROM methods: POD and DEIM;
2 Combination of the characteristic method with the ROM method, and apply for Burger's equation;
3 Compared the reduction of SV system under two different representations.

What we may do in the future
1 Complete the RB for the Lagrangian representation with different inner products;
2 Use the ROM method for viscous Burgers' equation.

