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L Introduction

Motivation

m Considering a class of parametried partial differential
equations (P?DEs)

Oru(t; p) + Flu(t; p)ipn] =0 (1)

where 11 € RY a parameter vector.

For € Pirain C RY, we know the solution u(u): snapshots.

Find a space X = span{t;}i=1, ., from these solutions.

For a given new parameter fipew,

K

U(tnew) = T(new) = Z a;(fnew ) Vi;

i=1

Question: how to find X, ? Reduced Basis Method.
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L Introduction

Complexity Reduction

Definition
Let X be a normed linear space, S be a subset of X and X,, be a
generic n-dimensional subspace of X . The deviation of S from X,
is
E(S; X,) = inf —
(S Xn) oy M, lu = vallx

The Kolmogorov n-width of S in X is given by

dn(S, X) = infsup inf [[u— v, 2
(5,X) =infsup inf [lu—vallx (2)
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L Introduction

Complexity Reduction

m The n-width of S thus measures the extent to which S may
be approximated by a n-dimensional subspace of X.

m S ={u(.;p); 1 € Ptain} called solution manifold.
m We further assume that S has a small Kolmogorov n-width !.
m PDEs hyperbolic always have a large Kolmogorov n-width.

lIf Z is a bounded linear operator mapping the Banach space X into the
Banach space Y and D is a compact set in X , then the Kolmogorov widths of
the image L(D) do not exceed those of D multiplied by the norm of L.
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L Introduction

Exemple

The homogeneous advection equation
Ot + cOxu = 0;
ult=0 = uo;

u periodic

Decay of the eigenvaules for the Gramian

Logaritm of the eigenvaluss

o E) 20 250 o

100 150
Total number of snapshots o E) 200 250

0 150
Total number of snapshols

(a) Typical Kolmogorov n-width for (b) A sequence of small dimensional
PDE hyperbolic subspaces(in red)
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Primary Problem

4 y(t) = Au u
{ dt (t) A (t)+F( (t))7 (3)

u(t) = u(t; 1) € RN: a state vector;
ug € RV: a fixed initial condition;

A € RV*N: 3 square matrix;

F:RM — R": a non-linear function,

W E Pirain, @ parameter.
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Primary Problem

4 y(t) = Au u
{ dt (t) A (t)+F( (t))7 (3)

u(0) = wp,

u(t) = u(t; 1) € RN: a state vector;
ug € RV: a fixed initial condition;

A € RV*N: 3 square matrix;

F:RM — R": a non-linear function,

W E Pirain, @ parameter.

The minimization problem:

/ ut: 1) — Meu(t: 1) Bt = J(Ny). k € N
0

Best solution: POD!
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POD

m Define the Gramian matriX'
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POD

m Define the Gramian matriX'

Gij = [, u(t; wi) Tu(t; pi)dt, with i, f1j € Perain.
mLet Ay > A2 > --- > Ay, > 0 denote the ordered eigenvalues
of Gand ¢pj e RM: | ji=1, ... , N, denote their associated
eigenvectors which are also referred to as the POD modes

Goi = \ig;
m Let S denote the snapshot matrix S := {/axu(t; ,u,) i
with ay,k =1,--- , N the quadrature weights;
m The Gramian matrix can then be written G :== S'S
s The POD modes W := SOA~3;

m We then define our projector Ny by taking the first k POD
basis of W with a smaller dimension k.
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Reduced Problem

With this projector Iy, we can project the solution onto the this
subspace Xx = span{1, -+ , ¥k}
u(t) = W, it
() = Wi d(t)
Nxk kx1
Then we define the reduced problem:
d

J(E) = Wi A () + W F(Wii(t)), (4)
N—— N——

kx k Nx1

Let f(t) := F(W,i(t)) the non-affine parameter dependent part,
we would like to find an approximation

f(t)y~ U c(t),withm< N

Nxm mx1

How to choose a m by m linear system: DEIM!
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Algorithm 1 DEIM

Input: the projection basis U
Output: the interpolation indices ¢
: [p, 01] = max{|u|};
0= [o1], U := [u];
cfori=2,--- ., mdo

u = uj,

UgC = Ug,

r:=u— Uc;

.21 = max{rl:

U:=[U,u], &= 2o
end for

© e N TR W
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Reduced problem

Let P = [ey, - , €] Where ¢ is the standard basis of RN,
PTf(t) = (PTU)c(t);
~——

mxm
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Reduced problem

Let P = [ey, - , €] Where ¢ is the standard basis of RN,
PTf(t) = (PTU)c(t);
~——
mxm

The reduced problem becomes

d
—ii(t) = WAV i(t) + V] UPTU) L PTF(W (),
dt ~—— —_—

kxk kxm

[}

d . . _ -
au(t) =V AV, () + W] UPTU) T F(PTW, i(t)),

kxk kxm mxk

Now the precomputation can be done and the complexity of the
non-linear term

v, € RV*k = pTy, ¢ R™*K
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L Characteristic method for Burgers' equation

Simple Model

Homogenous Burgers' Equation:

Oru+ udu=0
u(x,0) = u%(x) (5)
u periodic

Example: let us consider a parametric u° in the form
u®(x) = g (x) + p2ud(x) + psuf(x); (6)
with g = [u1, po, p3] € [0,1]3 (we denote & := [0,1]3) and
ud(x) = arctan(x), u(x) = exp(x), u3(x) = x3;
The characteristic curves
x = xg + u°(x0)t. (7)

Unknown: u(x, t) — xo = xo(x, t; i).
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L Characteristic method for Burgers' equation

Numerical test

We take a space Pyrain = 21000 and a discretization of 10 steps
both in time and space.

Decay of the ei for the Gramian

10° 5 Decay of the for the Gramian
10
8 8
3 3
5 g
H 8
s 5
5 8
3 3
107 s
102 o 5 10 15 20 25 a0
0 200 400 600 800 1000

number of snapshots
number of snapshots i

(a) Global decay of the eigenvalues (b) Zoom of the red part
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The POD provides a space with small dimension X, and a
projector W,.
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The reduced problem with kK POD modes
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Algorithm DEIM treats the non linear term u°

=V x—VIUPTU) O PTV X)L,
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The POD provides a space with small dimension X, and a
projector W,.
xo = ViXo

The reduced problem with kK POD modes
X0 = \UZ—X - W[uo(wk)go)t,

Algorithm DEIM treats the non linear term u°

=V x—VIUPTU) O PTV X)L,

With kK = 20 POD modes, we proceed the approximation below.
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Figure: The first-six POD modes.
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mu = (0.90579, 0.79428, 0.37861) mu = (0.90579, 0.79428, 0.37861)

g
5

Figure: Compare the exact solution (a) with the approximate solution (b)
for xo for the same parameters and relative error in percentage (c).
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Further test, we now take a space Pipain = 2120 with a
discretization of 50 steps in space and in time.

k 8 15 30 60 120
Accuracy 107% [107® [107® [1077 [10°®
Computation 5.21 21.81 | 100.13 | 334.54 | 1262.5
time(s)
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O¢H + div(Hu) = 0,
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(8)



Model Reduction for hyperbolic Equations

L Lagrangian approach for Saint-Venant system

Background

m Physical phenomenon: Avalanche
m Mathematical modeling: 2D Saint-Venant model

O¢H + div(Hu) = 0,
OtHu + div(Hu ® u) + %VgH2 = —ghVz, — pgHsgn(u),
(8)

m Objectif: Apply the ROM into this model
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Real Avalanche
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LLagrangian approach for Saint-Venant system

Numerical Avalanche with FreshKiss1D
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The 1D Saint-Venant system in the Eulerian form with the
coulomb friction:

ath + 8Xhu = 07

Orhu + Ox(hu? + gh;) = —pghsgn(u),

We consider the change of variable: (t,x) — (7,y)

X

7=tand y(x,t) = / h(s, t)ds; (10)

—0o0
The 1D Saint-Venant system in the Lagrangian representation:

{ d-3 — Oyu =0,

Oru+ ghoyh = —pugsgn(u), (11)
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LLagrangian approach for Saint-Venant system

The Gramian matrix with L? inner product, X = (h, hu) and
Y = (h,u).

X2 = / (R + (hu)dx Y2 = / (H + i?)dy

of for Eulerian and for Lagrangian in L2 inner products

10*

1%

10°F N
£ N
Em \
g N

.

g \
3 00
R
g \\
[ ~

10 '\

Y
~
10710 R
N
10 N\
o . . . . . S .
o s0 100 1% 200 250 a0 30 400 450 500

Total number of snapshots

Figure: The eigenvalues in the Eulerian form(cyan) and the Lagrangian
form(blue).
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The Gramian matrix with energy inner product, X = (h,v/hu) and

Y = (Vh, u).

IX|P? = / (B + h?)dx [[Y]? = / (h+ i?)dy

X y

Comparison of the eigenvalues for Eulerian and for Lagrangian in the first version of the energy inner product

Eigenvalues in logarithm

5 100 150 200 250 300 350 400 450 500
Total number of snapshots

Figure: The eigenvalues in the Eulerian form(green) and the Lagrangian
form(yellow).
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LLagrangian approach for Saint-Venant system

The Gramian matrix with energy inner product,
X = (\ EE22P =2 fhy) and Y = (\/g(h +22), u).

h 2 — 277 h+ 2z,)?
/hu2+g( +Z§) ZbdX /U2+g( _'_2 Zb) dy
x y

Comparison of the eigenvalues for Eulerian and for Lagrangian in the second version of the energy inner product

o 50 100 150 200 250 300 35 400 450 500
Total number of snapshots

Figure: The eigenvalues in the Eulerian form(red) and the Lagrangian
form(black).
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Comparison of the eigenvalues for Eulerian and for Lagrangian in different inner products
T T T T T T T T T

104k Eulerian-12 1
& Lagrangian-I2
2 Eulerian-energy1
2 [ Lagrangian-energy1 |
107 5 El
A ulerian-energy2
Lagrangian-energy2
100 1
£
£ 102k 1
IS
o
o
£ 10"k 1
@
o
=
g 10k 1
@
2 X
] %
10°F S 3
010k B
a2 b ™ ~ E
10 - %
~ \\
1014 I I I I I L I I W
0 50 100 150 200 250 300 350 400 450 500

Total number of snapshots

Figure: The eigenvalues in the Eulerian form and the Lagrangian form for
different inner products.
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L Conclusion

What we have done

Studied two ROM methods: POD and DEIM;

Combination of the characteristic method with the ROM
method, and apply for Burger’s equation;

Compared the reduction of SV system under two
different representations.
What we may do in the future

Complete the RB for the Lagrangian representation with
different inner products;

Use the ROM method for viscous Burgers' equation.
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