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Model Reduction for hyperbolic Equations

Introduction

Motivation

Considering a class of parametried partial differential
equations (P2DEs)

∂tu(t;µ) + F [u(t;µ);µ] = 0 (1)

where µ ∈ Rd a parameter vector.

For µ ∈Ptrain ⊂ Rd , we know the solution u(µ): snapshots.

Find a space Xk = span{ψi}i=1,...,k from these solutions.

For a given new parameter µnew ,

u(µnew ) ' ũ(µnew ) =
K∑
i=1

αi (µnew )ψi ;

Question: how to find Xk? Reduced Basis Method.
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Introduction

Complexity Reduction

Definition

Let X be a normed linear space, S be a subset of X and Xn be a
generic n-dimensional subspace of X . The deviation of S from Xn

is
E (S ;Xn) = sup

u∈S
inf

vn∈Xn

‖u − vn‖X

The Kolmogorov n-width of S in X is given by

dn(S ,X ) = inf
Xn

sup
u∈S

inf
vn∈Xn

‖u − vn‖X (2)
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Introduction

Complexity Reduction

Remark

The n-width of S thus measures the extent to which S may
be approximated by a n-dimensional subspace of X .

S = {u(.;µ);µ ∈Ptrain} called solution manifold.

We further assume that S has a small Kolmogorov n-width 1.

PDEs hyperbolic always have a large Kolmogorov n-width.

1If F is a bounded linear operator mapping the Banach space X into the
Banach space Y and D is a compact set in X , then the Kolmogorov widths of
the image L(D) do not exceed those of D multiplied by the norm of L.
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Exemple

The homogeneous advection equation
∂tu + c∂xu = 0;
u|t=0 = u0;
u periodic
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PDE hyperbolic

0 50 100 150 200 250
Total number of snapshots

10-15

10-10

10-5

100

105

1010

Lo
ga

rit
hm

 o
f t

he
 e

ig
en

va
lu

es

Decay of the eigenvaules for the Gramian

sol-scheme
sol-shifted

(b) A sequence of small dimensional
subspaces(in red)



Model Reduction for hyperbolic Equations

Introduction

Exemple

The homogeneous advection equation
∂tu + c∂xu = 0;
u|t=0 = u0;
u periodic

0 50 100 150 200 250
Total number of snapshots

10-15

10-10

10-5

100

105

1010

Lo
ga

rit
hm

 o
f t

he
 e

ig
en

va
lu

es

Decay of the eigenvaules for the Gramian

sol-scheme

(a) Typical Kolmogorov n-width for
PDE hyperbolic

0 50 100 150 200 250
Total number of snapshots

10-15

10-10

10-5

100

105

1010

Lo
ga

rit
hm

 o
f t

he
 e

ig
en

va
lu

es

Decay of the eigenvaules for the Gramian

sol-scheme
sol-shifted

(b) A sequence of small dimensional
subspaces(in red)



Model Reduction for hyperbolic Equations

Introduction

Exemple

The homogeneous advection equation
∂tu + c∂xu = 0;
u|t=0 = u0;
u periodic

0 50 100 150 200 250
Total number of snapshots

10-15

10-10

10-5

100

105

1010

Lo
ga

rit
hm

 o
f t

he
 e

ig
en

va
lu

es

Decay of the eigenvaules for the Gramian

sol-scheme

(a) Typical Kolmogorov n-width for
PDE hyperbolic

0 50 100 150 200 250
Total number of snapshots

10-15

10-10

10-5

100

105

1010

Lo
ga

rit
hm

 o
f t

he
 e

ig
en

va
lu

es

Decay of the eigenvaules for the Gramian

sol-scheme
sol-shifted

(b) A sequence of small dimensional
subspaces(in red)



Model Reduction for hyperbolic Equations

Background on Reduced-Order Modeling

Overview

1 Introduction

2 Background on Reduced-Order Modeling

3 Characteristic method for Burgers’ equation

4 Lagrangian approach for Saint-Venant system

5 Conclusion



Model Reduction for hyperbolic Equations

Background on Reduced-Order Modeling

Primary Problem

{
d
dt u(t) = Au(t) + F (u(t)),
u(0) = u0,

(3)

u(t) = u(t;µ) ∈ RN : a state vector;

u0 ∈ RN : a fixed initial condition;

A ∈ RN×N : a square matrix;

F : RN 7→ RN : a non-linear function,

µ ∈Ptrain, a parameter.

The minimization problem:∫ τ

0
||u(t;µ)− Πku(t;µ)||22dt = J(Πk), k ∈ N

Best solution: POD!
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Background on Reduced-Order Modeling

POD

Define the Gramian matrix:

Gij :=
∫ τ

0 u(t;µi )
Tu(t;µj)dt, with µi , µj ∈Ptrain.

Let λ1 ≥ λ2 ≥ · · · ≥ λNµ ≥ 0 denote the ordered eigenvalues

of G and φi ∈ RNµ , i = 1, · · · ,Nµ denote their associated
eigenvectors which are also referred to as the POD modes

Gφi = λiφi

Let S denote the snapshot matrix S := {√αku(t;µi )}
Nµ

i=1,
with αk ,k = 1, · · · ,N the quadrature weights;

The Gramian matrix can then be written G := STS

The POD modes Ψ := SΦΛ−
1
2 ;

We then define our projector Πk by taking the first k POD
basis of Ψ with a smaller dimension k .
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Background on Reduced-Order Modeling

Reduced Problem

With this projector Πk , we can project the solution onto the this
subspace Xk = span{ψ1, · · · , ψk}

u(t) = Ψk︸︷︷︸
N×k

ũ(t)︸︷︷︸
k×1

Then we define the reduced problem:

d

dt
ũ(t) = ΨT

k AΨk︸ ︷︷ ︸
k×k

ũ(t) + ΨT
k F (Ψk ũ(t)︸ ︷︷ ︸

N×1

), (4)

Let f (t) := F (Ψk ũ(t)) the non-affine parameter dependent part,
we would like to find an approximation

f (t) ' U︸︷︷︸
N×m

c(t)︸︷︷︸
m×1

,with m� N

How to choose a m by m linear system: DEIM!
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ũ(t) = ΨT

k AΨk︸ ︷︷ ︸
k×k
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Background on Reduced-Order Modeling

Algorithm 1 DEIM

Input: the projection basis U
Output: the interpolation indices ~%
1: [ρ, %1] = max{|u1|};
2: ~% := [%1],U := [u1];
3: for i = 2, · · · ,m do
4: u = ui ;
5: U~%c = u~%;
6: r := u −Uc ;
7: [ρ, %i ] = max{|r |};
8: U := [U, u], ~% := [~%, %i ]
9: end for
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Background on Reduced-Order Modeling

Reduced problem

Let P = [e%1 , · · · , e%m ] where ei is the standard basis of RN .

PT f (t) = (PTU)︸ ︷︷ ︸
m×m

c(t);

The reduced problem becomes

d

dt
ũ(t) = ΨT

k AΨk︸ ︷︷ ︸
k×k

ũ(t) + ΨT
k U(PTU)−1︸ ︷︷ ︸

k×m

PTF (Ψk ũ(t)),

⇓
d

dt
ũ(t) = ΨT

k AΨk︸ ︷︷ ︸
k×k

ũ(t) + ΨT
k U(PTU)−1︸ ︷︷ ︸

k×m

F (PTΨk︸ ︷︷ ︸
m×k

ũ(t)),

Now the precomputation can be done and the complexity of the
non-linear term

Ψk ∈ RN×k ⇒ PTΨk ∈ Rm×k
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ũ(t) = ΨT

k AΨk︸ ︷︷ ︸
k×k

ũ(t) + ΨT
k U(PTU)−1︸ ︷︷ ︸

k×m

F (PTΨk︸ ︷︷ ︸
m×k
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Characteristic method for Burgers’ equation

Simple Model

Homogenous Burgers’ Equation:
∂tu + u∂xu = 0
u(x , 0) = u0(x)
u periodic

(5)

Example: let us consider a parametric u0 in the form

u0(x) = µ1u
0
1(x) + µ2u

0
2(x) + µ3u

0
3(x); (6)

with µ = [µ1, µ2, µ3] ∈ [0, 1]3 (we denote P := [0, 1]3) and

u0
1(x) = arctan(x), u0

2(x) = exp(x), u0
3(x) = x3;

The characteristic curves

x = x0 + u0(x0)t. (7)

Unknown: u(x , t)→ x0 = x0(x , t;µ).
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Characteristic method for Burgers’ equation

Numerical test

We take a space Ptrain = P1000, and a discretization of 10 steps
both in time and space.
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(a) Global decay of the eigenvalues
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(b) Zoom of the red part
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Characteristic method for Burgers’ equation

The POD provides a space with small dimension Xk and a
projector Ψk .

x0 = Ψk x̃0

The reduced problem with k POD modes

x̃0 = ΨT
k x −ΨT

k u
0(Ψk x̃0)t,

Algorithm DEIM treats the non linear term u0

x̃0 = ΨT
k x −ΨT

k U(PTU)−1u0(PTΨk x̃0)t,

With k = 20 POD modes, we proceed the approximation below.
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Figure: The first-six POD modes.
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Figure: Compare the exact solution (a) with the approximate solution (b)
for x0 for the same parameters and relative error in percentage (c).
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Further test, we now take a space Ptrain = P120 with a
discretization of 50 steps in space and in time.

k 8 15 30 60 120

Accuracy 10−4 10−5 10−6 10−7 10−8

Computation
time(s)

5.21 21.81 100.13 334.54 1262.5
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Lagrangian approach for Saint-Venant system

Background

Physical phenomenon: Avalanche

Mathematical modeling: 2D Saint-Venant model{
∂tH + div(Hu) = 0,
∂tHu + div(Hu⊗ u) + 1

2∇gH
2 = −gh∇zb − µgHsgn(u),

(8)

Objectif: Apply the ROM into this model
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Real Avalanche
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Numerical Avalanche with FreshKiss1D
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Lagrangian approach for Saint-Venant system

The 1D Saint-Venant system in the Eulerian form with the
coulomb friction:{

∂th + ∂xhu = 0,

∂thu + ∂x(hu2 + g h2

2 ) = −µghsgn(u),
(9)

We consider the change of variable: (t, x) 7→ (τ, y)

τ = t and y(x , t) =

∫ x

−∞
h(s, t)ds; (10)

The 1D Saint-Venant system in the Lagrangian representation:{
∂τ

1
h − ∂yu = 0,

∂τu + gh∂yh = −µgsgn(u),
(11)
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The Gramian matrix with L2 inner product, X = (h, hu) and
Y = (h, u).

‖X‖2 =

∫
x
(h2 + (hu)2)dx ‖Y ‖2 =

∫
y

(h2 + u2)dy
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Figure: The eigenvalues in the Eulerian form(cyan) and the Lagrangian
form(blue).
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The Gramian matrix with energy inner product, X = (h,
√
hu) and

Y = (
√
h, u).

‖X‖2 =

∫
x
(h2 + hu2)dx ‖Y ‖2 =

∫
y

(h + u2)dy
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Figure: The eigenvalues in the Eulerian form(green) and the Lagrangian
form(yellow).
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Lagrangian approach for Saint-Venant system

The Gramian matrix with energy inner product,

X = (

√
g(h+2zb)2−z2

b
2 ,

√
hu) and Y = (

√
g
2 (h + 2zb), u).∫

x
hu2 +

g(h + zb)2 − z2
b

2
dx

∫
y
u2 +

g(h + 2zb)2

2
dy
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Figure: The eigenvalues in the Eulerian form(red) and the Lagrangian
form(black).
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Figure: The eigenvalues in the Eulerian form and the Lagrangian form for
different inner products.
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Conclusion

What we have done

1 Studied two ROM methods: POD and DEIM;

2 Combination of the characteristic method with the ROM
method, and apply for Burger’s equation;

3 Compared the reduction of SV system under two
different representations.

What we may do in the future

1 Complete the RB for the Lagrangian representation with
different inner products;

2 Use the ROM method for viscous Burgers’ equation.
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