Optimization problems of a microalgal raceway to enhance productivity

Olivier Bernard, Liudi LU, Jacques Sainte-Marie, Julien Salomon

November 4, 2020

Introduction

- 2 Raceway Modeling
- 3 Optimization problem
- 4 Numerical Experiments
- 5 Conclusion and Perspective

• Who?

• Who? Microalgae

• Who? Microalgae: photosynthetic organisms

Introduction

- Who? Microalgae: photosynthetic organisms
- Why?

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?
 - All aquatic environments

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?
 - All aquatic environments
 - Industrial cultivation photobioreactors: Chemostats, RAB, Raceways, etc

Introduction

Overview

Introduction

2 Raceway Modeling

- Hydrodynamic model
- Light intensity
- Biologic model
- Mixing device

3 Optimization problem

4 Numerical Experiments

• 1D steady state shallow water equation

$$\partial_{x}(hu) = 0, \qquad (1)$$

$$\partial_{x}(hu^{2} + g\frac{h^{2}}{2}) = -gh\partial_{x}z_{b}. \qquad (2)$$

• 1D steady state shallow water equation

$$\partial_{x}(hu) = 0, \qquad (1)$$

$$\partial_{x}(hu^{2} + g\frac{h^{2}}{2}) = -gh\partial_{x}z_{b}. \qquad (2)$$

 h water elevation, u horizontal averaged velocity, g gravitational acceleration, z_b topography.

• 1D steady state shallow water equation

$$\partial_{x}(hu) = 0, \qquad (1)$$

$$\partial_{x}(hu^{2} + g\frac{h^{2}}{2}) = -gh\partial_{x}z_{b}. \qquad (2)$$

- h water elevation, u horizontal averaged velocity, g gravitational acceleration, z_b topography.
- Free surface $\eta := h + z_b$, averaged discharge Q = hu.

Shallow Water Equations

Figure: Representation of the hydrodynamic model.

 I di		
 aur	20	

1D steady state shallow water equation

$$\partial_{x}(hu) = 0, \qquad (1)$$

$$\partial_{x}(hu^{2} + g\frac{h^{2}}{2}) = -gh\partial_{x}z_{b}. \qquad (2)$$

Integrating (1)

$$hu = Q_0,$$

for a fixed positive constant Q_0 .

$$hu = Q_0$$
(1)
$$\partial_x (hu^2 + g\frac{h^2}{2}) = -gh\partial_x z_b.$$
(2)

$$hu = Q_0$$

$$hu\partial_x u + h\partial_x gh + h\partial_x gz_b = 0$$

Assume h > 0 and $Q_0 > 0$

(1) (2)

$$hu = Q_0 \tag{1}$$

$$\partial_x \left(\frac{Q_0^2}{2h^2} + g(h + z_b) \right) = 0 \tag{2}$$

Consider two fixed constants
$$h(0), z_b(0) \in \mathbb{R}$$

$$hu = Q_0$$
(1)
$$\frac{Q_0^2}{2h^2} + g(h + z_b) = \frac{Q_0^2}{2h^2(0)} + g(h(0) + z_b(0)) =: M_0$$
(2)

Consider two fixed constants $h(0), z_b(0) \in \mathbb{R}$

$$u = \frac{Q_0}{h},$$
(1)

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$$
(2)

Shallow Water Equations

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$$
(2)

Shallow Water Equations

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)
 $z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$
(2)

Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial) Fr > 1: supercritical case (i.e. the flow regime is torrential) • u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)
 $z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$
(2)

Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial) Fr > 1: supercritical case (i.e. the flow regime is torrential)

 Given a smooth topography z_b, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [4, Lemma 1] • Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0.$$
 (3)

• Integrating (3) from z_b to z gives:

$$0 = \int_{z_b}^{z} (\partial_x u(x) + \partial_z w(x, z)) dz$$

= $\partial_x \int_{z_b}^{z} u(x) dz + \int_{z_b}^{z} \partial_z w(x, z) dz$
= $\partial_x ((z - z_b)u(x)) + w(x, z) - w(x, z_b)$
= $(z - z_b)\partial_x u(x) - u(x)\partial_x z_b + w(x, z),$

where $w(x, z_b) = u(x)\partial_x z_b$ (the kinematic condition at the bottom).

• The vertical velocity:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• The vertical velocity:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• The Lagrangian trajectory is characterized by the system

$$\begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} u(x(t)) \\ w(x(t), z(t)) \end{pmatrix}.$$

• The vertical velocity:

$$w(x,z) = \left(\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z\right)u'(x).$$
$$z' := \frac{\dot{z}}{\dot{x}} = \left(\frac{M_0}{g} - \frac{3u^2}{2g} - z\right)\frac{u'}{u}.$$

۵

Lagrangian Trajectories

• The vertical velocity:

• Recall
$$\eta = h + z_b = \frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• $\left[\text{Recall } \eta = h + z_b = \frac{M_0}{g} - \frac{u^2}{2g} \right]$
 $z' + z \frac{u'}{u} = \left(\frac{M_0}{g} - \frac{3u^2}{2g}\right) \frac{u'}{u}$
 $= \left(\eta + \frac{u^2}{g}\right) \frac{u'}{u}.$
• The vertical velocity:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• Note that $\eta' = -\frac{uu'}{g}$ and multiplying both sides by u

$$z'u + zu' = \eta u' + \frac{u^2}{g}u'$$
$$= \eta u' + \eta' u$$

Lagrangian Trajectories

• The vertical velocity:

$$w(x,z) = \left(\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z\right)u'(x).$$

We find

$$\big(u(z-\eta)\big)'=0$$

Since $h(0), z_b(0)$ are given constants, so does u(0). For a given initial position z(0), we have

$$u(x)(z(x) - \eta(x)) = u(0)(z(0) - \eta(0)).$$

Lagrangian Trajectories

• The vertical velocity:

$$w(x,z) = \left(\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z\right)u'(x).$$

• A time-free reformulation for z as

$$z(x) = \eta(x) + \frac{u(0)}{u(x)}(z(0) - \eta(0)), \qquad (3)$$

Lagrangian Trajectories

• The vertical velocity:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• A time-free reformulation for z as

$$z(x) = \eta(x) + \frac{u(0)}{u(x)}(z(0) - \eta(0)),$$
(3)

• If z(0) belongs to $[z_b(0), \eta(0)]$, then z(x) belongs to $[z_b(x), \eta(x)]$. In particular, choosing $z(0) = z_b(0)$ in (3) and using (1) gives $z(x) = z_b(x)$. In the same way, we find that $z(x) = \eta(x)$ when $z(0) = \eta(0)$.

• The Beer-Lambert law describes how light is attenuated with depth:

$$I(x,z) = I_{s} \exp\Big(-\varepsilon(\eta(x)-z)\Big).$$

Here ε is the light extinction coefficient.

• The Beer-Lambert law describes how light is attenuated with depth:

$$I(x,z(0)) = I_s \exp\Big(-\varepsilon \frac{u(0)}{u(x)}(\eta(0)-z(0))\Big).$$

Here ε is the light extinction coefficient.

• The Beer-Lambert law describes how light is attenuated with depth:

$$I(x,z(0)) = I_s \exp\Big(-\varepsilon \frac{u(0)}{u(x)}(\eta(0)-z(0))\Big).$$

Here ε is the light extinction coefficient.

۲

$$h \rightarrow u, z_b \rightarrow z \rightarrow I$$

- A: open and ready to harvest a photon,
 - B: closed while processing the absorbed photon energy,
 - C: inhibited if several photons have been absorbed simultaneously.

Figure: Scheme of the Han model, representing the probability of state transition, as a function of the photon flux density.

- A: open and ready to harvest a photon,
 - B: closed while processing the absorbed photon energy,
 - C: inhibited if several photons have been absorbed simultaneously.

(Å

$$\begin{cases} A = -\sigma IA + \frac{B}{\tau}, \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB, \\ \dot{C} = -k_r C + k_d \sigma IB. \end{cases}$$

۲

- A: open and ready to harvest a photon,
 - B: closed while processing the absorbed photon energy,
 - C: inhibited if several photons have been absorbed simultaneously.

 $\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau}, \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB, \\ \dot{C} = -k_r C + k_d \sigma IB. \end{cases}$

• A, B, C are the relative frequencies of the three possible states

$$A+B+C=1,$$

• Using a fast-slow approximation and the singular perturbation theory(see [3]), this system can be reduced to one single evolution equation:

$$\dot{C} = -\alpha(I)C + \beta(I),$$

where

$$\alpha(I) = \beta(I) + k_r, \text{ with } \beta(I) = k_d \tau \frac{(\sigma I)^2}{\tau \sigma I + 1}.$$

• Using a fast-slow approximation and the singular perturbation theory(see [3]), this system can be reduced to one single evolution equation:

$$\dot{C} = -\alpha(I)C + \beta(I),$$

where

$$\alpha(I) = \beta(I) + k_r, \text{ with } \beta(I) = k_d \tau \frac{(\sigma I)^2}{\tau \sigma I + 1}.$$

• The net specific growth rate:

$$\mu(C,I) := -\gamma(I)C + \zeta(I),$$

where

$$\zeta(I) = \gamma(I) - R$$
, with $\gamma(I) = \frac{k\sigma I}{\tau\sigma I + 1}$.

• A time-free reformulation of C

$$C' := \frac{\dot{C}}{\dot{x}} = -\frac{\alpha(I)}{u}C + \frac{\beta(I)}{u},$$

• A time-free reformulation of C

$$C' := rac{\dot{C}}{\dot{x}} = -rac{lpha(I)}{u}C + rac{eta(I)}{u},$$

• The average net specific growth rate over the domain is defined by

$$\bar{\mu} := \frac{1}{L} \int_0^L \frac{1}{h(x)} \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx.$$

• A time-free reformulation of C

$$C' := rac{\dot{C}}{\dot{x}} = -rac{lpha(I)}{u}C + rac{eta(I)}{u},$$

• The average net specific growth rate over the domain is defined by

$$\bar{\mu} := \frac{1}{L} \int_0^L \frac{1}{h(x)} \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx.$$

• In order to compute numerically, consider a uniform vertical discretization of the initial position z(0) for $N_z + 1$ cells:

$$z_i(0) = \eta(0) - \frac{i-1}{N_z}h(0), \quad i = 1, \dots, N_z + 1.$$

• A time-free reformulation of C

$$C' := rac{\dot{C}}{\dot{x}} = -rac{lpha(I)}{u}C + rac{eta(I)}{u},$$

• The average net specific growth rate over the domain is defined by

$$\bar{\mu} := \frac{1}{L} \int_0^L \frac{1}{h(x)} \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx.$$

• In order to compute numerically, consider a uniform vertical discretization of the initial position z(0) for $N_z + 1$ cells:

$$z_i(0) = \eta(0) - \frac{i-1}{N_z}h(0), \quad i = 1, \dots, N_z + 1.$$

• The semi-discrete average net specific growth rate:

$$\bar{\mu}_{\Delta} = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i(x), I_i(x)) dx.$$
 (4)

• Paddle wheel:

- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.

• Paddle wheel:

- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.

• Paddle wheel:

- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_z \times N_z$ and by \mathfrak{S}_{N_z} the associated set of permutations of N_z elements.

Mixing device

Figure: Representation of the hydrodynamic model with an example of mixing device (P). Here, P corresponds to the cyclic permutation $\sigma = (1 \ 2 \ 3 \ 4)$.

- Paddle wheel:
 - set this hydrodynamic-biologic coupling system in motion,
 - modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_z \times N_z$ and by \mathfrak{S}_{N_z} the associated set of permutations of N_z elements.

Theorem

The average growth rate of K laps equals to one lap (see [1]).

Introduction

2 Raceway Modeling

3 Optimization problem

- ε constant and no permutation
- ε constant with mixing device

Numerical Experiments

• Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

• Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

• Parameterize *h* by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.

• Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

- Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.
- For instance: a truncated Fourier series

$$h(x,a) = a_0 + \sum_{m=1}^{M} a_m \sin(2m\pi \frac{x}{L}),$$
 (5)

• Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

- Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.
- For instance: a truncated Fourier series

$$h(x,a) = a_0 + \sum_{m=1}^{M} a_m \sin(2m\pi \frac{x}{L}),$$
 (5)

$$a \rightarrow h \rightarrow u, z_b \rightarrow z \rightarrow I \rightarrow C \rightarrow \mu \text{ or } \bar{\mu}.$$

• Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

- Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.
- For instance: a truncated Fourier series

$$h(x,a) = a_0 + \sum_{m=1}^{M} a_m \sin(2m\pi \frac{x}{L}),$$
 (5)

$$a \rightarrow h \rightarrow u, z_b \rightarrow z \rightarrow I \rightarrow C \rightarrow \mu \text{ or } \bar{\mu}.$$

• Periodic of C.

• Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

- Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.
- For instance: a truncated Fourier series

$$h(x,a) = a_0 + \sum_{m=1}^{M} a_m \sin(2m\pi \frac{x}{L}),$$
 (5)

$$a
ightarrow h
ightarrow u, z_b
ightarrow z
ightarrow I
ightarrow C
ightarrow \mu$$
 or $ar{\mu}.$

• Periodic of *C*.

• Omit x in notations.

• Objective function:

$$\bar{\mu}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i + \zeta(I_i(a))}{u(a)} \mathrm{d}x,$$

• Objective function:

$$\bar{\mu}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i + \zeta(I_i(a))}{u(a)} \mathrm{d}x,$$

• Constraints:

$$C'_i + \frac{\alpha(I_i(a))}{u(a)}C_i = \frac{\beta(I_i(a))}{u(a)}.$$
 (6)

• Objective function:

$$\bar{\mu}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i + \zeta(I_i(a))}{u(a)} \mathrm{d}x,$$

• Constraints:

$$C'_i + rac{lpha(I_i(a))}{u(a)}C_i = rac{eta(I_i(a))}{u(a)}.$$

• The optimization problem reads: Find a* solving the maximization problem:

$$\max_{a\in\mathbb{R}^N}\bar{\mu}_{\Delta}(a).$$

(6)

• Lagrangian:

$$\mathcal{L}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i + \zeta(I_i(a))}{u(a)} dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i (C_i' + \frac{\alpha(I_i(a))C_i - \beta(I_i(a))}{u(a)}) dx$$

• Lagrangian:

$$\mathcal{L}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i + \zeta(I_i(a))}{u(a)} dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i (C_i' + \frac{\alpha(I_i(a))C_i - \beta(I_i(a))}{u(a)}) dx$$

• p_i the Lagrange multipliers associated with the constraint (6).

$$\begin{cases} \partial_{C_i} \mathcal{L} = p'_i - p_i \frac{\alpha(I_i(a))}{u(a)} - \frac{1}{LN_z} \frac{\gamma(I_i(a))}{u(a)} \\ \partial_{C_i(L)} \mathcal{L} = p_i(L). \end{cases}$$

Lagrangian:

$$\mathcal{L}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i + \zeta(I_i(a))}{u(a)} dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i (C_i' + \frac{\alpha(I_i(a))C_i - \beta(I_i(a))}{u(a)}) dx$$

• p_i the Lagrange multipliers associated with the constraint (6).

$$\begin{cases} \partial_{C_i} \mathcal{L} = p'_i - p_i \frac{\alpha(l_i(a))}{u(a)} - \frac{1}{LN_z} \frac{\gamma(l_i(a))}{u(a)} \\ \partial_{C_i(L)} \mathcal{L} = p_i(L). \end{cases}$$

• If C is periodic (i.e. C(0) = C(L)), then $\partial_{C_i(L)} \mathcal{L} = p_i(L) - p_i(0)$.

• The gradient $abla ar{\mu}_\Delta(a)$ is obtained by

 $\nabla \bar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$
ε constant and no permutation

• The gradient $abla ar{\mu}_{\Delta}(a)$ is obtained by

$$abla ar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$$

where

$$\partial_{a}\mathcal{L} = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma'(I_{i}(a))C_{i} + \zeta'(I_{i}(a))}{u(a)} \partial_{a}I_{i}(a)dx$$
$$-\frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma(I_{i}(a))C_{i} + \zeta(I_{i}(a))}{u^{2}(a)} \partial_{a}u(a)dx$$
$$+\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha'(I_{i}(a))C_{i} + \beta'(I_{i}(a))}{u(a)} \partial_{a}I_{i}(a)dx$$
$$-\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha(I_{i}(a))C_{i} + \beta(I_{i}(a))}{u^{2}(a)} \partial_{a}u(a)dx.$$

• The gradient $abla ar{\mu}_\Delta(a)$ is obtained by

$$\nabla \bar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$$

Theorem

Under the parameterization (5), if C is periodic, then $\nabla \bar{\mu}_{\Delta}(0) = 0$.

• Objective function:

$$\bar{\mu}_{\Delta}^{P}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i^{P} + \zeta(I_i(a))}{u(a)} \mathrm{d}x,$$

• Objective function:

$$\bar{\mu}_{\Delta}^{P}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i^{P} + \zeta(I_i(a))}{u(a)} \mathrm{d}x,$$

• Constraint:

$$\begin{cases} C_i^{P'} + \frac{\alpha(l_i(a))}{u(a)} C_i^{P} &= \frac{\beta(l_i(a))}{u(a)} \\ P C_i^{P}(L) &= C_i^{P}(0). \end{cases}$$

(7)

• Objective function:

$$\bar{\mu}^{P}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i^P + \zeta(I_i(a))}{u(a)} \mathrm{d}x,$$

• Constraint:

$$\begin{cases} C_i^{P'} + \frac{\alpha(l_i(a))}{u(a)} C_i^{P} &= \frac{\beta(l_i(a))}{u(a)} \\ PC_i^{P}(L) &= C_i^{P}(0). \end{cases}$$
(7)

• Our optimization problem reads: Find a permutation matrix P_{max} and a parameter vector a^{*} solving the maximization problem:

$$\max_{P\in\mathcal{P}}\max_{a\in\mathbb{R}^M}\bar{\mu}^P_{\Delta}(a).$$

• Lagrangian:

$$\mathcal{L}^{P}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \frac{-\gamma(I_i(a))C_i^P + \zeta(I_i(a))}{u(a)} dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i^P (C_i^{P'} + \frac{\alpha(I_i(a))C_i^P - \beta(I_i(a))}{u(a)}) dx$$

• Lagrangian:

$$\mathcal{L}^{P}(C, p, a) = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma(I_{i}(a))C_{i}^{P} + \zeta(I_{i}(a))}{u(a)} dx$$
$$-\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}(C_{i}^{P'} + \frac{\alpha(I_{i}(a))C_{i}^{P} - \beta(I_{i}(a))}{u(a)}) dx$$

• p_i^P is the Lagrange multiplier associated with the constraint (7).

$$\begin{cases} p_i^{P'} - p_i^P \frac{\alpha(l_i(a))}{u(a)} - \frac{1}{LN_z} \frac{\gamma(l_i(a))}{u(a)} &= 0\\ p_i^P(L) - p_i^P(0)P &= 0. \end{cases}$$

$$\nabla \bar{\mu}^{P}_{\Delta}(a) = \partial_{a} \mathcal{L}^{P},$$

where

$$\partial_{a}\mathcal{L}^{P} = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma'(I_{i}(a))C_{i}^{P} + \zeta'(I_{i}(a))}{u(a)} \partial_{a}I_{i}(a)dx$$

$$-\frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma(I_{i}(a))C_{n}^{P} + \zeta(I_{i}(a))}{u^{2}(a)} \partial_{a}u(a)dx$$

$$+\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha'(I_{i}(a))C_{i}^{P} + \beta'(I_{i}(a))}{u(a)} \partial_{a}I_{i}(a)dx$$

$$-\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha(I_{i}(a))C_{i}^{P} + \beta(I_{i}(a))}{u^{2}(a)} \partial_{a}u(a)dx.$$

Introduction

- 2 Raceway Modeling
- 3 Optimization problem

4 Numerical Experiments

- Numerical Settings
- Numerical results

5 Conclusion and Perspective

• Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon,* etc
- Numerical solvers: Euler Explicit, Heun, etc

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Light intensity at free surface: $I_s = 2000 \,\mu \text{molm}^{-2} \,\text{s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Light intensity at free surface: $I_s = 2000 \,\mu \text{molm}^{-2} \,\text{s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).
- Assume that only q percent of I_s is available at the bottom $q \in [0,1]$

$$\varepsilon = (1/h(0,a))\ln(1/q).$$

• The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$

- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Standard settings for a raceway pond
 - Length of one lap of the raceway $L = 100 \,\mathrm{m}$
 - Averaged discharge $Q_0 = 0.04 \text{ m}^2 \cdot \text{s}^{-1}$
 - Initial position of the topography $z_b(0) = -0.4 \,\mathrm{m}$
 - First Fourier coefficient $a_0 = 0.4$

- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Standard settings for a raceway pond
 - Length of one lap of the raceway $L = 100 \,\mathrm{m}$
 - Averaged discharge $Q_0 = 0.04 \text{ m}^2 \cdot \text{s}^{-1}$
 - Initial position of the topography $z_b(0) = -0.4 \,\mathrm{m}$
 - First Fourier coefficient $a_0 = 0.4$

• The free-fall acceleration is set to be $g = 9.81 \,\mathrm{m \cdot s^{-2}}$.

- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Standard settings for a raceway pond
 - Length of one lap of the raceway $L = 100 \,\mathrm{m}$
 - Averaged discharge $Q_0 = 0.04 \text{ m}^2 \cdot \text{s}^{-1}$
 - Initial position of the topography $z_b(0) = -0.4 \,\mathrm{m}$
 - First Fourier coefficient $a_0 = 0.4$
- The free-fall acceleration is set to be $g = 9.81 \,\mathrm{m \cdot s^{-2}}$.
- All the numerical parameters values for Han's model are taken from [2] and given in table 1.

k _r	6.8 10 ⁻³	s^{-1}
k _d	$2.99 \ 10^{-4}$	-
τ	0.25	S
σ	0.047	$m^2 \cdot (\mu mol)^{-1}$
k	8.7 10 ⁻⁶	-
R	$1.389 \ 10^{-7}$	s^{-1}

Table: Parameter values for Han Model

Convergence of N_z

For 100 random a chosen, the average value of the functional $ar{\mu}_\Delta$

Figure: The value of the functional $\bar{\mu}_{\Delta}$ for $N_z = [1, 100]$.

C no periodic

The initial condition $C_0 = 0.1$

Figure: The optimal topography for $C_0 = 0.1$. The red thick line represents the topography (z_b) , the blue thick line represents the free surface (η) , and all the other curves between represent the different trajectories.

Optimal topography for a given permutation

The permutation: $\pi = (1 \ N_z)(2 \ N_z - 1)(3 \ N_z - 2) \cdots$,

Figure: The evolution of the photo-inhibition state C for two laps.

Optimal topography for a given permutation

The permutation: $\pi = (1 N_z)(2 N_z - 1)(3 N_z - 2) \cdots$,

The increase in the optimal value of the objective function $\bar{\mu}_{\Delta}$ compared to a flat topography is around 0.228%, and compare to a flat topography and non permutation case is around 0.277%.

Liudi LU

Set $N_z = 7$, the optimal matrix:

$$P_{\max} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Optimal matrix and optimal topography

Set $N_z = 7$, the optimal topography:

Compare to a flat topography with this P_{max} , we have a gain of 0.224%, and a gain of 1.511% compare to the case a flat topography without permutation (i.e. \mathcal{I}_{N_z}).

Liudi LU

1 Introduction

- 2 Raceway Modeling
- 3 Optimization problem
- 4 Numerical Experiments
- 5 Conclusion and Perspective

• A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one

Conclusion

Theoretical results

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one

Numerical results

- Flat topography is optimal solution
- A non flat topography slightly enhances the average growth rate

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
 - More general matrix P

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
 - More general matrix P
 - What happens in the case torrential

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
 - More general matrix P
 - What happens in the case torrential
 - An extra diffusion term in Shallow water equations or a Brownian in Lagrangian trajectories

• Flat topography \rightarrow *h*, *u*, *z*_b constants \rightarrow *z* constant \rightarrow *I* constant

- Flat topography \rightarrow *h*, *u*, *z*_b constants \rightarrow *z* constant \rightarrow *l* constant
- C can be computed explicitly

- Flat topography \rightarrow *h*, *u*, *z*_b constants \rightarrow *z* constant \rightarrow *l* constant
- C can be computed explicitly
- $\bullet~\mu$ can be computed explicitly

- Flat topography \rightarrow *h*, *u*, *z*_b constants \rightarrow *z* constant \rightarrow *l* constant
- C can be computed explicitly
- $\bullet~\mu$ can be computed explicitly

$$ar{\mu}_{\Delta} = rac{1}{N_z} rac{1}{T} \Big(\langle \Gamma, C(0)
angle + \langle \mathbf{1}, Z
angle \Big),$$

• 1 is a vector of size
$$N_z$$
 whose coefficients equal 1
• $\Gamma_i = \frac{\gamma(l_i)}{\alpha(l_i)} (e^{-\alpha(l_i)T} - 1)$
• $Z_i = \frac{\gamma(l_i)}{\alpha(l_i)} \frac{\beta(l_i)}{\alpha(l_i)} (1 - e^{-\alpha(l_i)T}) - \frac{\gamma(l_i)\beta(l_i)}{\alpha(l_i)}T + \zeta(l_i)T$

۲
- Flat topography \rightarrow *h*, *u*, *z*_b constants \rightarrow *z* constant \rightarrow *I* constant
- C can be computed explicitly
- μ can be computed explicitly

$$ar{\mu}_{\Delta} = rac{1}{N_z} rac{1}{T} \Big(\langle \Gamma, C(0)
angle + \langle \mathbf{1}, Z
angle \Big),$$

- 1 is a vector of size N_z whose coefficients equal 1 • $\Gamma_i = \frac{\gamma(I_i)}{\alpha(I_i)} (e^{-\alpha(I_i)T} - 1)$ • $Z_i = \frac{\gamma(I_i)}{\alpha(I_i)} \frac{\beta(I_i)}{\alpha(I_i)} (1 - e^{-\alpha(I_i)T}) - \frac{\gamma(I_i)\beta(I_i)}{\alpha(I_i)}T + \zeta(I_i)T$
- The periodic condition of C

$$C(0) = (\mathcal{I}_{N_z} - PD)^{-1}PV.$$

•
$$D$$
 is a diagonal matrix $D_{ii} = e^{-\alpha(l_i)T}$
• $V_i = \frac{\beta(l_i)}{\alpha(l_i)} (1 - e^{-\alpha(l_i)T})$

• Since *N*, *T* and *Z* are independent of *P*, the objective function defined by

$$J(P) = \langle \Gamma, (\mathcal{I}_{N_z} - PD)^{-1}PV \rangle.$$

• Since *N*, *T* and *Z* are independent of *P*, the objective function defined by

$$J(P) = \langle \Gamma, (\mathcal{I}_{N_z} - PD)^{-1}PV \rangle.$$

• The optimization problem then reads: Find a permutation matrix P_{max} solving the maximization problem:

 $\max_{P\in\mathcal{P}}J(P).$

• Since *N*, *T* and *Z* are independent of *P*, the objective function defined by

$$J(P) = \langle \Gamma, (\mathcal{I}_{N_z} - PD)^{-1}PV \rangle.$$

• The optimization problem then reads: Find a permutation matrix P_{max} solving the maximization problem:

$$\max_{P\in\mathcal{P}}J(P).$$

• Expansion of J(P)

$$\langle \Gamma, (\mathcal{I}_{N_z} - PD)^{-1}PV \rangle = \sum_{m=0}^{+\infty} \langle \Gamma, (PD)^m PV \rangle$$

= $\langle \Gamma, PV \rangle + \sum_{m=1}^{+\infty} \langle \Gamma, (PD)^m PV \rangle.$

• Since *N*, *T* and *Z* are independent of *P*, the objective function defined by

$$J(P) = \langle \Gamma, (\mathcal{I}_{N_z} - PD)^{-1}PV \rangle.$$

• The optimization problem then reads: Find a permutation matrix P_{max} solving the maximization problem:

$$\max_{P\in\mathcal{P}}J(P).$$

Approximation

$$J^{\operatorname{approx}}(P) = \langle \Gamma, PV \rangle.$$

• Since *N*, *T* and *Z* are independent of *P*, the objective function defined by

$$J(P) = \langle \Gamma, (\mathcal{I}_{N_z} - PD)^{-1}PV \rangle.$$

• The optimization problem then reads: Find a permutation matrix P_{max} solving the maximization problem:

$$\max_{P\in\mathcal{P}}J(P).$$

• Approximation

$$J^{\operatorname{approx}}(P) = \langle \Gamma, PV \rangle.$$

 The optimal solution P^{approx}_{max} of J^{approx}(P) can be determined explicitly as the matrix corresponding to the permutation which associates the largest element of Γ with the largest element of V, the second largest element with the second largest, and so on.

• Set $T = 1000 \,\mathrm{s}$, q = 10%, $P_{\max} = \mathcal{I}_{N_z}$.

• Set
$$T=1000\,\mathrm{s},\ q=10\%,\ P_{\max}=\mathcal{I}_{N_z}.$$

• Set $T = 1000 \, \text{s}, \ q = 1\%$

• Set $T = 1000 \,\mathrm{s}, \, q = 0.1\%$

• Set $T = 1000 \, \text{s}, \, q = 0.1\%$

• For all three cases, $P_{\max}^{\text{approx}} = P_{\max}$

Liudi LU

• Set
$$T = 1 \text{ s}$$
, $q = 10\%$, $P_{\max} = \mathcal{I}_{N_z}$.

• Set
$$T = 1 \text{ s}$$
, $q = 10\%$, $P_{\max} = \mathcal{I}_{N_z}$.
• Set $T = 1 \text{ s}$, $q = 1\%$

• Set $T = 1 \, \text{s}, \ q = 0.1\%$

•

• Set $T = 1 \, \text{s}, \ q = 0.1\%$

• For all three cases, P_{\max}^{approx} is an anti-diagonal matrix.

Approximation

Figure: Average net specific growth rate $\bar{\mu}_N$ for $I_s \in [0, 2500]$ and $q \in [0.1\%, 10\%]$. In each figure, the red surface is obtained with P_{max} , the dark blue surface is obtained with P_{min} , the green surface is obtained with \mathcal{I}_{N_z} and the light blue surface is obtained with $P_{\text{max}}^{\text{approx}}$. The black stars represent the cases

livier Bernard, Liudi Lu, and Julien Salomon.

Optimizing microalgal productivity in raceway ponds through a controlled mixing device. 2020.

- Jérôme Grenier, F. Lopes, Hubert Bonnefond, and Olivier Bernard. Worldwide perspectives of rotating algal biofilm up-scaling. 2020.
- Pierre-Olivier Lamare, Nina Aguillon, Jacques Sainte-Marie, Jérôme Grenier, Hubert Bonnefond, and Olivier Bernard.
 Gradient-based optimization of a rotating algal biofilm process.
 Automatica, 105:80–88, July 2019.
 - Victor Michel-Dansac, Christophe Berthon, Stéphane Clain, and Françoise Foucher.

A well-balanced scheme for the shallow-water equations with topography.

Computers and Mathematics with Applications, 72(3):586–593, August 2016.