Optimization problems of a microalgal raceway to enhance productivity

Olivier Bernard, Liudi LU, Jacques Sainte-Marie, Julien Salomon

November 4, 2020

Overview

(1) Introduction
(2) Raceway Modeling
(3) Optimization problem
(4) Numerical Experiments
(5) Conclusion and Perspective

Introduction

- Who?

Introduction

- Who? Microalgae

Introduction

- Who? Microalgae: photosynthetic organisms

Introduction

Introduction

- Who? Microalgae: photosynthetic organisms
- Why?

Introduction

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential

Introduction

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc

Introduction

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?

Introduction

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?
- All aquatic environments

Introduction

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?
- All aquatic environments
- Industrial cultivation - photobioreactors: Chemostats, RAB, Raceways, etc

Introduction

Introduction

Introduction

Overview

(1) Introduction
(2) Raceway Modeling

- Hydrodynamic model
- Light intensity
- Biologic model
- Mixing device
(3) Optimization problem

4 Numerical Experiments
(5) Conclusion and Perspective

Shallow Water Equations

- 1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

Shallow Water Equations

- 1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

- h water elevation, u horizontal averaged velocity, g gravitational acceleration, z_{b} topography.

Shallow Water Equations

- 1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

- h water elevation, u horizontal averaged velocity, g gravitational acceleration, z_{b} topography.
- Free surface $\eta:=h+z_{b}$, averaged discharge $Q=h u$.

Shallow Water Equations

Figure: Representation of the hydrodynamic model.

Shallow Water Equations

1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

Shallow Water Equations

Integrating (1)

$$
h u=Q_{0}
$$

for a fixed positive constant Q_{0}.

Shallow Water Equations

$$
\begin{align*}
& h u=Q_{0} \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} . \tag{2}
\end{align*}
$$

Shallow Water Equations

$$
\begin{align*}
& h u=Q_{0} \tag{1}\\
& h u \partial_{x} u+h \partial_{x} g h+h \partial_{x} g z_{b}=0 \tag{2}
\end{align*}
$$

Assume $h>0$ and $Q_{0}>0$

Shallow Water Equations

$$
\begin{align*}
& h u=Q_{0} \tag{1}\\
& \partial_{\times}\left(\frac{Q_{0}^{2}}{2 h^{2}}+g\left(h+z_{b}\right)\right)=0 \tag{2}
\end{align*}
$$

Consider two fixed constants $h(0), z_{b}(0) \in \mathbb{R}$

Shallow Water Equations

$$
\begin{align*}
& h u=Q_{0} \tag{1}\\
& \frac{Q_{0}^{2}}{2 h^{2}}+g\left(h+z_{b}\right)=\frac{Q_{0}^{2}}{2 h^{2}(0)}+g\left(h(0)+z_{b}(0)\right)=: M_{0} \tag{2}
\end{align*}
$$

Consider two fixed constants $h(0), z_{b}(0) \in \mathbb{R}$

Shallow Water Equations

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h, \tag{2}
\end{align*}
$$

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h, \tag{2}
\end{align*}
$$

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial) $\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_{b}, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [4, Lemma 1]

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

Lagrangian Trajectories

- Integrating (3) from z_{b} to z gives:

$$
\begin{aligned}
0 & =\int_{z_{b}}^{z}\left(\partial_{x} u(x)+\partial_{z} w(x, z)\right) \mathrm{d} z \\
& =\partial_{x} \int_{z_{b}}^{z} u(x) \mathrm{d} z+\int_{z_{b}}^{z} \partial_{z} w(x, z) \mathrm{d} z \\
& =\partial_{x}\left(\left(z-z_{b}\right) u(x)\right)+w(x, z)-w\left(x, z_{b}\right) \\
& =\left(z-z_{b}\right) \partial_{x} u(x)-u(x) \partial_{x} z_{b}+w(x, z),
\end{aligned}
$$

where $w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}$ (the kinematic condition at the bottom).

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- The Lagrangian trajectory is characterized by the system

$$
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} .
$$

Lagrangian Trajectories

- The vertical velocity:

$$
\begin{gathered}
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x) . \\
z^{\prime}:=\frac{\dot{z}}{\dot{x}}=\left(\frac{M_{0}}{g}-\frac{3 u^{2}}{2 g}-z\right) \frac{u^{\prime}}{u} .
\end{gathered}
$$

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- Recall $\eta=h+z_{b}=\frac{M_{0}}{g}-\frac{u^{2}}{2 g}$

$$
\begin{aligned}
z^{\prime}+z \frac{u^{\prime}}{u} & =\left(\frac{M_{0}}{g}-\frac{3 u^{2}}{2 g}\right) \frac{u^{\prime}}{u} \\
& =\left(\eta+\frac{u^{2}}{g}\right) \frac{u^{\prime}}{u}
\end{aligned}
$$

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- Note that $\eta^{\prime}=-\frac{u u^{\prime}}{g}$ and multiplying both sides by u

$$
\begin{aligned}
z^{\prime} u+z u^{\prime} & =\eta u^{\prime}+\frac{u^{2}}{g} u^{\prime} \\
& =\eta u^{\prime}+\eta^{\prime} u
\end{aligned}
$$

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- We find

$$
(u(z-\eta))^{\prime}=0
$$

Since $h(0), z_{b}(0)$ are given constants, so does $u(0)$. For a given initial position $z(0)$, we have

$$
u(x)(z(x)-\eta(x))=u(0)(z(0)-\eta(0))
$$

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x) .
$$

- A time-free reformulation for z as

$$
\begin{equation*}
z(x)=\eta(x)+\frac{u(0)}{u(x)}(z(0)-\eta(0)) \tag{3}
\end{equation*}
$$

Lagrangian Trajectories

- The vertical velocity:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- A time-free reformulation for z as

$$
\begin{equation*}
z(x)=\eta(x)+\frac{u(0)}{u(x)}(z(0)-\eta(0)) \tag{3}
\end{equation*}
$$

- If $z(0)$ belongs to $\left[z_{b}(0), \eta(0)\right]$, then $z(x)$ belongs to $\left[z_{b}(x), \eta(x)\right]$. In particular, choosing $z(0)=z_{b}(0)$ in (3) and using (1) gives $z(x)=z_{b}(x)$. In the same way, we find that $z(x)=\eta(x)$ when $z(0)=\eta(0)$.

Beer-Lambert Law

- The Beer-Lambert law describes how light is attenuated with depth:

$$
I(x, z)=I_{s} \exp (-\varepsilon(\eta(x)-z)) .
$$

Here ε is the light extinction coefficient.

Beer-Lambert Law

- The Beer-Lambert law describes how light is attenuated with depth:

$$
I(x, z(0))=I_{s} \exp \left(-\varepsilon \frac{u(0)}{u(x)}(\eta(0)-z(0))\right)
$$

Here ε is the light extinction coefficient.

Beer-Lambert Law

- The Beer-Lambert law describes how light is attenuated with depth:

$$
I(x, z(0))=I_{s} \exp \left(-\varepsilon \frac{u(0)}{u(x)}(\eta(0)-z(0))\right)
$$

Here ε is the light extinction coefficient.

$$
h \rightarrow u, z_{b} \rightarrow z \rightarrow l
$$

Han model

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy, C : inhibited if several photons have been absorbed simultaneously.

Han model

Figure: Scheme of the Han model, representing the probability of state transition, as a function of the photon flux density.

Han model

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

Han model

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states

$$
A+B+C=1
$$

Han model

- Using a fast-slow approximation and the singular perturbation theory(see [3]), this system can be reduced to one single evolution equation:

$$
\dot{C}=-\alpha(I) C+\beta(I)
$$

where

$$
\alpha(I)=\beta(I)+k_{r}, \text { with } \beta(I)=k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}
$$

Han model

- Using a fast-slow approximation and the singular perturbation theory(see [3]), this system can be reduced to one single evolution equation:

$$
\dot{C}=-\alpha(I) C+\beta(I)
$$

where

$$
\alpha(I)=\beta(I)+k_{r}, \text { with } \beta(I)=k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}
$$

- The net specific growth rate:

$$
\mu(C, I):=-\gamma(I) C+\zeta(I)
$$

where

$$
\zeta(I)=\gamma(I)-R, \text { with } \gamma(I)=\frac{k \sigma I}{\tau \sigma I+1}
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}:=\frac{\dot{C}}{\dot{x}}=-\frac{\alpha(I)}{u} C+\frac{\beta(I)}{u},
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}:=\frac{\dot{C}}{\dot{x}}=-\frac{\alpha(I)}{u} C+\frac{\beta(I)}{u},
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{L} \int_{0}^{L} \frac{1}{h(x)} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x .
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}:=\frac{\dot{C}}{\dot{x}}=-\frac{\alpha(I)}{u} C+\frac{\beta(I)}{u},
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{L} \int_{0}^{L} \frac{1}{h(x)} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x .
$$

- In order to compute numerically, consider a uniform vertical discretization of the initial position $z(0)$ for $N_{z}+1$ cells:

$$
z_{i}(0)=\eta(0)-\frac{i-1}{N_{z}} h(0), \quad i=1, \ldots, N_{z}+1
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}:=\frac{\dot{C}}{\dot{x}}=-\frac{\alpha(I)}{u} C+\frac{\beta(I)}{u},
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{L} \int_{0}^{L} \frac{1}{h(x)} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x .
$$

- In order to compute numerically, consider a uniform vertical discretization of the initial position $z(0)$ for $N_{z}+1$ cells:

$$
z_{i}(0)=\eta(0)-\frac{i-1}{N_{z}} h(0), \quad i=1, \ldots, N_{z}+1 .
$$

- The semi-discrete average net specific growth rate:

$$
\begin{equation*}
\bar{\mu}_{\Delta}=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}(x), I_{i}(x)\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_{z} \times N_{z}$ and by $\mathfrak{S}_{N_{z}}$ the associated set of permutations of N_{z} elements.

Mixing device

Figure: Representation of the hydrodynamic model with an example of mixing device (P). Here, P corresponds to the cyclic permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right.$.

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_{z} \times N_{z}$ and by $\mathfrak{S}_{N_{z}}$ the associated set of permutations of N_{z} elements.

Theorem

The average growth rate of K laps equals to one lap (see [1]).

Overview

(1) Introduction

(2) Raceway Modeling

(3) Optimization problem

- ε constant and no permutation
- ε constant with mixing device

4) Numerical Experiments

(5) Conclusion and Perspective

Optimization problem

- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

Optimization problem

- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.

Optimization problem

- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- For instance: a truncated Fourier series

$$
\begin{equation*}
h(x, a)=a_{0}+\sum_{m=1}^{M} a_{m} \sin \left(2 m \pi \frac{x}{L}\right) \tag{5}
\end{equation*}
$$

Optimization problem

- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- For instance: a truncated Fourier series

$$
\begin{array}{r}
h(x, a)=a_{0}+\sum_{m=1}^{M} a_{m} \sin \left(2 m \pi \frac{x}{L}\right), \tag{5}\\
a \rightarrow h \rightarrow u, z_{b} \rightarrow z \rightarrow I \rightarrow C \rightarrow \mu \text { or } \bar{\mu} .
\end{array}
$$

Optimization problem

- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- For instance: a truncated Fourier series

$$
\begin{array}{r}
h(x, a)=a_{0}+\sum_{m=1}^{M} a_{m} \sin \left(2 m \pi \frac{x}{L}\right), \tag{5}\\
a \rightarrow h \rightarrow u, z_{b} \rightarrow z \rightarrow I \rightarrow C \rightarrow \mu \text { or } \bar{\mu} .
\end{array}
$$

- Periodic of C.

Optimization problem

- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- For instance: a truncated Fourier series

$$
\begin{array}{r}
h(x, a)=a_{0}+\sum_{m=1}^{M} a_{m} \sin \left(2 m \pi \frac{x}{L}\right), \tag{5}\\
a \rightarrow h \rightarrow u, z_{b} \rightarrow z \rightarrow I \rightarrow C \rightarrow \mu \text { or } \bar{\mu} .
\end{array}
$$

- Periodic of C.
- Omit x in notations.

ε constant and no permutation

- Objective function:

$$
\bar{\mu}_{\Delta}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x
$$

ε constant and no permutation

- Objective function:

$$
\bar{\mu}_{\Delta}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(l_{i}(a)\right) C_{i}+\zeta\left(l_{i}(a)\right)}{u(a)} \mathrm{d} x
$$

- Constraints:

$$
\begin{equation*}
C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right)}{u(a)} C_{i}=\frac{\beta\left(I_{i}(a)\right)}{u(a)} \tag{6}
\end{equation*}
$$

ε constant and no permutation

- Objective function:

$$
\bar{\mu}_{\Delta}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x
$$

- Constraints:

$$
\begin{equation*}
C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right)}{u(a)} C_{i}=\frac{\beta\left(I_{i}(a)\right)}{u(a)} \tag{6}
\end{equation*}
$$

- The optimization problem reads:

Find a^{*} solving the maximization problem:

$$
\max _{a \in \mathbb{R}^{N}} \bar{\mu}_{\Delta}(a) .
$$

ε constant and no permutation

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right) C_{i}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

ε constant and no permutation

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right) C_{i}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

- p_{i} the Lagrange multipliers associated with the constraint (6).

$$
\left\{\begin{array}{l}
\partial_{C_{i}} \mathcal{L}=p_{i}^{\prime}-p_{i} \frac{\alpha\left(l_{i}(a)\right)}{u(a)}-\frac{1}{L N_{z}} \frac{\gamma\left(l_{i}(a)\right)}{u(a)} \\
\partial_{C_{i}(L)} \mathcal{L}=p_{i}(L) .
\end{array}\right.
$$

ε constant and no permutation

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right) C_{i}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

- p_{i} the Lagrange multipliers associated with the constraint (6).

$$
\left\{\begin{array}{l}
\partial_{C_{i}} \mathcal{L}=p_{i}^{\prime}-p_{i} \frac{\alpha\left(l_{i}(a)\right)}{u(a)}-\frac{1}{L N_{z}} \frac{\gamma\left(l_{i}(a)\right)}{u(a)} \\
\partial_{C_{i}(L)} \mathcal{L}=p_{i}(L)
\end{array}\right.
$$

- If C is periodic (i.e. $C(0)=C(L))$, then $\partial_{C_{i}(L)} \mathcal{L}=p_{i}(L)-p_{i}(0)$.

ε constant and no permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

ε constant and no permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

- where

$$
\begin{aligned}
\partial_{a} \mathcal{L}= & \frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma^{\prime}\left(I_{i}(a)\right) C_{i}+\zeta^{\prime}\left(I_{i}(a)\right)}{u(a)} \partial_{a} I_{i}(a) \mathrm{d} x \\
-\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)}{u^{2}(a)} \partial_{a} u(a) \mathrm{d} x \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha^{\prime}\left(I_{i}(a)\right) C_{i}+\beta^{\prime}\left(I_{i}(a)\right)}{u(a)} \partial_{a} I_{i}(a) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha\left(I_{i}(a)\right) C_{i}+\beta\left(I_{i}(a)\right)}{u^{2}(a)} \partial_{a} u(a) \mathrm{d} x .
\end{aligned}
$$

ε constant and no permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

Theorem

Under the parameterization (5), if C is periodic, then $\nabla \bar{\mu}_{\Delta}(0)=0$.

ε constant with mixing device

- Objective function:

$$
\bar{\mu}_{\Delta}^{P}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x
$$

ε constant with mixing device

- Objective function:

$$
\bar{\mu}_{\Delta}^{P}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x
$$

- Constraint:

$$
\begin{cases}C_{i}^{P^{\prime}}+\frac{\alpha\left(l_{i}(a)\right)}{u(a)} C_{i}^{P} & =\frac{\beta\left(l_{i}(a)\right)}{u(a)} \tag{7}\\ P C_{i}^{P}(L) & =C_{i}^{P}(0) .\end{cases}
$$

ε constant with mixing device

- Objective function:

$$
\bar{\mu}_{\Delta}^{P}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x
$$

- Constraint:

$$
\begin{cases}C_{i}^{P^{\prime}}+\frac{\alpha\left(l_{i}(a)\right)}{u(a)} C_{i}^{P} & =\frac{\beta\left(l_{i}(a)\right)}{u(a)} \tag{7}\\ P C_{i}^{P}(L) & =C_{i}^{P}(0)\end{cases}
$$

- Our optimization problem reads:

Find a permutation matrix $P_{\max }$ and a parameter vector a* solving the maximization problem:

$$
\max _{P \in \mathcal{P}} \max _{a \in \mathbb{R}^{M}} \bar{\mu}_{\Delta}^{P}(a) .
$$

ε constant with mixing device

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}^{P}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}\left(C_{i}^{P^{\prime}}+\frac{\alpha\left(I_{i}(a)\right) C_{i}^{P}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

ε constant with mixing device

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}^{P}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right)}{u(a)} \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}\left(C_{i}^{P^{\prime}}+\frac{\alpha\left(I_{i}(a)\right) C_{i}^{P}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

- p_{i}^{P} is the Lagrange multiplier associated with the constraint (7).

$$
\begin{cases}p_{i}^{P^{\prime}}-p_{i}^{P} \frac{\alpha\left(l_{i}(a)\right)}{u(a)}-\frac{1}{L N_{z}} \frac{\gamma\left(l_{i}(a)\right)}{u(a)} & =0 \\ p_{i}^{P}(L)-p_{i}^{P}(0) P & =0 .\end{cases}
$$

ε constant with mixing device

$$
\nabla \bar{\mu}_{\Delta}^{P}(a)=\partial_{a} \mathcal{L}^{P}
$$

where

$$
\begin{aligned}
& \partial_{a} \mathcal{L}^{P}=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma^{\prime}\left(I_{i}(a)\right) C_{i}^{P}+\zeta^{\prime}\left(I_{i}(a)\right)}{u(a)} \partial_{a} I_{i}(a) \mathrm{d} x \\
& -\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \frac{-\gamma\left(I_{i}(a)\right) C_{n}^{P}+\zeta\left(I_{i}(a)\right)}{u^{2}(a)} \partial_{a} u(a) \mathrm{d} x \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha^{\prime}\left(I_{i}(a)\right) C_{i}^{P}+\beta^{\prime}\left(I_{i}(a)\right)}{u(a)} \partial_{a} I_{i}(a) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha\left(I_{i}(a)\right) C_{i}^{P}+\beta\left(I_{i}(a)\right)}{u^{2}(a)} \partial_{a} u(a) \mathrm{d} x .
\end{aligned}
$$

Overview

(1) Introduction
(2) Raceway Modeling
(3) Optimization problem
(4) Numerical Experiments

- Numerical Settings
- Numerical results

(5) Conclusion and Perspective

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x=0.01 \mathrm{~m}$

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Light intensity at free surface: $I_{s}=2000 \mu \mathrm{molm}^{-2} \mathrm{~s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Light intensity at free surface: $I_{s}=2000 \mu \mathrm{molm}^{-2} \mathrm{~s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).
- Assume that only q percent of I_{s} is available at the bottom $q \in[0,1]$

$$
\varepsilon=(1 / h(0, a)) \ln (1 / q)
$$

Parameter Settings

- The spatial increment: $\Delta x=0.01 \mathrm{~m}$

Parameter Settings

- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Standard settings for a raceway pond
- Length of one lap of the raceway $L=100 \mathrm{~m}$
- Averaged discharge $Q_{0}=0.04 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$
- Initial position of the topography $z_{b}(0)=-0.4 \mathrm{~m}$
- First Fourier coefficient $a_{0}=0.4$

Parameter Settings

- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Standard settings for a raceway pond
- Length of one lap of the raceway $L=100 \mathrm{~m}$
- Averaged discharge $Q_{0}=0.04 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$
- Initial position of the topography $z_{b}(0)=-0.4 \mathrm{~m}$
- First Fourier coefficient $a_{0}=0.4$
- The free-fall acceleration is set to be $g=9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.

Parameter Settings

- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Standard settings for a raceway pond
- Length of one lap of the raceway $L=100 \mathrm{~m}$
- Averaged discharge $Q_{0}=0.04 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$
- Initial position of the topography $z_{b}(0)=-0.4 \mathrm{~m}$
- First Fourier coefficient $a_{0}=0.4$
- The free-fall acceleration is set to be $g=9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
- All the numerical parameters values for Han's model are taken from [2] and given in table 1.

Table: Parameter values for Han Model

k_{r}	6.810^{-3}	$\mathrm{~s}^{-1}$
k_{d}	2.9910^{-4}	-
τ	0.25	s
σ	0.047	$\mathrm{~m}^{2} \cdot(\mu \mathrm{~mol})^{-1}$
k	8.710^{-6}	-
R	1.38910^{-7}	$\mathrm{~s}^{-1}$

Convergence of N_{z}

For 100 random a chosen, the average value of the functional $\bar{\mu}_{\Delta}$

Figure: The value of the functional $\bar{\mu}_{\Delta}$ for $N_{z}=[1,100]$.

C no periodic

The initial condition $C_{0}=0.1$

Figure: The optimal topography for $C_{0}=0.1$. The red thick line represents the topography $\left(z_{b}\right)$, the blue thick line represents the free surface (η), and all the other curves between represent the different trajectories.

Optimal topography for a given permutation

The permutation: $\pi=\left(1 N_{z}\right)\left(2 N_{z}-1\right)\left(3 N_{z}-2\right) \cdots$,

Figure: The evolution of the photo-inhibition state C for two laps.

Optimal topography for a given permutation

The permutation: $\pi=\left(1 N_{z}\right)\left(2 N_{z}-1\right)\left(3 N_{z}-2\right) \cdots$,

The increase in the optimal value of the objective function $\bar{\mu}_{\Delta}$ compared to a flat topography is around 0.228%, and compare to a flat topography and non permutation case is around 0.277%.

Optimal matrix and optimal topography

Set $N_{z}=7$, the optimal matrix:

$$
P_{\max }=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Optimal matrix and optimal topography

Set $N_{z}=7$, the optimal topography:

Compare to a flat topography with this $P_{\max }$, we have a gain of 0.224%, and a gain of 1.511% compare to the case a flat topography without permutation (i.e. $\mathcal{I}_{N_{z}}$).

Overview

(1) Introduction

(2) Raceway Modeling
(3) Optimization problem
(4) Numerical Experiments
(5) Conclusion and Perspective

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution
- A non flat topography slightly enhances the average growth rate

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
- More general matrix P

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
- More general matrix P
- What happens in the case torrential

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
- More general matrix P
- What happens in the case torrential
- An extra diffusion term in Shallow water equations or a Brownian in Lagrangian trajectories

Permutation for flat topography

- Flat topography $\rightarrow h, u, z_{b}$ constants $\rightarrow z$ constant $\rightarrow /$ constant

Permutation for flat topography

- Flat topography $\rightarrow h, u, z_{b}$ constants $\rightarrow z$ constant $\rightarrow I$ constant
- C can be computed explicitly

Permutation for flat topography

- Flat topography $\rightarrow h, u, z_{b}$ constants $\rightarrow z$ constant $\rightarrow I$ constant
- C can be computed explicitly
- μ can be computed explicitly

Permutation for flat topography

- Flat topography $\rightarrow h, u, z_{b}$ constants $\rightarrow z$ constant $\rightarrow I$ constant
- C can be computed explicitly
- μ can be computed explicitly

$$
\bar{\mu}_{\Delta}=\frac{1}{N_{z}} \frac{1}{T}(\langle\Gamma, C(0)\rangle+\langle\mathbf{1}, Z\rangle)
$$

- 1 is a vector of size N_{z} whose coefficients equal 1
- $\Gamma_{i}=\frac{\gamma\left(l_{i}\right)}{\alpha\left(l_{i}\right)}\left(e^{-\alpha\left(l_{i}\right) T}-1\right)$
- $Z_{i}=\frac{\gamma\left(l_{i}\right)}{\alpha\left(l_{i}\right)} \frac{\beta\left(l_{i}\right)}{\alpha\left(l_{i}\right)}\left(1-e^{-\alpha\left(l_{i}\right) T}\right)-\frac{\gamma\left(l_{i}\right) \beta\left(l_{i}\right)}{\alpha\left(l_{i}\right)} T+\zeta\left(l_{i}\right) T$

Permutation for flat topography

- Flat topography $\rightarrow h, u, z_{b}$ constants $\rightarrow z$ constant $\rightarrow I$ constant
- C can be computed explicitly
- μ can be computed explicitly

$$
\bar{\mu}_{\Delta}=\frac{1}{N_{z}} \frac{1}{T}(\langle\Gamma, C(0)\rangle+\langle\mathbf{1}, Z\rangle)
$$

- 1 is a vector of size N_{z} whose coefficients equal 1
- $\Gamma_{i}=\frac{\gamma\left(l_{i}\right)}{\alpha\left(l_{i}\right)}\left(e^{-\alpha\left(l_{i}\right) T}-1\right)$
- $Z_{i}=\frac{\gamma\left(l_{i}\right)}{\alpha\left(l_{i}\right)} \frac{\beta\left(l_{i}\right)}{\alpha\left(l_{i}\right)}\left(1-e^{-\alpha\left(l_{i}\right) T}\right)-\frac{\gamma\left(l_{i}\right) \beta\left(l_{i}\right)}{\alpha\left(l_{i}\right)} T+\zeta\left(l_{i}\right) T$
- The periodic condition of C

$$
C(0)=\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V
$$

- D is a diagonal matrix $D_{i i}=e^{-\alpha\left(l_{i}\right) T}$
- $V_{i}=\frac{\beta\left(l_{i}\right)}{\alpha\left(l_{i}\right)}\left(1-e^{-\alpha\left(l_{i}\right) T}\right)$

Permutation for flat topography

- Since N, T and Z are independent of P, the objective function defined by

$$
J(P)=\left\langle\Gamma,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V\right\rangle
$$

Permutation for flat topography

- Since N, T and Z are independent of P, the objective function defined by

$$
J(P)=\left\langle\Gamma,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V\right\rangle
$$

- The optimization problem then reads:

Find a permutation matrix $P_{\max }$ solving the maximization problem:

$$
\max _{P \in \mathcal{P}} J(P)
$$

Permutation for flat topography

- Since N, T and Z are independent of P, the objective function defined by

$$
J(P)=\left\langle\Gamma,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V\right\rangle
$$

- The optimization problem then reads:

Find a permutation matrix $P_{\max }$ solving the maximization problem:

$$
\max _{P \in \mathcal{P}} J(P)
$$

- Expansion of $J(P)$

$$
\begin{aligned}
\left\langle\Gamma,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V\right\rangle & =\sum_{m=0}^{+\infty}\left\langle\Gamma,(P D)^{m} P V\right\rangle \\
& =\langle\Gamma, P V\rangle+\sum_{m=1}^{+\infty}\left\langle\Gamma,(P D)^{m} P V\right\rangle .
\end{aligned}
$$

Permutation for flat topography

- Since N, T and Z are independent of P, the objective function defined by

$$
J(P)=\left\langle\Gamma,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V\right\rangle
$$

- The optimization problem then reads:

Find a permutation matrix $P_{\max }$ solving the maximization problem:

$$
\max _{P \in \mathcal{P}} J(P) .
$$

- Approximation

$$
J^{\operatorname{approx}}(P)=\langle\Gamma, P V\rangle
$$

Permutation for flat topography

- Since N, T and Z are independent of P, the objective function defined by

$$
J(P)=\left\langle\Gamma,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P V\right\rangle
$$

- The optimization problem then reads:

Find a permutation matrix $P_{\max }$ solving the maximization problem:

$$
\max _{P \in \mathcal{P}} J(P) .
$$

- Approximation

$$
J^{\operatorname{approx}}(P)=\langle\Gamma, P V\rangle
$$

- The optimal solution $P_{\max }^{\text {approx }}$ of $J^{\text {approx }}(P)$ can be determined explicitly as the matrix corresponding to the permutation which associates the largest element of Γ with the largest element of V, the second largest element with the second largest, and so on.

Possible permutation

- Set $T=1000 \mathrm{~s}, q=10 \%, P_{\max }=\mathcal{I}_{N_{z}}$.

Possible permutation

- Set $T=1000 \mathrm{~s}, q=10 \%, P_{\max }=\mathcal{I}_{N_{z}}$.
- Set $T=1000 \mathrm{~s}, q=1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Possible permutation

- Set $T=1000 \mathrm{~s}, q=0.1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Possible permutation

- Set $T=1000 \mathrm{~s}, q=0.1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- For all three cases, $P_{\max }^{\text {approx }}=P_{\max }$

Possible permutation

- Set $T=1 \mathrm{~s}, q=10 \%, P_{\max }=\mathcal{I}_{N_{z}}$.

Possible permutation

- Set $T=1 \mathrm{~s}, q=10 \%, P_{\max }=\mathcal{I}_{N_{z}}$.
- Set $T=1 \mathrm{~s}, q=1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Possible permutation

- Set $T=1 \mathrm{~s}, q=0.1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Possible permutation

- Set $T=1 \mathrm{~s}, q=0.1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- For all three cases, $P_{\max }^{\text {approx }}$ is an anti-diagonal matrix.

Approximation

Figure: Average net specific growth rate $\bar{\mu}_{N}$ for $I_{s} \in[0,2500]$ and $q \in[0.1 \%, 10 \%]$. In each figure, the red surface is obtained with $P_{\max }$, the dark blue surface is obtained with $P_{\text {min }}$, the green surface is obtained with $\mathcal{I}_{N_{z}}$ and the light blue surface is obtained with $P_{\max }^{\text {approx }}$. The black stars represent the cases

Olivier Bernard, Liudi Lu, and Julien Salomon.
Optimizing microalgal productivity in raceway ponds through a controlled mixing device.
2020.

囦 Jérôme Grenier, F. Lopes, Hubert Bonnefond, and Olivier Bernard. Worldwide perspectives of rotating algal biofilm up-scaling. 2020.

嗇 Pierre-Olivier Lamare, Nina Aguillon, Jacques Sainte-Marie, Jérôme Grenier, Hubert Bonnefond, and Olivier Bernard.
Gradient-based optimization of a rotating algal biofilm process. Automatica, 105:80-88, July 2019.

Victor Michel-Dansac, Christophe Berthon, Stéphane Clain, and Franoise Foucher.
A well-balanced scheme for the shallow-water equations with topography.

> Computers and Mathematics with Applications, 72(3):586-593, August 2016.

