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Introduction

@ Who? Microalgae: photosynthetic organisms

o Why? Biotechnological potential: colorants, antioxydants, cosmetics,
pharmaceuticals, food complements, green energy, etc

o Where?

e All aquatic environments
o Industrial cultivation - photobioreactors: Chemostats, RAB, Raceways,
etc
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Overview

e Raceway Modeling
@ Hydrodynamic model
@ Light intensity
@ Biologic model
@ Mixing device

Liudi LU Gdt ANGE November 4, 2020 4/32



Shallow Water Equations

@ 1D steady state shallow water equation
Ox(hu) =0, (1)

h2
E)?X(hu2 + g?) = —gh0Oyxzp. (2)
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Shallow Water Equations

@ 1D steady state shallow water equation
Ox(hu) =0, (1)

h2
E)?X(hu2 + g?) = —gh0Oyxzp. (2)

@ h water elevation, u horizontal averaged velocity, g gravitational
acceleration, z, topography.
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Shallow Water Equations

@ 1D steady state shallow water equation

Ox(hu) =0, (1)
h2
O +g7) = ~ghdezs, @

@ h water elevation, u horizontal averaged velocity, g gravitational

acceleration, z, topography.

@ Free surface 1 := h + zp, averaged discharge Q = hu.
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Shallow Water Equations

Figure: Representation of the hydrodynamic model.
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Shallow Water Equations

1D steady state shallow water equation
Ox(hu) =0, (1)

h2
8X(hu2 + g?) = —gh0xzp. (2)

Liudi LU Gdt ANGE November 4, 2020 6/32



Shallow Water Equations

Integrating (1)
hu = Q07

for a fixed positive constant Q.
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Shallow Water Equations

hu = Qo (1)

h2
&((hu2 + g?) = —gh0xzp. (2)
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Shallow Water Equations

hu = QO (1)
hudyu + hdxgh + hoxgzp =0 (2)

Assume h> 0 and (p >0
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Shallow Water Equations

hu = Qg (1)
2
8x<% +g(h+ Zb)> =0 (2)

Consider two fixed constants h(0), z,(0) € R
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Shallow Water Equations

hu = Qg (1)
B gthrz) = -B L g(h0)+0) = My (2)
2K g Zpb 2h2(0) g Zpb =: Mo

Consider two fixed constants h(0), z,(0) € R
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Shallow Water Equations

Qo
= — ]-
u="2, (1)
Mo Q3
_ 70 X0 4 2
Zp g 2gh2 ) ()
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Shallow Water Equations

@ u, zp as a function of h

Qo
_ M Q&
Zp g 2gh2 ) (2)

Liudi LU Gdt ANGE November 4, 2020 6/32



Shallow Water Equations

@ u, zp as a function of h

Qo
— 1
h Y ( )
M, Q
Zp = “0_ —02 — h, (2)
g 2gh
@ Froude number:
u
Fr = —

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)
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Shallow Water Equations

@ u, zp as a function of h

Qo
X0 1
h Y ( )
M, Q
Zy= 0 — 0 p (2)
g 2gh
@ Froude number:
Fr .= v
Vgh

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

@ Given a smooth topography zp, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition [4, Lemma
1]
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Lagrangian Trajectories

@ Incompressibility of the flow: V - u = 0 with u = (u(x), w(x, z))

Oxu~+ 0w = 0. (3)
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Lagrangian Trajectories

o Integrating (3) from z, to z gives:

0= /Z (Oxu(x) 4+ 0;w(x, z))dz

—8/ dz—l—/awxz)dz

= 0x((z — zp)u(x)) + w(x, z) — w(x, zp)
= (z — zp)Oxu(x) — u(x)0xzp + w(x, z),

where w(x, zp) = u(x)0xzp (the kinematic condition at the bottom).
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Lagrangian Trajectories

@ The vertical velocity:

—%—M—zu'x
wixz) = (0 = 25— 2l (x),
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Lagrangian Trajectories

@ The vertical velocity:

—%—M—zu'x
wixz) = (0 = 25— 2l (x),

@ The Lagrangian trajectory is characterized by the system

<X8> B (W&E?iim '
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Lagrangian Trajectories

@ The vertical velocity:

Mo  3u’(x) !
w(x, z — z)u'(x).
(1) = () = 25 ()
°
,  z Mo  3u? v
Z===(——-—-2)—
X g 2g u
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Lagrangian Trajectories

@ The vertical velocity:

= %—73112()()—2 u'(x
w(x,z) = ( " Ju'(x).

2g
oRecaIIn:/H_Zb:%_%
Zl—i—zi/—(%_ﬁi/
u g 2¢ " u
2
uc.u
_(77"‘?);
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Lagrangian Trajectories

@ The vertical velocity:

= %—3U2(X)—z v (x
wix.z) = (2 = 25 - 2l (),

o Note that n/ = —”?“/ and multiplying both sides by u

U2
Zu+zu = nu’ + —u
g

_ n“l"‘n/u
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Lagrangian Trajectories

@ The vertical velocity:

L Mo 30
wix,z) = (50 = 255~ 20/ (x)
e We find
(u(z—n))/zo

Since h(0), z5(0) are given constants, so does u(0). For a given initial
position z(0), we have

u(x)(z(x) = n(x)) = u(0)(2(0) — n(0)).

Liudi LU Gdt ANGE November 4, 2020 7/32



Lagrangian Trajectories

@ The vertical velocity:

Mo 3u?(x)

w(x, z) = ( z o — z)u'(x).
@ A time-free reformulation for z as
20) = 1) + 2 (2(0) = (), G)
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Lagrangian Trajectories

@ The vertical velocity:

My 3R
wix.2) = (o2 = 220 2,
o A time-free reformulation for z as
20) = 1) + 2 (2(0) = (), ©

o If z(0) belongs to [z5(0),n(0)], then z(x) belongs to [z5(x),n(x)]. In
particular, choosing z(0) = z,(0) in (3) and using (1) gives
z(x) = zp(x). In the same way, we find that z(x) = n(x) when
z(0) = n(0).
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Beer-Lambert Law

@ The Beer-Lambert law describes how light is attenuated with depth:

I(x,z) = Isexp ( —e(n(x) — z))

Here ¢ is the light extinction coefficient.
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Beer-Lambert Law

@ The Beer-Lambert law describes how light is attenuated with depth:

I(x,2(0)) = Isexp ( - EZE)(B(U(O) - z(O)))

Here ¢ is the light extinction coefficient.
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Beer-Lambert Law

@ The Beer-Lambert law describes how light is attenuated with depth:

I(x,2(0)) = Isexp ( - 5583(77(0) - z(O)))

Here ¢ is the light extinction coefficient.

h—uzp—>z—1
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@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.
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Han model

Photon [/ Photon /

@4 U/ —> kdal_}

Figure: Scheme of the Han model, representing the probability of state transition,
as a function of the photon flux density.
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@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.

A= —clA+E

B=0clA- 8+ kC— kyolB,
C = —kC+ kqolB.
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@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.

A= —clA+E
B=0clA— 2 +kC—kqolB,
C = —k,C+ kqolB.

@ A, B, C are the relative frequencies of the three possible states

A+B+C=1,
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@ Using a fast-slow approximation and the singular perturbation
theory(see [3]), this system can be reduced to one single evolution

equation: _
C=—a(l)C+ p(I),

where 1)?
a(l) = A1) + ke, with B(I) = deT((J_U/ J)r I
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@ Using a fast-slow approximation and the singular perturbation
theory(see [3]), this system can be reduced to one single evolution

equation: _
C=—a)C+ (1),
where
(o1)?

a(l)y = B(1) + kr,with 5(1) = deTO’/ 1

@ The net specific growth rate:
u(C, 1) = =(1)C + (1),

where

kol
¢ =) = R, with 5(1) = 2.
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@ A time-free reformulation of C
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@ A time-free reformulation of C
C' = E = —@C + @

X u u '’

@ The average net specific growth rate over the domain is defined by

: 1/L . /n(x) (Clx. 2), I(x, 2))dzd
=~ — w(C(x,z),I(x,z))dzdx.
L 0 h(X) zp(x)
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@ A time-free reformulation of C
C' = E = —@C + @

X u u '’

@ The average net specific growth rate over the domain is defined by

: 1/L . /n(x) (Clx. 2), I(x, 2))dzd
=~ — w(C(x,z),I(x,z))dzdx.
L 0 h(X) zp(x)

@ In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for N, + 1 cells:

1
z,-(0):n(0)—’N h(0), i=1,...,N,+1.
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@ A time-free reformulation of C
o _C_ al)., 80

X u u

Y

@ The average net specific growth rate over the domain is defined by

'1/L1fwﬁx)u)wd
=~ — w(C(x,z),I(x,z))dzdx.
L 0 h(X) zp(x)

@ In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for N, + 1 cells:

1
z,-(0):n(0)—’N h(0), i=1,...,N,+1.

@ The semi-discrete average net specific growth rate:
1 ok L
ﬁk1NzAmqawmx (4)
Z =1
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o Paddle wheel:

e set this hydrodynamic-biologic coupling system in motion,
e modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.
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o Paddle wheel:

e set this hydrodynamic-biologic coupling system in motion,
e modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.
@ An ideal rearrangement of trajectories: at each new lap, the algae at
depth z;(0) are entirely transferred into the position z;(0) when
passing through the mixing device.

@ We denote by P the set of permutation matrices of size N, x N, and
by Gy, the associated set of permutations of N, elements.
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I ls
P
O ,U(‘)f),f — - o= lx\'_Mﬁ(
BT )
B S A
O TCR R ar
el T L s
- b"u : = 20_(3)
0 L 0 ’

Figure: Representation of the hydrodynamic model with an example of mixing
device (P). Here, P corresponds to the cyclic permutation o = (1 2 3 4).
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o Paddle wheel:
e set this hydrodynamic-biologic coupling system in motion,
e modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.
@ An ideal rearrangement of trajectories: at each new lap, the algae at
depth z;(0) are entirely transferred into the position z;(0) when
passing through the mixing device.

@ We denote by P the set of permutation matrices of size N, x N, and
by Gy, the associated set of permutations of N, elements.

The average growth rate of K laps equals to one lap (see [1]).
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© Optimization problem
@ £ constant and no permutation
@ ¢ constant with mixing device
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Optimization problem

@ Volume of the system

V= /OL h(x)dx.
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Optimization problem

@ Volume of the system
L
V= / h(x)dx.
0

o Parameterize h by a vector a := [a1,--- ,ay] € RM.
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Optimization problem

@ Volume of the system
L
V= / h(x)dx.
0

o Parameterize h by a vector a := [a1,--- ,ay] € RM.

@ For instance: a truncated Fourier series

M
h(x,a) = ap + Z am sin(2m7r%), (5)

m=1
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Optimization problem

@ Volume of the system
L
V= / h(x)dx.
0

o Parameterize h by a vector a := [a1,--- ,ay] € RM.

@ For instance: a truncated Fourier series

M
h(x,a) = ap + Z am sin(2m7r%), (5)

m=1

a—>h—uz,—z—1—C—porp.
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Optimization problem

Volume of the system

V= /OL h(x)dx.

Parameterize h by a vector a := [ay,--- ,ay] € RM.

@ For instance: a truncated Fourier series

M
h(x,a) = ap + Z am sin(2m7r%), (5)

m=1

a—>h—uz,—z—1—C—porp.

@ Periodic of C.
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Optimization problem

Volume of the system

V= /OL h(x)dx.

Parameterize h by a vector a := [ay,--- ,ay] € RM.

@ For instance: a truncated Fourier series

M
X
h = msin(2mm—),
(x,a) ao—f-mZ::la sin( m7rL) (5)
(]
a—>h—uz,—z—1—C—porp.
@ Periodic of C.

@ Omit x in notations.
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€ constant and no permutation

@ Objective function:

—(/i(a)) C +¢(li(a))
Aa@) = o 2/ w(2) dx,
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€ constant and no permutation

@ Objective function:

—v(1i(a)) G IHE
in(s) LNZ/ G ()

@ Constraints:

,a(li(@) - Bi(a)
ST 0@ 9T @
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€ constant and no permutation

@ Objective function:

—v(1i(a)) G IHE
in(s) LNE:/ G ()

@ Constraints:

I; I;
) P UC)) -
u(a) u(a)
@ The optimization problem reads:
Find a* solving the maximization problem:

max a
max fin(a).
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€ constant and no permutation

@ Lagrangian:

N
L(C,p,a) =

/L ()G +(h(2)
0 u(a)

o o(li(a)) G — B(li(a))
_Z/ e )dx

LNZ
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€ constant and no permutation

@ Lagrangian:

N

g ie)e i(a
£(C.p.a) = /0 (1i(2)) G +¢(li(a)

u(a)
o o(li(a)) G — B(li(a))
_Z/ e )dx

@ p; the Lagrange multipliers associated with the constraint (6).

al; I;
90.2.= o~ el - g D
8C,.(L)£ p,(L)

LNZ
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€ constant and no permutation

@ Lagrangian:

N
L(C,p,a) =

/L —(li(a)) G + C(/i(a))dx
0 u(a)

o o(li(a)) G — B(li(a))
_Z/ e )dx

@ p; the Lagrange multipliers associated with the constraint (6).

al; I;
90.2.= o~ el - g D
8C,.(L)£ p,(L)

o If C is periodic (i.e. C(0) = C(L)), then d¢,(1)L = pi(L) — pi(0).

LNZ
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€ constant and no permutation

@ The gradient V[ia(a) is obtained by
Viia(a) = 9,L,
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€ constant and no permutation

@ The gradient V[ia(a) is obtained by
Viia(a) = 9,L,

@ where

_7 (I C +C( ( ))aal,-(a)dx

0aL LN
1 u —(1i(2)) G + ¢(1(a))
o Z} /0 i Bau(a)dx
Nl _/(1(a)) G "(I:(a
+Z/o > (1i( ))UC(,a)+6(l,( ))8al;(a)dx
Nl _a(1(a))G
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€ constant and no permutation

@ The gradient Vjia(a) is obtained by

Under the parameterization (5), if C is periodic, then Via(0) = 0.
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€ constant with mixing device

@ Objective function:

N,

/L —(li(a))C] + C(/i(a))dx
0 u(a) ’

i=1

Liudi LU Gdt ANGE November 4, 2020 17 /32



€ constant with mixing device

@ Objective function:
CP+ ¢

1 & /L —(1:(a))
0

_p o
IU’A(a) - LNZ pat U(a)
o Constraint: , L) S0
P alli(a P _ ila
Ci + u(a) Ci - u(a) (7)
Gdt ANGE November 4, 2020 17 /32
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€ constant with mixing device

@ Objective function:
CP+ ¢

1 & /L —(1:(a))
0

“P N _
NA(a) - LN, P U(a)
o Constraint: , 1i(2)) Bi(a))
P allila P —_ i\
Ci —i—WCi — u(a (7)
PCP(L) = ¢ o).

@ Our optimization problem reads:
Find a permutation matrix Pmax and a parameter vector a* solving
the maximization problem:

—p
max max aj.
PePaeRM'LLA( )

Gdt ANGE November 4, 2020 17 /32
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€ constant with mixing device

o Lagrangian:

Ne oLy CP .
ﬁP(C,p, a)= I, i:1/0 VUi ))S:(Ia)+ U ))dX
N o
. prcp o, oli(a) G — B(li(a)), |
B
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€ constant with mixing device

o Lagrangian:

Ne oLy CP .
ﬁP(C,p, a)= I, i:1/0 VUi ))S:(Ia)+ U ))dX
N o
. prcp o, oli(a) G — B(li(a)), |
B

° p,-P is the Lagrange multiplier associated with the constraint (7).

—Pi i) LN; " u(a)
pP(L) - pP(0)P —o0.

{pip/ p a(li(a)) I UIC)) R—
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€ constant with mixing device

where

Viih(a) = 0.LF,

_ P
—( a) C +C( i(2))
- Z/ Dau(a)dx

P /
+Z / )ca)m( @) o1 ardx

) Z /L " —a(l:(a))C + B(1:(a))

u?(a)

0,u(a)dx.

Gdt ANGE
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Overview

@ Numerical Experiments
@ Numerical Settings
@ Numerical results
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Numerical Settings

@ Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc
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Numerical Settings

@ Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

@ Numerical solvers: Euler Explicit, Heun, etc

@ The spatial increment: Ax = 0.01m
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Numerical Settings

Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

Numerical solvers: Euler Explicit, Heun, etc

The spatial increment: Ax = 0.01m

Light intensity at free surface: I = 2000 umolm~=2s~! (which
corresponds to a maximum value during summer in the south of
France).
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Numerical Settings

@ Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

@ Numerical solvers: Euler Explicit, Heun, etc
@ The spatial increment: Ax = 0.01m

o Light intensity at free surface: /s = 2000 umolm~2s~1 (which
corresponds to a maximum value during summer in the south of
France).

@ Assume that only g percent of s is available at the bottom g € [0,1]

e =(1/h(0,a))In(1/q).
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Parameter Settings

@ The spatial increment: Ax =0.01lm
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Parameter Settings

@ The spatial increment: Ax =0.01lm
@ Standard settings for a raceway pond
o Length of one lap of the raceway L = 100 m
o Averaged discharge Qy = 0.04m? - s~1
o Initial position of the topography z,(0) = —0.4m
e First Fourier coefficient ag = 0.4

Liudi LU Gdt ANGE November 4, 2020 22/32



Parameter Settings

@ The spatial increment: Ax =0.01lm
@ Standard settings for a raceway pond
o Length of one lap of the raceway L = 100 m
o Averaged discharge @y = 0.04m? - s™1
o Initial position of the topography z,(0) = —0.4m
e First Fourier coefficient ag = 0.4
@ The free-fall acceleration is set to be g = 9.81m - s72.
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Parameter Settings

@ The spatial increment: Ax =0.01lm
@ Standard settings for a raceway pond
o Length of one lap of the raceway L = 100 m
o Averaged discharge Qy = 0.04m? - s~1
o Initial position of the topography z,(0) = —0.4m
e First Fourier coefficient ag = 0.4
@ The free-fall acceleration is set to be g = 9.81m - s72.
@ All the numerical parameters values for Han's model are taken
from [2] and given in table 1.

Table: Parameter values for Han Model

k| 68103 s 1

kg | 2.99 10~ -

T 0.25 S

o 0.047 m? - (p mol)~1
k | 8710°° -

R |1.389 107 s 1
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Convergence of N,

For 100 random a chosen, the average value of the functional jia

**%*W
s k¥
*

*
*

*

10° 10t 10
N,

Figure: The value of the functional fia for N, = [1,100].
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The initial condition Cp = 0.1

0.1
0
uE————————
g
saf——— |
B M
ou M
—— Bottom
-05 : : : :
0 20 40 60 80 100

Length (m)

Figure: The optimal topography for Co = 0.1. The red thick line represents the
topography (zp), the blue thick line represents the free surface (n), and all the
other curves between represent the different trajectories.

Liudi LU Gdt ANGE November 4, 2020 24 /32



Optimal topography for a given permutation

The permutation: 7 = (1 N;)(2 N, —1)(3 N, —2)---,

State C

0 50 100 150 200
Length (m)

Figure: The evolution of the photo-inhibition state C for two laps.
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Optimal topography for a given permutation

The permutation: 7= (1 N;)(2 N, -1)(3 N, —2)---,
01

0
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Depth (m)

L

-0.3

-04

—— Surface
—— Bottom

- 0. 5 1 1 1
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Length (m)

The increase in the optimal value of the objective function fin compared
to a flat topography is around 0.228%, and compare to a flat topography
and non permutation case is around 0.277%.
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Optimal matrix and optimal topography

Set N, =7, the optimal matrix:

Pmax:

_ O OO OO Oo
OO OO OO o
O HrH O OOOoOOo
OO OO oo
OO+ O OOoOOo
[N elNeNeol e Ne]
OO O+ O OO
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Optimal matrix and optimal topography

Set N, =7, the optimal topography:
0.1

0

. - —
-01f 1
\_/W\/\/\
-0.2 |

—— Bottom
-0.5 :

Depth (m)

0 20 40 60 80 100
Length (m)

Compare to a flat topography with this Pnay, we have a gain of 0.224%,
and a gain of 1.511% compare to the case a flat topography without

permutation (i.e. Zp,).
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Overview

© Conclusion and Perspective
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Conclusion

@ Theoretical results

e A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation
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Conclusion

@ Theoretical results
e A flat topography cancels the gradient of the objective function in the

case C is periodic and no permutation
o Periodicity in the permutation case is actually one
@ Numerical results

o Flat topography is optimal solution
e A non flat topography slightly enhances the average growth rate
o No trivial permutation strategies can be found to enhance the average

growth rate

@ Perspectives

o More general matrix P
o What happens in the case torrential
e An extra diffusion term in Shallow water equations or a Brownian in

Lagrangian trajectories
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Permutation for flat topography

o Flat topography — h, u, z, constants — z constant — / constant
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Permutation for flat topography

o Flat topography — h, u, z, constants — z constant — / constant
@ C can be computed explicitly

@ 1 can be computed explicitly

°

ia = 37 (I €O + 12.2)),

e 1 is a vector of size N, whose coefficients equal 1
o = 7(/)( —a()T ~1)

ﬁ(’::) (1 _ e—a(l,-)T) o ’Y(Z)(%/f) T+ C(II)T
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Permutation for flat topography

o Flat topography — h, u, z, constants — z constant — / constant
@ C can be computed explicitly
@ 1 can be computed explicitly
° 11
A = 5 7 ((1.CO) + (1. 2)).

e 1 is a vector of size N, whose coefficients equal 1

o [ =L (emaNT —1)

© Zi= g a1 e OT) — 1R T 4 (1) T
@ The periodic condition of C

C(0) = (Zy, — PD)*PV.

e D is a diagonal matrix D;; = e—o)T

o Vi =Lld(1 — ematT)
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Permutation for flat topography

@ Since N, T and Z are independent of P, the objective function
defined by
J(P) = (T, (Zn, — PD)"LPV).
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Permutation for flat topography

@ Since N, T and Z are independent of P, the objective function
defined by

J(P) = (T, (Zn, — PD)"LPV).

@ The optimization problem then reads:
Find a permutation matrix Pmax solving the maximization problem:

pepP)
e Expansion of J(P)
(N, (Zn, — PD)7PV) = +io<r, (PD)™PV)
m=0
=(I',PV) + +i(r, (PD)™PV).
m=1
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Permutation for flat topography

@ Since N, T and Z are independent of P, the objective function
defined by
J(P) = (I',(Zn, — PD)"LPV).

@ The optimization problem then reads:
Find a permutation matrix Pmax solving the maximization problem:

P).
p2pJP)

@ Approximation
JEPPX(PY = (') PV/).

@ The optimal solution P ™ of J2PP™(P) can be determined

explicitly as the matrix corresponding to the permutation which
associates the largest element of I with the largest element of V/, the
second largest element with the second largest, and so on.
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Possible permutation

e Set T =1000s, g = 10%, Pmax = Zp,-
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e Set T =1000s, g = 10%, Pmax = Zp,-

@ Set T =1000s, g =1%
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@ Set T =1000s, g =0.1%
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@ Set T =1000s, g =0.1%
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@ For all three cases,
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Possible permutation

@ Set T =1s, g =10%, Pmax = Zn, .
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@ Set T =1s, g =10%, Pmax = Zn, .

eSet T=1s,9g=1%
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is an anti-diagonal matrix.

approx
max

P

@ For all three cases,
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Approximation

Figure: Average net specific growth rate fiy for /s € [0,2500] and
q € [0.1%,10%)]. In each figure, the red surface is obtained with Py, the dark
blue surface is obtained with Ppn, the green surface is obtained with Zy, and the

light blue surface is obtained with P3P The black stars represent the cases
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