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Shallow Water Equations

1D steady state shallow water equation

∂x(hu) = 0, (1)

∂x(hu2 + g
h2

2
) = −gh∂xzb. (2)

h water elevation, u horizontal averaged velocity, g gravitational
acceleration, zb topography.

Free surface η := h + zb, averaged discharge Q = hu.
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Shallow Water Equations

0 L

z

0 x
η(x)

Is

zb(x)h(x)u(x)

Figure: Representation of the hydrodynamic model.
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Shallow Water Equations

Integrating (1)
hu = Q0,

for a fixed positive constant Q0.
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Shallow Water Equations

hu = Q0 (1)

hu∂xu + h∂xgh + h∂xgzb = 0 (2)

Assume h > 0 and Q0 > 0
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Shallow Water Equations

hu = Q0 (1)

∂x

( Q2
0

2h2
+ g(h + zb)

)
= 0 (2)

Consider two fixed constants h(0), zb(0) ∈ R
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Shallow Water Equations

hu = Q0 (1)

Q2
0

2h2
+ g(h + zb) =

Q2
0

2h2(0)
+ g(h(0) + zb(0)) =: M0 (2)

Consider two fixed constants h(0), zb(0) ∈ R
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Shallow Water Equations

u =
Q0

h
, (1)

zb =
M0

g
− Q2

0

2gh2
− h, (2)
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Shallow Water Equations

u, zb as a function of h

u =
Q0

h
, (1)

zb =
M0

g
− Q2

0

2gh2
− h, (2)

Froude number:
Fr :=

u√
gh

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

Given a smooth topography zb, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition [4, Lemma
1]
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Lagrangian Trajectories

Incompressibility of the flow: ∇ · u = 0 with u = (u(x),w(x , z))

∂xu + ∂zw = 0. (3)
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Lagrangian Trajectories

Integrating (3) from zb to z gives:

0 =

∫ z

zb

(
∂xu(x) + ∂zw(x , z)

)
dz

= ∂x

∫ z

zb

u(x)dz +

∫ z

zb

∂zw(x , z)dz

= ∂x
(
(z − zb)u(x)

)
+ w(x , z)− w(x , zb)

= (z − zb)∂xu(x)− u(x)∂xzb + w(x , z),

where w(x , zb) = u(x)∂xzb (the kinematic condition at the bottom).
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Lagrangian Trajectories

The vertical velocity:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

The Lagrangian trajectory is characterized by the system(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t))

)
.
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Lagrangian Trajectories

The vertical velocity:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

z ′ :=
ż

ẋ
= (

M0

g
− 3u2

2g
− z)

u′

u
.
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Lagrangian Trajectories

The vertical velocity:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

Recall η = h + zb = M0
g −

u2

2g

z ′ + z
u′

u
= (

M0

g
− 3u2

2g
)
u′

u

= (η +
u2

g
)
u′

u
.
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Lagrangian Trajectories

The vertical velocity:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

Note that η′ = −uu′

g and multiplying both sides by u

z ′u + zu′ = ηu′ +
u2

g
u′

= ηu′ + η′u
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Lagrangian Trajectories

The vertical velocity:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

We find (
u(z − η)

)′
= 0

Since h(0), zb(0) are given constants, so does u(0). For a given initial
position z(0), we have

u(x)(z(x)− η(x)) = u(0)(z(0)− η(0)).
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Lagrangian Trajectories

The vertical velocity:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

A time-free reformulation for z as

z(x) = η(x) +
u(0)

u(x)
(z(0)− η(0)), (3)

If z(0) belongs to [zb(0), η(0)], then z(x) belongs to [zb(x), η(x)]. In
particular, choosing z(0) = zb(0) in (3) and using (1) gives
z(x) = zb(x). In the same way, we find that z(x) = η(x) when
z(0) = η(0).
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Beer-Lambert Law

The Beer-Lambert law describes how light is attenuated with depth:

I (x , z) = Is exp
(
− ε(η(x)− z)

)
.

Here ε is the light extinction coefficient.
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Han model

A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.


Ȧ = −σIA + B

τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

A,B,C are the relative frequencies of the three possible states

A + B + C = 1,
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Han model

A B CσI kdσI

τ−1 kr

Photon I Photon I

Figure: Scheme of the Han model, representing the probability of state transition,
as a function of the photon flux density.
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Han model

Using a fast-slow approximation and the singular perturbation
theory(see [3]), this system can be reduced to one single evolution
equation:

Ċ = −α(I )C + β(I ),

where

α(I ) = β(I ) + kr ,with β(I ) = kdτ
(σI )2

τσI + 1
.

The net specific growth rate:

µ(C , I ) := −γ(I )C + ζ(I ),

where

ζ(I ) = γ(I )− R, with γ(I ) =
kσI

τσI + 1
.
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Han model

A time-free reformulation of C

C ′ :=
Ċ

ẋ
= −α(I )

u
C +

β(I )

u
,

The average net specific growth rate over the domain is defined by

µ̄ :=
1

L

∫ L

0

1

h(x)

∫ η(x)

zb(x)
µ
(
C (x , z), I (x , z)

)
dzdx .

In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for Nz + 1 cells:

zi (0) = η(0)− i − 1

Nz
h(0), i = 1, . . . ,Nz + 1.

The semi-discrete average net specific growth rate:

µ̄∆ =
1

LNz

Nz∑
i=1

∫ L

0
µ(Ci (x), Ii (x))dx . (4)
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ẋ
= −α(I )

u
C +

β(I )

u
,

The average net specific growth rate over the domain is defined by

µ̄ :=
1

L

∫ L

0

1

h(x)

∫ η(x)

zb(x)
µ
(
C (x , z), I (x , z)

)
dzdx .

In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for Nz + 1 cells:

zi (0) = η(0)− i − 1

Nz
h(0), i = 1, . . . ,Nz + 1.

The semi-discrete average net specific growth rate:

µ̄∆ =
1

LNz

Nz∑
i=1

∫ L

0
µ(Ci (x), Ii (x))dx . (4)

Liudi LU Gdt ANGE November 4, 2020 10 / 32



Han model

A time-free reformulation of C

C ′ :=
Ċ
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Mixing device

Paddle wheel:

set this hydrodynamic-biologic coupling system in motion,
modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.

An ideal rearrangement of trajectories: at each new lap, the algae at
depth zi (0) are entirely transferred into the position zj(0) when
passing through the mixing device.

We denote by P the set of permutation matrices of size Nz × Nz and
by SNz the associated set of permutations of Nz elements.
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Mixing device

0 L 0 L

P

z

x
0

z1 = zσ(4)

z2 = zσ(1)

z3 = zσ(2)

z4 = zσ(3)

η(x)

zb(x)
h(x)

u(x) u(x)

Is Is

Figure: Representation of the hydrodynamic model with an example of mixing
device (P). Here, P corresponds to the cyclic permutation σ = (1 2 3 4).

Liudi LU Gdt ANGE November 4, 2020 11 / 32



Mixing device

Paddle wheel:

set this hydrodynamic-biologic coupling system in motion,
modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.

An ideal rearrangement of trajectories: at each new lap, the algae at
depth zi (0) are entirely transferred into the position zj(0) when
passing through the mixing device.

We denote by P the set of permutation matrices of size Nz × Nz and
by SNz the associated set of permutations of Nz elements.

Theorem

The average growth rate of K laps equals to one lap (see [1]).
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Optimization problem

Volume of the system

V =

∫ L

0
h(x)dx .

Parameterize h by a vector a := [a1, · · · , aM ] ∈ RM .

For instance: a truncated Fourier series

h(x , a) = a0 +
M∑

m=1

am sin(2mπ
x

L
), (5)

a→ h→ u, zb → z → I → C → µ or µ̄.

Periodic of C .

Omit x in notations.
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ε constant and no permutation

Objective function:

µ̄∆(a) =
1

LNz

Nz∑
i=1

∫ L

0

−γ(Ii (a))Ci + ζ(Ii (a))

u(a)
dx ,

Constraints:

C ′i +
α(Ii (a))

u(a)
Ci =

β(Ii (a))

u(a)
. (6)

The optimization problem reads:
Find a∗ solving the maximization problem:

max
a∈RN

µ̄∆(a).
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ε constant and no permutation

Lagrangian:

L(C , p, a) =
1

LNz

Nz∑
i=1

∫ L

0

−γ(Ii (a))Ci + ζ(Ii (a))

u(a)
dx

−
Nz∑
i=1

∫ L

0
pi
(
Ci
′ +

α(Ii (a))Ci − β(Ii (a))

u(a)

)
dx

pi the Lagrange multipliers associated with the constraint (6).{
∂Ci
L = p′i − pi

α(Ii (a))
u(a) −

1
LNz

γ(Ii (a))
u(a)

∂Ci (L)L = pi (L).

If C is periodic (i.e. C (0) = C (L)), then ∂Ci (L)L = pi (L)− pi (0).
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ε constant and no permutation

The gradient ∇µ̄∆(a) is obtained by

∇µ̄∆(a) = ∂aL,

where

∂aL =
1

LNz

Nz∑
i=1

∫ L

0

−γ′(Ii (a))Ci + ζ ′(Ii (a))

u(a)
∂aIi (a)dx

− 1

LNz

Nz∑
i=1

∫ L

0

−γ(Ii (a))Ci + ζ(Ii (a))

u2(a)
∂au(a)dx

+
Nz∑
i=1

∫ L

0
pi
−α′(Ii (a))Ci + β′(Ii (a))

u(a)
∂aIi (a)dx

−
Nz∑
i=1

∫ L

0
pi
−α(Ii (a))Ci + β(Ii (a))

u2(a)
∂au(a)dx .
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ε constant and no permutation

The gradient ∇µ̄∆(a) is obtained by

∇µ̄∆(a) = ∂aL,

Theorem

Under the parameterization (5), if C is periodic, then ∇µ̄∆(0) = 0.
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ε constant with mixing device

Objective function:

µ̄P∆(a) =
1

LNz

Nz∑
i=1

∫ L

0

−γ(Ii (a))CP
i + ζ(Ii (a))

u(a)
dx ,

Constraint: {
CP
i
′

+ α(Ii (a))
u(a) CP

i = β(Ii (a))
u(a)

PCP
i (L) = CP

i (0).
(7)

Our optimization problem reads:
Find a permutation matrix Pmax and a parameter vector a∗ solving
the maximization problem:

max
P∈P

max
a∈RM

µ̄P∆(a).
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ε constant with mixing device

Lagrangian:

LP(C , p, a) =
1

LNz

Nz∑
i=1

∫ L

0

−γ(Ii (a))CP
i + ζ(Ii (a))

u(a)
dx

−
Nz∑
i=1

∫ L

0
pPi
(
CP
i
′

+
α(Ii (a))CP

i − β(Ii (a))

u(a)

)
dx

pPi is the Lagrange multiplier associated with the constraint (7).{
pPi
′ − pPi

α(Ii (a))
u(a) −

1
LNz

γ(Ii (a))
u(a) = 0

pPi (L)− pPi (0)P = 0.
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ε constant with mixing device

∇µ̄P∆(a) = ∂aLP ,

where

∂aLP =
1

LNz

Nz∑
i=1

∫ L

0

−γ′(Ii (a))CP
i + ζ ′(Ii (a))

u(a)
∂aIi (a)dx

− 1

LNz

Nz∑
i=1

∫ L

0

−γ(Ii (a))CP
n + ζ(Ii (a))

u2(a)
∂au(a)dx

+
Nz∑
i=1

∫ L

0
pPi
−α′(Ii (a))CP

i + β′(Ii (a))

u(a)
∂aIi (a)dx

−
Nz∑
i=1

∫ L

0
pPi
−α(Ii (a))CP

i + β(Ii (a))

u2(a)
∂au(a)dx .
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Numerical Settings

Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

Numerical solvers: Euler Explicit, Heun, etc

The spatial increment: ∆x = 0.01 m

Light intensity at free surface: Is = 2000µmolṁ−2 s−1 (which
corresponds to a maximum value during summer in the south of
France).

Assume that only q percent of Is is available at the bottom q ∈ [0, 1]

ε = (1/h(0, a)) ln(1/q).
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Parameter Settings

The spatial increment: ∆x = 0.01 m

Standard settings for a raceway pond
Length of one lap of the raceway L = 100 m
Averaged discharge Q0 = 0.04 m2 · s−1

Initial position of the topography zb(0) = −0.4 m
First Fourier coefficient a0 = 0.4

The free-fall acceleration is set to be g = 9.81 m · s−2.
All the numerical parameters values for Han’s model are taken
from [2] and given in table 1.

Table: Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -

τ 0.25 s

σ 0.047 m2 · (µ mol)−1

k 8.7 10−6 -

R 1.389 10−7 s−1
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Convergence of Nz

For 100 random a chosen, the average value of the functional µ̄∆
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Figure: The value of the functional µ̄∆ for Nz = [1, 100].
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C no periodic

The initial condition C0 = 0.1
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Length (m)
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)
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Figure: The optimal topography for C0 = 0.1. The red thick line represents the
topography (zb), the blue thick line represents the free surface (η), and all the
other curves between represent the different trajectories.
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Optimal topography for a given permutation

The permutation: π = (1 Nz)(2 Nz − 1)(3 Nz − 2) · · · ,

Figure: The evolution of the photo-inhibition state C for two laps.
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Optimal topography for a given permutation

The permutation: π = (1 Nz)(2 Nz − 1)(3 Nz − 2) · · · ,
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The increase in the optimal value of the objective function µ̄∆ compared
to a flat topography is around 0.228%, and compare to a flat topography
and non permutation case is around 0.277%.
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Optimal matrix and optimal topography

Set Nz = 7, the optimal matrix:

Pmax =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
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Optimal matrix and optimal topography

Set Nz = 7, the optimal topography:
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Compare to a flat topography with this Pmax, we have a gain of 0.224%,
and a gain of 1.511% compare to the case a flat topography without
permutation (i.e. INz ).
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Conclusion

Theoretical results

A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation

Periodicity in the permutation case is actually one

Numerical results

Flat topography is optimal solution
A non flat topography slightly enhances the average growth rate
No trivial permutation strategies can be found to enhance the average
growth rate

Perspectives

More general matrix P
What happens in the case torrential
An extra diffusion term in Shallow water equations or a Brownian in
Lagrangian trajectories
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Permutation for flat topography

Flat topography → h, u, zb constants → z constant → I constant

C can be computed explicitly

µ can be computed explicitly

µ̄∆ =
1

Nz

1

T

(
〈Γ,C (0)〉+ 〈1,Z 〉

)
,

1 is a vector of size Nz whose coefficients equal 1

Γi = γ(Ii )
α(Ii )

(e−α(Ii )T − 1)

Zi = γ(Ii )
α(Ii )

β(Ii )
α(Ii )

(1− e−α(Ii )T )− γ(Ii )β(Ii )
α(Ii )

T + ζ(Ii )T

The periodic condition of C

C (0) = (INz − PD)−1PV .

D is a diagonal matrix Dii = e−α(Ii )T

Vi = β(Ii )
α(Ii )

(1− e−α(Ii )T )
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Permutation for flat topography

Since N,T and Z are independent of P, the objective function
defined by

J(P) = 〈Γ, (INz − PD)−1PV 〉.

The optimization problem then reads:
Find a permutation matrix Pmax solving the maximization problem:

max
P∈P

J(P).

Expansion of J(P)

〈Γ, (INz − PD)−1PV 〉 =
+∞∑
m=0

〈Γ, (PD)mPV 〉

=〈Γ,PV 〉+
+∞∑
m=1

〈Γ, (PD)mPV 〉.
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Permutation for flat topography

Since N,T and Z are independent of P, the objective function
defined by

J(P) = 〈Γ, (INz − PD)−1PV 〉.

The optimization problem then reads:
Find a permutation matrix Pmax solving the maximization problem:

max
P∈P

J(P).

Approximation
Japprox(P) = 〈Γ,PV 〉.

The optimal solution Papprox
max of Japprox(P) can be determined

explicitly as the matrix corresponding to the permutation which
associates the largest element of Γ with the largest element of V , the
second largest element with the second largest, and so on.
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Possible permutation

Set T = 1000 s, q = 10%, Pmax = INz .

Set T = 1000 s, q = 1%

Pmax =



0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0



.
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Possible permutation

Set T = 1000 s, q = 0.1%

Pmax =



0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0



.

For all three cases, Papprox
max = Pmax
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Possible permutation
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Possible permutation

Set T = 1 s, q = 0.1%

Pmax =



0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0



.

For all three cases, Papprox
max is an anti-diagonal matrix.
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Approximation

Figure: Average net specific growth rate µ̄N for Is ∈ [0, 2500] and
q ∈ [0.1%, 10%]. In each figure, the red surface is obtained with Pmax, the dark
blue surface is obtained with Pmin, the green surface is obtained with INz and the
light blue surface is obtained with Papprox

max . The black stars represent the cases
where Pmax = INz and the red circles represent the cases where Pmax = Papprox

max .
Top: for T = 1 s. Middle: for T = 500 s. Bottom: for T = 1000 s.
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