Optimizing microalgal productivity in raceway ponds through a controlled mixing device

Olivier Bernard, Liu-Di LU, Julien Salomon

Tuesday May 25, 2020

Introduction

- Motivation: High biotechnological potential, e.g. colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc.
- Reactors

Figure: Raceways

Han model [2]

- A: open and ready to harvest a photon,
B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{1}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.
- Following [3], (1) can be reduced to:

$$
\begin{equation*}
\dot{C}=-\alpha(I) C+\beta(I) \tag{2}
\end{equation*}
$$

where $\alpha(I)=\beta(I)+k_{r}$ and $\beta(I)=k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}$.

- The net specific growth rate:

$$
\mu(C, I):=-\gamma(I) C+\zeta(I)
$$

where $\zeta(I)=\gamma(I)-R$ and $\gamma(I)=\frac{k \sigma I}{\tau \sigma I+1}$.

Light intensity

- Beer-Lambert law is given by:

$$
I(z)=I_{s} \exp (\varepsilon z)
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{T} \int_{0}^{T} \frac{1}{h} \int_{-h}^{0} \mu(C(t, z), l(z)) \mathrm{d} z \mathrm{~d} t
$$

- Vertical discretization with N layers

$$
z_{n}=-\frac{n-\frac{1}{2}}{N} h, \quad n=1, \ldots, N
$$

- Semi-discrete average net specific growth rate can be defined by

$$
\begin{equation*}
\bar{\mu}_{N}:=\frac{1}{T} \int_{0}^{T} \frac{1}{N} \sum_{n=1}^{N} \mu\left(C_{n}(t), I_{n}\right) \mathrm{d} t \tag{3}
\end{equation*}
$$

Explicit computation

- For a given initial vector of states $\left(C_{n}(0)\right)_{n=1}^{N}$, the solution of (2) is given by

$$
\begin{equation*}
C(t)=D(t) C(0)+V(t), \quad t \in[0, T] \tag{4}
\end{equation*}
$$

where $D(t)$ is a diagonal matrix with $D_{n n}(t)=e^{-\alpha\left(I_{n}\right) t}$ and $V(t)$ is a vector with $V_{n}(t)=\frac{\beta\left(I_{n}\right)}{\alpha\left(I_{n}\right)}\left(1-e^{-\alpha\left(I_{n}\right) t}\right)$.

- (3) can also be computed explicitly, which gives

$$
\begin{equation*}
\bar{\mu}_{N}=\frac{1}{N} \frac{1}{T}(\langle\Gamma, C(0)\rangle+\langle 1, Z\rangle) \tag{5}
\end{equation*}
$$

where 1 is a vector of size N whose coefficients equal 1 , and Γ, Z are two vectors with $\Gamma_{n}=\frac{\gamma\left(I_{n}\right)}{\alpha\left(I_{n}\right)}\left(e^{-\alpha\left(I_{n}\right) T}-1\right)$ and
$Z_{n}=\frac{\gamma\left(I_{n}\right)}{\alpha\left(I_{n}\right)} \frac{\beta\left(I_{n}\right)}{\alpha\left(I_{n}\right)}\left(1-e^{-\alpha\left(I_{n}\right) T}\right)-\frac{\gamma\left(I_{n}\right) \beta\left(I_{n}\right)}{\alpha\left(I_{n}\right)} T+\zeta\left(I_{n}\right) T$.

- For simplicity of notations, we write hereafter D, V instead of $D(T), V(T)$.

Mixing devices

- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N \times N$ and by \mathfrak{S}_{N} the associated set of permutations of N elements.

Denote by $C^{k}(0)$ the photo-inhibition state of the algae which has just passed the mixing device P after k laps. The initial state of the system $C^{0}(0):=C(0)$ is assumed to be known. By definition of P, we have

$$
C^{k+1}(0)=P C^{k}(T)=P\left(D C^{k}(0)+V\right)
$$

Assume that the state C is $K T$-periodic in the sense that after K times of passing the device (P), i.e. $C^{K}(0)=C(0)$.

Lemma

Given $k \in \mathbb{N}$, the matrix $\mathcal{I}_{N}-(P D)^{k}$ is invertible.

Theorem

For all $k \in \mathbb{N}$

$$
\begin{equation*}
C^{k}(0)=\left(\mathcal{I}_{N}-P D\right)^{-1} P V \tag{6}
\end{equation*}
$$

As a consequence, the sequence $\left(C^{k}(0)\right)_{k \in \mathbb{N}}$ is constant.

- The average net specific growth rate for K laps of the raceway pond is then defined by

$$
\bar{\mu}_{N}^{K}:=\frac{1}{K} \sum_{k=0}^{K-1} \frac{1}{N} \frac{1}{T}\left(\left\langle\Gamma, C^{k}(0)\right\rangle+\langle 1, Z\rangle\right)
$$

- The average net specific growth rate for K laps of the raceway pond is then defined by

$$
\bar{\mu}_{N}^{K}:=\frac{1}{K} \sum_{k=0}^{K-1} \frac{1}{N} \frac{1}{T}\left(\left\langle\Gamma, C^{k}(0)\right\rangle+\langle 1, Z\rangle\right)
$$

- We assume the system to be $K T$-periodic. Using the previous theorem, we obtain that $\bar{\mu}_{N}^{K}=\bar{\mu}_{N}$, meaning that we only need to consider the evolution over one lap of raceway.
- The average net specific growth rate for K laps of the raceway pond is then defined by

$$
\bar{\mu}_{N}^{K}:=\frac{1}{K} \sum_{k=0}^{K-1} \frac{1}{N} \frac{1}{T}\left(\left\langle\Gamma, C^{k}(0)\right\rangle+\langle 1, Z\rangle\right)
$$

- We assume the system to be $K T$-periodic. Using the previous theorem, we obtain that $\bar{\mu}_{N}^{K}=\bar{\mu}_{N}$, meaning that we only need to consider the evolution over one lap of raceway.
- Average growth rate

$$
\bar{\mu}_{N}=\frac{1}{N} \frac{1}{T}(\langle\Gamma, C(0)\rangle+\langle 1, Z\rangle)=\frac{1}{N} \frac{1}{T}\left(\left\langle\Gamma,\left(\mathcal{I}_{N}-P D\right)^{-1} P V\right\rangle+\langle 1, Z\rangle\right)
$$

- The average net specific growth rate for K laps of the raceway pond is then defined by

$$
\bar{\mu}_{N}^{K}:=\frac{1}{K} \sum_{k=0}^{K-1} \frac{1}{N} \frac{1}{T}\left(\left\langle\Gamma, C^{k}(0)\right\rangle+\langle 1, Z\rangle\right)
$$

- We assume the system to be $K T$-periodic. Using the previous theorem, we obtain that $\bar{\mu}_{N}^{K}=\bar{\mu}_{N}$, meaning that we only need to consider the evolution over one lap of raceway.
- Average growth rate

$$
\bar{\mu}_{N}=\frac{1}{N} \frac{1}{T}(\langle\Gamma, C(0)\rangle+\langle 1, Z\rangle)=\frac{1}{N} \frac{1}{T}\left(\left\langle\Gamma,\left(\mathcal{I}_{N}-P D\right)^{-1} P V\right\rangle+\langle 1, Z\rangle\right)
$$

- Find a permutation matrix $P_{\max }$ solving the maximization problem:

$$
\begin{equation*}
\max _{P \in \mathcal{P}}\left\langle\Gamma,\left(\mathcal{I}_{N}-P D\right)^{-1} P V\right\rangle . \tag{7}
\end{equation*}
$$

- For realistic cases, e.g., large values of N, Problem (7) cannot be tackled in practice.
- consider the following expansion

$$
\begin{aligned}
\left\langle\Gamma,\left(\mathcal{I}_{N}-P D\right)^{-1} P V\right\rangle & =\sum_{m=0}^{+\infty}\left\langle\Gamma,(P D)^{m} P V\right\rangle \\
& =\langle\Gamma, P V\rangle+\sum_{m=1}^{+\infty}\left\langle\Gamma,(P D)^{m} P V\right\rangle .
\end{aligned}
$$

- Find a permutation matrix P_{+}solving the maximization problem:

$$
\begin{equation*}
\max _{P \in \mathcal{P}}\langle\Gamma, P V\rangle . \tag{8}
\end{equation*}
$$

Lemma

Let $u, v \in \mathbb{R}^{N}$, with $u_{1} \leq \ldots \leq u_{N}, \sigma_{+} \in \mathfrak{S}_{N}$ such that $v_{\sigma_{+}(1)} \leq \ldots \leq v_{\sigma_{+}(N)}$ and $P_{+} \in \mathcal{P}$ the corresponding matrix. Then

$$
P_{+} \in \operatorname{argmax}_{P \in \mathcal{P}}\langle u, P v\rangle .
$$

Remark

Once Γ and V are given, the optimal solution P_{+}of $\langle\Gamma, P V\rangle$ can be determined explicitly as the matrix corresponding to the permutation which associates the largest element of Γ with the largest element of V, the second largest element with the second largest, and so on.

Remark

The generalized optimization problems associated with original problem and approximated problem have been studied in [1], where we have proved that in some cases, these two problems have the same solution.

Numerical settings

- Set $N=11$ the number of layers, meaning that we test numerically N ! (i.e. 39916800) permutation matrices.
- Parameters: the time duration for one lap of the raceway pond T and the light attenuation ratio q.

Numerical results

When $T=1000 \mathrm{~s}$ and $q=1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Numerical results

When $T=1000 \mathrm{~s}$ and $q=0.1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Numerical results

When $T=1 \mathrm{~s}$ and $q=1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Numerical results

When $T=1 \mathrm{~s}$ and $q=0.1 \%$

$$
P_{\max }=\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

冨 Olivier Bernard, Liu-Di Lu, and Julien Salomon.
Optimization of mixing strategy in microalgal raceway ponds. Submitted paper, 2021.
Bo-Ping Han.
A mechanistic model of algal photoinhibition induced by photodamage to photosystem-ii.
Journal of theoretical biology, 214(4):519-527, February 2002.
(ie Pierre-Olivier Lamare, Nina Aguillon, Jacques Sainte-Marie, Jérôme Grenier, Hubert Bonnefond, and Olivier Bernard.
Gradient-based optimization of a rotating algal biofilm process.
Automatica, 105:80-88, 2019.

