Controlling the bottom topography of a microalgal pond to optimize productivity

Olivier Bernard, Liu-Di LU, Jacques Sainte-Marie, Julien Salomon

Tuesday May 25, 2020

Introduction

- Motivation: High biotechnological potential, e.g. colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc.
- Reactors

Figure: Raceways

1D Illustration

h water elevation, u horizontal averaged velocity, z_{b} topography. Free surface $\eta:=h+z_{b}$, and light intensity at surface I_{s}.

Figure: Representation of the hydrodvnamic model

Shallow Water Equations

- 1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>$ 1: supercritical case (i.e. the flow regime is torrential)

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h, \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>$ 1: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_{b}, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [4, Lemma $1]$.

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- The Lagrangian trajectory is characterized by the system

$$
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} .
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- The Lagrangian trajectory is characterized by the system

$$
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} .
$$

- The Beer-Lambert law describes how light is attenuated with depth:

$$
\begin{equation*}
I(x, z)=I_{s} \exp (-\varepsilon(\eta(x)-z)) \tag{4}
\end{equation*}
$$

Han model [2]

- A: open and ready to harvest a photon,
B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{5}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.

Han model [2]

- A: open and ready to harvest a photon,
B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{5}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.
- Following [3], (5) can be reduced to:

$$
\dot{C}=-\alpha(I) C+\beta(I)
$$

where $\alpha(I)=\beta(I)+k_{r}$ and $\beta(I)=k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}$.

- The net specific growth rate:

$$
\mu(C, I):=-\gamma(I) C+\zeta(I)
$$

where $\zeta(I)=\gamma(I)-R$ and $\gamma(I)=\frac{k \sigma I}{\tau \sigma I+1}$.

Optimization Problem

- Our goal: Topography z_{b}.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function:

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{T} \int_{0}^{T} \frac{1}{h(x(t))} \int_{z_{b}(x(t))}^{\eta(x(t))} \mu(C, I(x(t), z(t))) \mathrm{d} z \mathrm{~d} t \\
& \bar{\mu}_{N_{z}}:=\frac{1}{T} \int_{0}^{T} \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \mu\left(C_{i}(t), l_{i}(x(t))\right) \mathrm{d} t
\end{aligned}
$$

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function:

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{T} \int_{0}^{T} \frac{1}{h(x(t))} \int_{z_{b}(x(t))}^{\eta(x(t))} \mu(C, I(x(t), z(t))) \mathrm{d} z \mathrm{~d} t \\
& \bar{\mu}_{N_{z}}:=\frac{1}{T} \int_{0}^{T} \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \mu\left(C_{i}(t), l_{i}(x(t))\right) \mathrm{d} t
\end{aligned}
$$

- Volume of the system

$$
\begin{equation*}
V=\int_{0}^{L} h(x) \mathrm{d} x \tag{6}
\end{equation*}
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function:

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{T} \int_{0}^{T} \frac{1}{h(x(t))} \int_{z_{b}(x(t))}^{\eta(x(t))} \mu(C, I(x(t), z(t))) \mathrm{d} z \mathrm{~d} t \\
& \bar{\mu}_{N_{z}}:=\frac{1}{T} \int_{0}^{T} \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \mu\left(C_{i}(t), l_{i}(x(t))\right) \mathrm{d} t
\end{aligned}
$$

- Volume of the system

$$
\begin{equation*}
V=\int_{0}^{L} h(x) \mathrm{d} x \tag{6}
\end{equation*}
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- The computational chain:

$$
a \rightarrow h \rightarrow u, z_{b} \rightarrow z_{i} \rightarrow I_{i} \rightarrow C_{i} \rightarrow \bar{\mu}_{N_{z}} .
$$

Optimization Problem

- Optimization Problem: $\bar{\mu}_{N_{z}}(a):=\frac{1}{T} \int_{0}^{T} \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \mu\left(C_{i}, l_{i}(x ; a)\right) \mathrm{d} t$, where C_{i}, x, z_{i} satisfy

$$
\left\{\begin{array}{l}
\dot{C}_{i}=-\alpha\left(I_{i}(x ; a)\right) C_{i}+\beta\left(I_{i}(x ; a)\right) \\
\dot{x}=u(x ; a) \\
\dot{z}_{i}=w\left(x, z_{i} ; a\right) .
\end{array}\right.
$$

Optimization Problem

- Optimization Problem: $\bar{\mu}_{N_{z}}(a):=\frac{1}{T} \int_{0}^{T} \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \mu\left(C_{i}, l_{i}(x ; a)\right) \mathrm{d} t$, where C_{i}, x, z_{i} satisfy

$$
\left\{\begin{array}{l}
\dot{C}_{i}=-\alpha\left(I_{i}(x ; a)\right) C_{i}+\beta\left(I_{i}(x ; a)\right) \\
\dot{x}=u(x ; a) \\
\dot{z}_{i}=w\left(x, z_{i} ; a\right)
\end{array}\right.
$$

- Lagrangian

$$
\begin{aligned}
& \mathcal{L}\left(C_{i}, z_{i}, x, p_{1, i}, p_{2, i}, p_{3}, a\right):=\frac{1}{T} \int_{0}^{T} \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \mu\left(C_{i}, l_{i}(x ; a)\right) \mathrm{d} t \\
&-\int_{0}^{T} \sum_{i=1}^{N_{z}} p_{1, i}\left(\dot{C}_{i}+\alpha\left(I_{i}(x ; a)\right) C_{i}-\beta\left(l_{i}(x ; a)\right)\right) \mathrm{d} t \\
&-\int_{0}^{T} \sum_{i=1}^{N_{z}} p_{2, i}\left(\dot{z}_{i}-w\left(x, z_{i} ; a\right)\right) \mathrm{d} t-\int_{0}^{T} p_{3}(\dot{x}-u(x ; a)) \mathrm{d} t
\end{aligned}
$$

Optimization Problem

The gradient $\nabla \bar{\mu}_{N_{z}}(a)=\partial_{a} \mathcal{L}$ is given by

$$
\begin{aligned}
\partial_{a} \mathcal{L}=\frac{1}{T N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{T}\left(-\gamma^{\prime}\left(I_{i}(x ; a)\right) C_{i}+\zeta^{\prime}\left(I_{i}(x ; a)\right)\right) \partial_{a} I_{i}(x ; a) \mathrm{d} t \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{T} p_{1, i}\left(-\alpha^{\prime}\left(I_{i}(x ; a)\right) C_{i}+\beta^{\prime}\left(I_{i}(x ; a)\right)\right) \partial_{a} I_{i}(x ; a) \mathrm{d} t \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{T} p_{2, i} \partial_{a} w\left(x, z_{i} ; a\right) \mathrm{d} t+\int_{0}^{T} p_{3} \partial_{a} u(x ; a) \mathrm{d} t
\end{aligned}
$$

Numerical settings

Parameterization of h : Truncated Fourier

$$
\begin{equation*}
h(x)=a_{0}+\sum_{n=1}^{N} a_{n} \sin \left(2 n \pi \frac{x}{L}\right) \tag{7}
\end{equation*}
$$

Parameter to be optimized: Fourier coefficients $a:=\left[a_{1}, \ldots, a_{N}\right]$. We use this parameterization based on the following reasons :

- We consider a hydrodynamic regime where the solutions of the shallow water equations are smooth and hence the water depth can be approximated by (7).
- One has naturally $h(0)=h(L)$ under this parameterization, which means that we have accomplished one lap of the raceway pond.
- We assume a constant volume of the system V, which can be achieved by fixing a_{0}. Indeed, under this parameterization and using (6), one finds $V=a_{0} L$.

Convergence

We fix $N=5$ and take 100 random initial guesses of a. For N_{z} varying from 1 to 80 , we compute the average value of $\bar{\mu}_{N_{z}}$ for each N_{z}.

Figure: The value of $\bar{\mu}_{N_{z}}$ for $N_{z}=[1,80]$.

Optimal Topography

We take $N_{z}=40$. As an initial guess, we consider the flat topography, meaning that a is set to 0 (more details in [1]).

Figure: The optimal topography at the final iteration for $N=5$. The red thick curve represents the topography $\left(z_{b}\right)$, the blue thick curve represents the free surface (η).

Olivier Bernard，Liu－Di Lu，Jacques Sainte－Marie，and Julien Salomon． Shape optimization of a microalgal raceway to enhance productivity． Submitted paper，November 2020.

围 Bo－Ping Han．
A mechanistic model of algal photoinhibition induced by photodamage to photosystem－ii．
Journal of theoretical biology，214（4）：519－527，February 2002.
图 Pierre－Olivier Lamare，Nina Aguillon，Jacques Sainte－Marie，Jérôme Grenier，Hubert Bonnefond，and Olivier Bernard．
Gradient－based optimization of a rotating algal biofilm process． Automatica，105：80－88， 2019.

围 Victor Michel－Dansac，Christophe Berthon，Stéphane Clain，and Franọise Foucher．
A well－balanced scheme for the shallow－water equations with topography．

> Computers and Mathematics with Applications，72（3）：586－593， August 2016.

