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Introduction

@ Motivation: High potential on commercial applications, e.g.,
cosmetics, pharmaceuticals, food complements, wastewater
treatment, green energy, etc.

@ Raceway ponds

Figure: A typical raceway for cultivating microalgae. Notice the
paddle-wheel which mixes the culture suspension. Picture from INRA (ANR

Symbiose project) [1].
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1D Illustration

Figure: Representation of the hydrodynamic model.
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Saint-Venant Equations

@ 1D steady state Saint-Venant equations

Ox(hu) =0, (1)
h2
O (hu? + g?) = —gh0xzp. (2)
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Saint-Venant Equations

@ u, zp as a function of h

Qo
_ M Q
D= Toge M (2)

Qo, My € RT are two constants.

@ Froude number:

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)
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Saint-Venant Equations

@ u,zp as a function of h

Qo
_ M Q
D= Toge M (2)

Qo, My € RT are two constants.

@ Froude number:

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

@ Given a smooth topography z,, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition [6, Lemma
1].
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Lagrangian Trajectories

@ Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))
Oxu + 0,w = 0. (3)

o Integrating (3) from z, to z and using the kinematic condition at
bottom (w(x, zp) = u(x)0xzp) gives:

— z)u'(x).

_ Mo 3u2(x)
w(x,z) = ( e

2g
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Lagrangian Trajectories

@ Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))
Oxu + 0,w = 0. (3)

o Integrating (3) from z, to z and using the kinematic condition at
bottom (w(x, zp) = u(x)0xzp) gives:

= %—3U2(X)—z u'(x
wix.z) = (0 = 25 = 2l (),

@ The Lagrangian trajectory is characterized by the system

(56) = (wteiten)
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Lagrangian Trajectories

@ Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))
Oxu + 0,w = 0. (3)
o Integrating (3) from z, to z and using the kinematic condition at
bottom (w(x, zp) = u(x)0xzp) gives:
Mo 3u2(x)
g 28

@ The Lagrangian trajectory is characterized by the system

(56) = (wteiten)

@ A time free formulation of the Lagrangian trajectory:

2(x) = () + ’;Eg;(zw) ~(0). (4)

— z)u'(x).

w(x,z) = (
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Han model [4]

@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.

A= —olA+ B,
B=0clA- 8+ kC— kyolB, (5)
C = —k.C+ kqoIB.
@ A, B, C are the relative frequencies of the three possible states with
A+B+C=1.

Liu-Di LU ADCHEM 2021 Sunday June 13, 2021 6/14



Han model [4]

@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.

A= —clA+ &,
B=clA— 2 +kC—kqolB, (5)
C = —k.C+ kqolB.

@ A, B, C are the relative frequencies of the three possible states with

A+B+C=1
e Following [5], (5) can be reduced to:
- (o1)? (o1)?
= —(k k)C + k, .
( 9Tl +1 +k)C+ T ol +1
@ The net growth rate:
1-0
C,1):=kolA— R = kol - R
MC 1) = ko Tol+1 ’
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The Beer-Lambert law describes how light is attenuated with depth

I(x,2) = lsexp (= e(n(x) - 2)), (6)
where ¢ is the light extinction defined by:
€(X) = aoX + a1, (7)

with aq light extinction coefficient, a; background turbidity and X
biomass concentration.

Liu-Di LU ADCHEM 2021 Sunday June 13, 2021 7/14



@ The Beer-Lambert law describes how light is attenuated with depth

I(x,2) = Lexp (= e(n(x) — 2)). (6)
where ¢ is the light extinction defined by:
e(X) = agX + aq, (7)

with aq light extinction coefficient, a; background turbidity and X
biomass concentration.

@ Constant Volume

o the system is perfectly mixed so that biomass concentration X is
homogeneous,

o the growth process occurs at a much slower time scale than those of
hydrodynamics and is, as such, negligible for one lap over the raceway.
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@ The Beer-Lambert law describes how light is attenuated with depth

(x,2) = lsexp (= e(n(x) - 2)), (6)
where ¢ is the light extinction defined by:
€(X) = aoX + a1, (7)

with ag light extinction coefficient, ai; background turbidity and X
biomass concentration.

@ Constant Volume

Consequence

a1 and X constants over the considered time scale. Hence ¢ is also
constant and can be determined by
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@ The Beer-Lambert law describes how light is attenuated with depth

I(x,2) = lsexp (= e(n(x) - 2)), (6)
where ¢ is the light extinction defined by:
e(X) = apX + au, (7)

with ag light extinction coefficient, oy background turbidity and X
biomass concentration.

@ Variable Volume

Compensation condition: p(/5) =0 [2].
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@ The Beer-Lambert law describes how light is attenuated with depth

I(x,2) = lsexp (= e(n(x) - 2)), (6)
where ¢ is the light extinction defined by:
e(X) = aopX + au, (7)

with ag light extinction coefficient, oy background turbidity and X
biomass concentration.

@ Variable Volume

Consequence

A relation between biomass concentration (X) and average depth (h)

Yopt _ al

X=-t__— (8)
(%)
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Mixing devices [3]

@ An ideal rearrangement of trajectories: at each new lap, the algae at
depth z;(0) are entirely transferred into the position z;(0) when
passing through the mixing device.

@ We denote by P the set of permutation matrices of size N x N and
by G the associated set of permutations of N elements.

z
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Optimization Problem

@ Our goal: Topography zp.
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Optimization Problem

@ Our goal: Topography z.
@ Objective function: Average net growth rate

1(x)
/ / C(x,z2),1(x, z))dzdx,
zb(x

u( C,', /,')th.
0
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Optimization Problem

@ Our goal: Topography z.
@ Objective function: Average net growth rate

1(x)
/ / C(x,z2),1(x, z))dzdx,
zb(x

N, = i, Ir)hdx.
N, VNZ 2. ), M(C )hdx
@ Volume of the system
L
V= / h(x)dx. 9)
0
o Parameterize h by a vector a := [a1,--- ,an] € RV.
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Optimization Problem

@ Our goal: Topography z.
@ Objective function: Average net growth rate

1(x)
/ / C(x,z2),1(x, z))dzdx,
zb(x

N, = VA, 2 ,u(C,-, li)hdx.
@ Volume of the system
L
V= / h(x)dx. 9)
0
o Parameterize h by a vector a := [a1,--- ,an] € RV.

@ The computational chain:

a—>h—>z,-—>l,-—>C,-—>/]NZ.
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@ Optimization Problem:

N, L
1
.y P
max ma a) = max ma E C:, I;(a))h(a)dx,
PG%aERﬁuNZ( ) PE%aeRﬁ Vi z ,._1/0 M( ’ l( )) ( ) *

where CF satisfy

¢’ = (o lh@) ¢ + 8 (1)) 2

Qo ’
PCP(L) = cP(0).
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@ Optimization Problem:

max max a)

P P
= (G, 1i( d
PEP acRN MNZ( PEP acRN N Z / ( ) %

where C,-P satisfy

/ h(a)
' = (~a(h(a) ¢ +B(i(2))) &
PCP(L) = cP(0).
o Lagrangian
£l a.00) = Z / H@))CP + C((2))) ha)dx

_,-Z_Z;/o p,-P(C,-P/ +2 /,-(a))C,-;O— f(li(a)) h(a))dx.
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@ Optimization Problem:

(cF, Ii(a d
R i (2) = 12K R i, Z/ el

where CF satisfy

¢’ = (—a(i(2)) €F + B (i) "o
PCP(L) = cP(0).
o Lagrangian multiplier

' = pfalh(a) ) - 1)),

pP(L) = p"(0)P
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@ Optimization Problem:

(cF, Ii(a d
e g () = B2 R i, Z/ el

where CF satisfy

CiP/ — (—a (I,(a)) C’.P + /8 (I,(a))) h((;;),

PCP(L) = cP(0).

e The gradient Vjip,(a) = 0,L is given by

P ! T AYalx .
9.0 = Z/ C +C( )—f—p,P_a (//)%0‘1‘5(/1)),783,[(1)(
N,
: () CP+¢h) | p—all)CF +8(h)
! ; /0 ( VN, TP Qo >8ahdx.
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Variable volume

@ Volume related parameter ap as the average depth of the raceway
system:

-1t 4
ao ::h:L/ h(x)dx:T. (10)
0

New parameter § = [ag, a1, .. ., an].
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Variable volume

@ Volume related parameter ap as the average depth of the raceway
system:

L
=h= i/o h(x)dx = % (10)

New parameter § = [ag, a1, .. ., an].
@ Optimization Problem:

M0 (3) = i, (3) Xh(3) = Yo 120 2‘;"")2 / (CP. H(3)) h(3)dx

where C,-P satisfy
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Variable volume

@ Volume related parameter ap as the average depth of the raceway
system:

-1t 4
:h:L/o h(x)dx:T. (10)

New parameter § = [ag, a1, .. ., an].
@ Optimization Problem:

M0 (3) = i, (3) Xh(3) = Yo 120 2‘;"")2 / (CP. H(3)) h(3)dx

where C,-P satisfy

cf' = (~a (@) €+ 8(E)) %
PCP(L) = cP(0).
o Extra element in gradient: VI, (8) = [01,L£, 02L].

Liu-Di LU ADCHEM 2021 Sunday June 13, 2021



Numerical settings

Parameterization of h: Truncated Fourier

N
X
h(x) = i -).
(x) ao—l—Za,,sm(2n7rL) (11)
n=1
Parameter to be optimized: Fourier coefficients a := [a1,. .., ay]. We use

this parameterization based on the following reasons :

@ We consider a hydrodynamic regime where the solutions of the
shallow water equations are smooth and hence the water depth can
be approximated by (11).

@ One has naturally h(0) = h(L) under this parameterization, which
means that we have accomplished one lap of the raceway pond.

@ We assume a constant volume of the system V/, which can be
achieved by fixing ag. Indeed, under this parameterization and
using (9), one finds V = apL.
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Optimal Topography (Constant volume)

We take N, = 7. As an initial guess, we consider the flat topography,
meaning that a is set to 0.

P100 —_

max —

_ O O OO oo
OO OO OO o -
O HrH O OOOoOOo
O OO OO Oo
OO OOOoOOo
el elNeNeoll S eNe]
O OO+ O OO
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Optimal Topography (Constant volume)

We take N, = 7. As an initial guess, we consider the flat topography,
meaning that a is set to 0.

Tter=1, i =1.079, log,,(||V/il|) =-5.7807

0 20 40 60 80 100

T
(=]
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Optimal Topography (Variable volume)

We keep N, = 7. As an initial guess, we consider the flat topography with
ap = 0.4.

100 __
Pmax -

_ O OO OO Oo
OH OO O oo
OO +Hr OOOoOOo
OO OO OO+
(el el oNeNe]
OO oo ok+ro
O O OO+ OO
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Optimal Topography (Variable volume)

We keep N, = 7. As an initial guess, we consider the flat topography with
ag = 0.4.

oq Toer=1, T =9.9158, log,(|| V) =-3.3017

20 40 60 80 100

T
(=]
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