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Introduction

@ Who? Microalgae: photosynthetic organisms

o Why? Biotechnological potential: colorants, antioxydants, cosmetics,
pharmaceuticals, food complements, green energy, etc

@ Where?

e All aquatic environments
o Industrial cultivation: photobioreactors
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Figure: Chemostats

Liu-Di LU CAN-J 2020 December 3, 2020 3/28



Introduction

Figure: Rotating Algal Biofilm
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Introduction

Figure: Raceways
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Overview

e Raceway Modeling
@ Hydrodynamic model
@ Light intensity
@ Biologic model
@ Mixing device
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Shallow Water Equations

@ 1D steady state shallow water equation

Ox(hu) =0, (1)
h2
O +g7) = ~ghdezs, @

@ h water elevation, u horizontal averaged velocity, g gravitational
acceleration, z, topography.

@ Free surface 1 := h + zp, averaged discharge Q = hu.
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Shallow Water Equations

Figure: Representation of the hydrodynamic model.
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Shallow Water Equations

@ 1D steady state shallow water equation

Ox(hu) = 0, (1)
h2
O (hu? + g?) = —gh0yxzp. (2)
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Shallow Water Equations

@ u,zp as a function of h

Qo
_ M Q
D= Toge M (2)

Qo, My € RT are two constants.
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Shallow Water Equations

@ u,zp as a function of h

Qo
_ M Q
D= Toge M (2)

Qo, My € RT are two constants.

@ Froude number:

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

@ Given a smooth topography z,, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition [5, Lemma
1]
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Lagrangian Trajectories

e Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))

Oxu + O;w = 0. (3)
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Lagrangian Trajectories

e Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))
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@ Integrating (3) from z, to z and using the kinematic condition at
bottom (w(x, zp) = u(x)0xzp) gives:
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Lagrangian Trajectories

e Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))
Oxu + O;w = 0. (3)
@ Integrating (3) from z, to z and using the kinematic condition at

bottom (w(x, zp) = u(x)0xzp) gives:

My 3u3(x) ,
w(x,z) = (?0 — = 2)u' (). (4)

@ The Lagrangian trajectory is characterized by the system

(?8) N <W(>L<IE:)(,tz)zt))> ' (5)
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Lagrangian Trajectories

e Incompressibility of the flow: V -u = 0 with u = (u(x), w(x, z))
Oxu + O;w = 0. (3)

@ Integrating (3) from z, to z and using the kinematic condition at
bottom (w(x, zp) = u(x)0xzp) gives:

My 3u3(x) ,
wix,2) = (7 = =5 = = (%), (4)
@ The Lagrangian trajectory is characterized by the system
x(t) _ [ u(x(t))
() = (tirten) )
@ A time-free reformulation for z as
20) = 1) + 23 (2(0) = 10) (©)
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Beer-Lambert Law

@ The Beer-Lambert law describes how light is attenuated with depth:

I(x,z) = Isexp ( —e(n(x) — z)) (7)

Here ¢ is the light extinction coefficient.

Liu-Di LU CAN-J 2020 December 3, 2020 8/



Beer-Lambert Law

@ The Beer-Lambert law describes how light is attenuated with depth:

I(x,z) = Isexp ( —e(n(x) — z)) (7)

Here ¢ is the light extinction coefficient.

@ Replacing z by (6):

I(x,2) = s exp ( —e=2(n(0) — 2(0))). (8)
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Beer-Lambert Law

@ The Beer-Lambert law describes how light is attenuated with depth:

I(x,z) = Isexp ( —e(n(x) — z)) (7)

Here ¢ is the light extinction coefficient.

@ Replacing z by (6):

e For a given position z(0) = n(0) — gh(0) with g € [0, 1], we have

I(x,z) = Isexp ( - ezg;qh(O)) = lsexp < - 6qh(x)>
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@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.
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Han model

Photon [/ Photon /

@4 U/ —> kdal_}

Figure: Scheme of the Han model, representing the probability of state transition,
as a function of the photon flux density.
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@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.

A= —clA+E
B=0clA— 2 +kC—kqolB, (9)
C = —kC+ kqolB.
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@ A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C: inhibited if several photons have been absorbed simultaneously.

A= —clA+E
B=0clA— 2 +kC—kqolB, (9)
C = —kC+ kqolB.

@ A, B, C are the relative frequencies of the three possible states

A+B+C=1.
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@ Using a fast-slow approximation and the singular perturbation
theory(see [4]), this system can be reduced to one single evolution

equation: _
C=—a(l)C+ p(I),

where 1)?
a(l) = A1) + ke, with B(I) = deT((J_U/ J)r I
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@ Using a fast-slow approximation and the singular perturbation
theory(see [4]), this system can be reduced to one single evolution

equation: _
C=—a)C+ (1),
where
(o1)?

a(l)y = B(1) + kr,with 5(1) = deTO’/ 1

@ The net specific growth rate:
u(C, 1) = =(1)C + (1),

where

kol
¢ =) = R, with 5(1) = 2.
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@ A time-free reformulation of C

o= o€ A
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@ A time-free reformulation of C

o —alhC+ B()
. .
@ The average net specific growth rate over the domain is defined by

e R TN
== — w(C(x,z),1(x,z))dzdx.
LJo h(x) Jz00
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@ A time-free reformulation of C
o _ —alC+5()
. .
@ The average net specific growth rate over the domain is defined by

e R TN
= - — w(C(x, z),I(x, z))dzdx.
LJo h(x) Jz00
@ In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for N, cells:
1

z(0) = (0) = “ 2h(0), i=1,...,N,.
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@ A time-free reformulation of C

—a(l)C + A1)

u

C =

@ The average net specific growth rate over the domain is defined by

e R TN
== — w(C(x,z),1(x,z))dzdx.
LJo h(x) Jz00

@ In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for N, cells:

1

z(0) = n(0) — i&;hm) i=1,...,N,.

@ The semi-discrete average net specific growth rate:

x), 1i(x))dx (10)

pa = LN
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o Paddle wheel:
e set this hydrodynamic-biologic coupling system in motion,
e modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.
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o Paddle wheel:

e set this hydrodynamic-biologic coupling system in motion,
e modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.
@ An ideal rearrangement of trajectories: at each new lap, the algae at
depth z;(0) are entirely transferred into the position z;(0) when
passing through the mixing device.

@ We denote by P the set of permutation matrices of size N, x N, and
by Gy, the associated set of permutations of N, elements.
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Figure: Representation of the hydrodynamic model with an example of mixing
device (P). Here, P corresponds to the cyclic permutation o = (1 2 3 4).
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o Paddle wheel:
e set this hydrodynamic-biologic coupling system in motion,
e modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.
@ An ideal rearrangement of trajectories: at each new lap, the algae at
depth z;(0) are entirely transferred into the position z;(0) when
passing through the mixing device.

@ We denote by P the set of permutation matrices of size N, x N, and
by Gy, the associated set of permutations of N, elements.

The average growth rate of K laps equals to one lap (see [2]).
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Overview

© Optimization problem
@ No permutation
o With a mixing device
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Optimization problem

@ Our goal:
o Topography zp,
e Mixing strategy P.
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Optimization problem
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e Topography zp,
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Optimization problem

@ Our goal:
e Topography zp,
e Mixing strategy P.

@ Volume of the system
L
V = / h(x)dx.
0

o Parameterize h by a vector a := [a1,--- ,ay] € RM.
@ For instance: a truncated Fourier series

M
h(x,a) = ap + Z am sin(2m7r%), (11)

m=1
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Optimization problem

@ Our goal:
e Topography zp,
e Mixing strategy P.

@ Volume of the system
L
V = / h(x)dx.
0

o Parameterize h by a vector a := [a1,--- ,ay] € RM.
@ For instance: a truncated Fourier series

M
h(x,a) = ap + Z am sin(2m7r%), (11)

m=1

@ The computational chain:

a—~h—uz,—z—1—C— jia.
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No permutation

@ Objective function:

1 Nz p
ia(@) = 7 2 | @G+ cl(aa,
Z =1
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No permutation

@ Objective function:

1 Nz p
ia(@) = 7 2 | @G+ cl(aa,
Z =1

@ Constraints:

,a(li(@) - Bi(a)
¢+ = (12)
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No permutation

@ Objective function:

1 Nz p
ia(@) = 7 2 | @G+ cl(aa,
Z =1

@ Constraints:

a(h(a)) ¢, _ BU(a) )
u(a) u(a)

@ The optimization problem reads:
Find a* solving the maximization problem:

G+

max ual(a).
ae]RNMA( )
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No permutation

@ Lagrangian:

L(C.pa) = Ty Z/ 1 ((a)) G+ C(1(a))dx

. (@G~ (=),
Z/ pi(C/ e )d
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No permutation

@ Lagrangian:

£(C.p3) = Z/ (@) + C((a))dx

. (@G~ (=),
Z/ pi(C/ e )d

@ p; the Lagrange multipliers associated with the constraint (12).

e, L= p; — P:a(ul((a;)) o (1i(a))
dcyL = pi(L).
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No permutation

@ Lagrangian:

£(C.p3) = Z/ (@) + C((a))dx

. (@G~ (=),
Z/ pi(C/ e )d

@ p; the Lagrange multipliers associated with the constraint (12).

e, L= p; — P:a(ul((a;)) o (1i(a))
dcyL = pi(L).

o If C is periodic (i.e. C(0) = C(L)), then d¢,(1)L = pi(L) — pi(0).
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No permutation

@ The gradient Vjia(a) is obtained by

Viia(a) = 0,L,
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No permutation

@ The gradient Vjia(a) is obtained by
Viia(a) = 0,L,

@ where

0L = LNZZ /0 (— ()G + C'(1(a)) ) 2ali(a)dx

G+ B,
+Z [ D

))Ci + B(li(a))
_Z/ pi— u2 @) 0 u(a)dx.
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No permutation

e The gradient V[ia(a) is obtained by

Viia(a) = 9.L,

Under the parameterization (11), if C is periodic, then Viia(0) =0

(see [1]).
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No permutation

e The gradient V[ia(a) is obtained by

Viia(a) = 9.L,

Under the parameterization (11), if C is periodic, then Viia(0) =0

(see [1]).

@ Numerically, the flat topography is the optimum.
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With a mixing device

@ Objective function:
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With a mixing device

@ Objective function:

N, L
i (a) = L —~(l;(a))CF i(a))dx
CRET3 | =@ + cana,

o Constraint: , 1i(2)) Bi(a))
P allila P —_ i\
G+ G =50 (13)
PCP(L) = C7(0),
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With a mixing device

@ Objective function:

o Constraint: / li(a)) B(1(a))
Pl all(a) ~p  _ BUi(a
Ci + u(a) CI u(a (13)
PCP(L) = €7(0).

@ Our optimization problem reads:
Find a permutation matrix Pmax and a parameter vector a* solving
the maximization problem:
—P
max max a).
PP oM fin(a)

17 /28
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With a mixing device

o Lagrangian:

£P(Cp.a)= i / C (@) + C(h{a))dx
LN, — Jo !

N, L P
B PP CV(Ii(a))C,' — B(hi(a)) X
D (e G e
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With a mixing device

o Lagrangian:
1 &t
P _ A P .
LCpa) = 2 | @I + (e

N,
B /OLP;»(CP/ 4 oli@)CP —Blh(a)),
i=1

’ u(a)

° p,-P is the Lagrange multiplier associated with the constraint (13).

pf' — pfellal — L q(li(a)) =0
pP(L) - pP(0)P =0.
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With a mixing device

The gradient Vjik (a) is obtained from

where

V,L_LZ(B) = aa‘cpa

~IN, Z/ li(a))CF + ¢'(Ii(a )))&,,I,-(a)dx
N L P /
p—a/((2)C" + B'(1i(@) |
+;/ Pi 2() Bali(a)d
N, L1 p
_ p—a(l(@)C +B(I(@) ,
;/0 Pi u2(a) 0, (a)d .

Liu-Di LU
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Overview

@ Numerical Experiments
@ Numerical Settings
@ Numerical results
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Numerical Settings

@ Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc
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Numerical Settings

@ Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

@ Numerical solvers: Euler Explicit, Heun, etc

@ The spatial increment: Ax = 0.01m

o Light intensity at free surface: /s = 2000 umol - m~2s~! (which

corresponds to a maximum value during summer in the south of
France).
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Numerical Settings

@ Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

@ Numerical solvers: Euler Explicit, Heun, etc
@ The spatial increment: Ax = 0.01m

o Light intensity at free surface: /s = 2000 umol - m~2s~! (which
corresponds to a maximum value during summer in the south of
France).

@ Assume that only g percent of s is available at the bottom g € [0,1]

e =(1/h(0,a))In(1/q).
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Parameter Settings

@ Standard settings for a raceway pond

Length of one lap of the raceway L = 100 m

o Averaged discharge Qy = 0.04m? - s~1

o Initial position of the topography z,(0) = —0.4m
o First Fourier coefficient ap(= h(0,a)) = 0.4

@ The free-fall acceleration is set to be g = 9.81m - s~2.
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Parameter Settings

@ Standard settings for a raceway pond

Length of one lap of the raceway L = 100 m

o Averaged discharge Qy = 0.04m? - s~1

o Initial position of the topography z,(0) = —0.4m
o First Fourier coefficient ap(= h(0,a)) = 0.4

@ The free-fall acceleration is set to be g = 9.81m - s~2.

@ All the numerical parameters values for Han's model are taken
from [3] and given in table 1.

Table: Parameter values for Han Model

k| 6.810°3 s 1

kg | 2.99 10~ -

T 0.25 S

o 0.047 m? - (p mol) ™1
k | 8710°° -

R |1.389 107 s 1
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Convergence of N,

For 100 random a chosen, the average value of the functional jia

1

**%*W
s k¥
*

*
*

*

0.4 :
10° 10t 10
N,

Figure: The value of the functional fia for N, = [1,100].
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The initial condition Cp = 0.1

0.1
0
uE————————
g
saf——— |
B M
ou M
—— Bottom
-05 : : : :
0 20 40 60 80 100

Length (m)

Figure: The optimal topography for Co = 0.1. The red thick line represents the
topography (zp), the blue thick line represents the free surface (n), and all the
other curves between represent the different trajectories.
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Optimal topography for a given permutation

The permutation: 7 = (1 N;)(2 N, —1)(3 N, —2)---,

State C

0 50 100 150 200
Length (m)

Figure: The evolution of the photo-inhibition state C for two laps.
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Optimal topography for a given permutation

The permutation: 7= (1 N;)(2 N, -1)(3 N, —2)---,
01

0

-0.1

-0.2

Depth (m)

L

-0.3

-04

—— Surface
—— Bottom

- 0. 5 1 1 1
0 20 40 60 80 100

Length (m)

The increase in the optimal value of the objective function fin compared
to a flat topography is around 0.228%, and compare to a flat topography
and non permutation case is around 0.277%.
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Optimal matrix and optimal topography

@ Test N,! cases.
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Optimal matrix and optimal topography

@ Test N,! cases.

@ Set N, =7, the optimal matrix:

Pmax:

_H O O OO OO
O OO OO o+
O HrH O OO OoOOo
(el elNelNeolNell o]
OO +Hr O OOoOOo
(ol elolNoll SN e N
OO O+ O OO
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Optimal matrix and optimal topography

Set N, =7, the optimal topography:
0.1

0

g -
=02t ]
B,
o \/WJ\/_\
A

-0.3 \/M/\
4R T

—— Bottom

-0.5

0 20 40 60 80 100
Length (m)

Compare to a flat topography with this Pnay, we have a gain of 0.224%,
and a gain of 1.511% compare to the case a flat topography without
permutation (i.e. Zp,).
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Overview

© Conclusion and Perspective
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Conclusion

@ Theoretical results

o A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation
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e A non flat topography slightly enhances the average growth rate

Liu-Di LU CAN-J 2020 December 3, 2020 28/28



Conclusion

@ Theoretical results
o A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation
e Periodicity in the permutation case is actually one

@ Numerical results
o Flat topography is optimal solution in the case C is periodic and no

permutation
e A non flat topography slightly enhances the average growth rate
e No trivial permutation strategies can be found to enhance the average

growth rate

Liu-Di LU CAN-J 2020 December 3, 2020 28/28




Conclusion

@ Theoretical results
o A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation
e Periodicity in the permutation case is actually one
@ Numerical results
o Flat topography is optimal solution in the case C is periodic and no

permutation
e A non flat topography slightly enhances the average growth rate
e No trivial permutation strategies can be found to enhance the average

growth rate
@ Perspectives
e More general matrix P

Liu-Di LU CAN-J 2020 December 3, 2020 28/28




Conclusion

@ Theoretical results
o A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation
e Periodicity in the permutation case is actually one

@ Numerical results
o Flat topography is optimal solution in the case C is periodic and no

permutation
e A non flat topography slightly enhances the average growth rate
e No trivial permutation strategies can be found to enhance the average

growth rate
@ Perspectives

e More general matrix P
e What happens in the case torrential

Liu-Di LU CAN-J 2020 December 3, 2020 28/28




Conclusion

@ Theoretical results
o A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation
e Periodicity in the permutation case is actually one

@ Numerical results
o Flat topography is optimal solution in the case C is periodic and no

permutation
e A non flat topography slightly enhances the average growth rate
e No trivial permutation strategies can be found to enhance the average

growth rate
@ Perspectives

e More general matrix P
e What happens in the case torrential
e An extra diffusion term in Shallow water equations or a Brownian in

Lagrangian trajectories
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