Optimization problem for a microalgal raceway pond to enhance productivity

Olivier Bernard, Liu-Di LU, Jacques Sainte-Marie, Julien Salomon

December 3, 2020

- 2 Raceway Modeling
- 3 Optimization problem
- 4 Numerical Experiments
- 5 Conclusion and Perspective

• Who?

Figure: Microalgae

- Who? Microalgae
- Why?

- Who? Microalgae
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc

- Who? Microalgae
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?
 - All aquatic environments
 - Industrial cultivation: photobioreactors

Figure: Chemostats

Liu-Di LU

Figure: Rotating Algal Biofilm

Figure: Raceways

Overview

Introduction

2 Raceway Modeling

- Hydrodynamic model
- Light intensity
- Biologic model
- Mixing device

3 Optimization problem

- 4 Numerical Experiments
- 5 Conclusion and Perspective

• 1D steady state shallow water equation

$$\partial_{x}(hu) = 0, \qquad (1)$$

$$\partial_{x}(hu^{2} + g\frac{h^{2}}{2}) = -gh\partial_{x}z_{b}. \qquad (2)$$

- h water elevation, u horizontal averaged velocity, g gravitational acceleration, z_b topography.
- Free surface $\eta := h + z_b$, averaged discharge Q = hu.

Figure: Representation of the hydrodynamic model.

```
Liu-Di LU
```

• 1D steady state shallow water equation

$$\partial_{\mathsf{x}}(hu) = 0, \tag{1}$$

$$\partial_x(hu^2 + g\frac{h^2}{2}) = -gh\partial_x z_b.$$
 (2)

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)
 $z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$
(2)

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)
 $z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$
(2)

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial) Fr > 1: supercritical case (i.e. the flow regime is torrential)

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$$
(2)

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial)

- Fr > 1: supercritical case (i.e. the flow regime is torrential)
- Given a smooth topography z_b, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [5, Lemma 1]

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

Integrating (3) from z_b to z and using the kinematic condition at bottom (w(x, z_b) = u(x)∂_xz_b) gives:

$$w(x,z) = \left(\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z\right)u'(x). \tag{4}$$

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

Integrating (3) from z_b to z and using the kinematic condition at bottom (w(x, z_b) = u(x)∂_xz_b) gives:

$$w(x,z) = \left(\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z\right)u'(x). \tag{4}$$

• The Lagrangian trajectory is characterized by the system

$$\begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} u(x(t)) \\ w(x(t), z(t)) \end{pmatrix}.$$
 (5)

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

Integrating (3) from z_b to z and using the kinematic condition at bottom (w(x, z_b) = u(x)∂_xz_b) gives:

$$w(x,z) = \left(\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z\right)u'(x). \tag{4}$$

• The Lagrangian trajectory is characterized by the system

$$\begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} u(x(t)) \\ w(x(t), z(t)) \end{pmatrix}.$$
 (5)

• A time-free reformulation for z as

$$z(x) = \eta(x) + \frac{u(0)}{u(x)}(z(0) - \eta(0)),$$
(6)

Beer-Lambert Law

• The Beer-Lambert law describes how light is attenuated with depth:

$$I(x,z) = I_s \exp\left(-\varepsilon(\eta(x) - z)\right). \tag{7}$$

Here ε is the light extinction coefficient.

Beer-Lambert Law

• The Beer-Lambert law describes how light is attenuated with depth:

$$I(x,z) = I_s \exp\left(-\varepsilon(\eta(x)-z)\right). \tag{7}$$

Here ε is the light extinction coefficient.

• Replacing z by (6):

$$I(x,z) = I_s \exp\left(-\varepsilon \frac{u(0)}{u(x)}(\eta(0) - z(0))\right).$$
(8)

• The Beer-Lambert law describes how light is attenuated with depth:

$$I(x,z) = I_{s} \exp\left(-\varepsilon(\eta(x)-z)\right). \tag{7}$$

Here ε is the light extinction coefficient.

• Replacing z by (6):

$$I(x,z) = I_s \exp\left(-\varepsilon \frac{u(0)}{u(x)}(\eta(0) - z(0))\right).$$
(8)

• For a given position $z(0) = \eta(0) - qh(0)$ with $q \in [0,1]$, we have

$$I(x,z) = I_s \exp\left(-\varepsilon \frac{u(0)}{u(x)}qh(0)\right) = I_s \exp\left(-\varepsilon qh(x)\right)$$

- A: open and ready to harvest a photon,
 - B: closed while processing the absorbed photon energy,
 - C: inhibited if several photons have been absorbed simultaneously.

Figure: Scheme of the Han model, representing the probability of state transition, as a function of the photon flux density.

- A: open and ready to harvest a photon,
 - B: closed while processing the absorbed photon energy,
 - C: inhibited if several photons have been absorbed simultaneously.

۲

$$\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau}, \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB, \\ \dot{C} = -k_r C + k_d \sigma IB. \end{cases}$$
(9)

۲

- A: open and ready to harvest a photon,
 - B: closed while processing the absorbed photon energy,
 - C: inhibited if several photons have been absorbed simultaneously.

 $\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau}, \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB, \\ \dot{C} = -k_r C + k_d \sigma IB. \end{cases}$

• A, B, C are the relative frequencies of the three possible states

$$A+B+C=1.$$

(9)

• Using a fast-slow approximation and the singular perturbation theory(see [4]), this system can be reduced to one single evolution equation:

$$\dot{C} = -\alpha(I)C + \beta(I),$$

where

$$\alpha(I) = \beta(I) + k_r, \text{ with } \beta(I) = k_d \tau \frac{(\sigma I)^2}{\tau \sigma I + 1}.$$

• Using a fast-slow approximation and the singular perturbation theory(see [4]), this system can be reduced to one single evolution equation:

$$\dot{C} = -\alpha(I)C + \beta(I),$$

where

$$\alpha(I) = \beta(I) + k_r, \text{ with } \beta(I) = k_d \tau \frac{(\sigma I)^2}{\tau \sigma I + 1}.$$

• The net specific growth rate:

$$\mu(C,I) := -\gamma(I)C + \zeta(I),$$

where

$$\zeta(I) = \gamma(I) - R$$
, with $\gamma(I) = \frac{k\sigma I}{\tau\sigma I + 1}$.

• A time-free reformulation of ${\boldsymbol{C}}$

$$C'=\frac{-\alpha(I)C+\beta(I)}{u}.$$

• A time-free reformulation of C

$$C'=rac{-lpha(I)C+eta(I)}{u}.$$

• The average net specific growth rate over the domain is defined by

$$\bar{\mu} := \frac{1}{L} \int_0^L \frac{1}{h(x)} \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx.$$

• A time-free reformulation of C

$$C'=\frac{-\alpha(I)C+\beta(I)}{u}.$$

• The average net specific growth rate over the domain is defined by

$$\bar{\mu} := \frac{1}{L} \int_0^L \frac{1}{h(x)} \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx.$$

• In order to compute numerically, consider a uniform vertical discretization of the initial position z(0) for N_z cells:

$$z_i(0) = \eta(0) - \frac{i - \frac{1}{2}}{N_z}h(0), \quad i = 1, \dots, N_z.$$

• A time-free reformulation of C

$$C'=\frac{-\alpha(I)C+\beta(I)}{u}.$$

• The average net specific growth rate over the domain is defined by

$$\bar{\mu} := \frac{1}{L} \int_0^L \frac{1}{h(x)} \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx.$$

• In order to compute numerically, consider a uniform vertical discretization of the initial position z(0) for N_z cells:

$$z_i(0) = \eta(0) - \frac{i - \frac{1}{2}}{N_z}h(0), \quad i = 1, \dots, N_z.$$

• The semi-discrete average net specific growth rate:

$$\bar{\mu}_{\Delta} = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i(x), I_i(x)) dx.$$
 (10)

• Paddle wheel:

- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
• Paddle wheel:

- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.

• Paddle wheel:

- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_z \times N_z$ and by \mathfrak{S}_{N_z} the associated set of permutations of N_z elements.

Mixing device

Figure: Representation of the hydrodynamic model with an example of mixing device (P). Here, P corresponds to the cyclic permutation $\sigma = (1 \ 2 \ 3 \ 4)$.

- Paddle wheel:
 - set this hydrodynamic-biologic coupling system in motion,
 - modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_z \times N_z$ and by \mathfrak{S}_{N_z} the associated set of permutations of N_z elements.

Theorem

The average growth rate of K laps equals to one lap (see [2]).

Introduction

2 Raceway Modeling

3 Optimization problem

- No permutation
- With a mixing device

Numerical Experiments

5 Conclusion and Perspective

- Our goal:
 - Topography z_b,
 - Mixing strategy P.

- Our goal:
 - Topography z_b,
 - Mixing strategy P.
- Volume of the system

$$V=\int_0^L h(x)\mathsf{d} x.$$

- Our goal:
 - Topography z_b,
 - Mixing strategy P.
- Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

• Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.

- Our goal:
 - Topography z_b,
 - Mixing strategy P.
- Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

- Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.
- For instance: a truncated Fourier series

$$h(x,a) = a_0 + \sum_{m=1}^{M} a_m \sin(2m\pi \frac{x}{L}),$$
 (11)

- Our goal:
 - Topography z_b,
 - Mixing strategy P.
- Volume of the system

$$V=\int_0^L h(x)\mathrm{d}x.$$

- Parameterize h by a vector $a := [a_1, \cdots, a_M] \in \mathbb{R}^M$.
- For instance: a truncated Fourier series

$$h(x,a) = a_0 + \sum_{m=1}^{M} a_m \sin(2m\pi \frac{x}{L}),$$
 (11)

The computational chain:

$$a \rightarrow h \rightarrow u, z_b \rightarrow z \rightarrow I \rightarrow C \rightarrow \bar{\mu}_{\Delta}.$$

• Objective function:

$$\bar{\mu}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a))C_i + \zeta(I_i(a))dx,$$

• Objective function:

$$\bar{\mu}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a))C_i + \zeta(I_i(a))dx,$$

• Constraints:

$$C'_i + \frac{\alpha(I_i(a))}{u(a)}C_i = \frac{\beta(I_i(a))}{u(a)}.$$
 (12)

• Objective function:

$$\bar{\mu}_{\Delta}(\boldsymbol{a}) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(\boldsymbol{a}))C_i + \zeta(I_i(\boldsymbol{a}))d\boldsymbol{x},$$

• Constraints:

$$C'_i + \frac{\alpha(I_i(a))}{u(a)}C_i = \frac{\beta(I_i(a))}{u(a)}.$$
 (12)

• The optimization problem reads: Find a* solving the maximization problem:

$$\max_{a\in\mathbb{R}^N}\bar{\mu}_{\Delta}(a).$$

• Lagrangian:

$$\mathcal{L}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a))C_i + \zeta(I_i(a))dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i (C_i' + \frac{\alpha(I_i(a))C_i - \beta(I_i(a))}{u(a)})dx$$

• Lagrangian:

$$\mathcal{L}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a))C_i + \zeta(I_i(a))dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i (C_i' + \frac{\alpha(I_i(a))C_i - \beta(I_i(a))}{u(a)})dx$$

• p_i the Lagrange multipliers associated with the constraint (12).

$$\begin{cases} \partial_{C_i} \mathcal{L} = p'_i - p_i \frac{\alpha(I_i(a))}{u(a)} - \frac{1}{LN_z} \gamma(I_i(a)) \\ \partial_{C_i(L)} \mathcal{L} = p_i(L). \end{cases}$$

• Lagrangian:

$$\mathcal{L}(C, p, a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a))C_i + \zeta(I_i(a))dx$$
$$-\sum_{i=1}^{N_z} \int_0^L p_i (C_i' + \frac{\alpha(I_i(a))C_i - \beta(I_i(a))}{u(a)})dx$$

• p_i the Lagrange multipliers associated with the constraint (12).

$$\begin{cases} \partial_{C_i} \mathcal{L} = p'_i - p_i \frac{\alpha(I_i(a))}{u(a)} - \frac{1}{LN_z} \gamma(I_i(a)) \\ \partial_{C_i(L)} \mathcal{L} = p_i(L). \end{cases}$$

• If C is periodic (i.e. C(0) = C(L)), then $\partial_{C_i(L)} \mathcal{L} = p_i(L) - p_i(0)$.

• The gradient $abla ar{\mu}_{\Delta}(a)$ is obtained by

 $\nabla \bar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$

• The gradient $abla ar{\mu}_{\Delta}(a)$ is obtained by

$$\nabla \bar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$$

where

$$\partial_{a}\mathcal{L} = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \left(-\gamma'(I_{i}(a))C_{i} + \zeta'(I_{i}(a)) \right) \partial_{a}I_{i}(a) dx$$
$$+ \sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha'(I_{i}(a))C_{i} + \beta'(I_{i}(a))}{u(a)} \partial_{a}I_{i}(a) dx$$
$$- \sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha(I_{i}(a))C_{i} + \beta(I_{i}(a))}{u^{2}(a)} \partial_{a}u(a) dx.$$

• The gradient $abla ar{\mu}_\Delta(a)$ is obtained by

$$abla ar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$$

Theorem

Under the parameterization (11), if C is periodic, then $\nabla \bar{\mu}_{\Delta}(0) = 0$ (see [1]).

• The gradient $abla ar{\mu}_\Delta(a)$ is obtained by

$$abla ar{\mu}_{\Delta}(a) = \partial_a \mathcal{L},$$

Theorem

Under the parameterization (11), if C is periodic, then $\nabla \bar{\mu}_{\Delta}(0) = 0$ (see [1]).

• Numerically, the flat topography is the optimum.

• Objective function:

$$\bar{\mu}_{\Delta}^{P}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a))C_i^{P} + \zeta(I_i(a))dx,$$

• Objective function:

$$\bar{\mu}^{P}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a)) C_i^P + \zeta(I_i(a)) \mathrm{d}x,$$

• Constraint:

$$\begin{cases} C_i^{P'} + \frac{\alpha(I_i(a))}{u(a)} C_i^{P} &= \frac{\beta(I_i(a))}{u(a)} \\ PC^P(L) &= C^P(0). \end{cases}$$

(13)

• Objective function:

$$\bar{\mu}^{P}_{\Delta}(a) = \frac{1}{LN_z} \sum_{i=1}^{N_z} \int_0^L -\gamma(I_i(a)) C_i^P + \zeta(I_i(a)) \mathrm{d}x,$$

• Constraint:

$$\begin{cases} C_i^{P'} + \frac{\alpha(l_i(a))}{u(a)} C_i^{P} &= \frac{\beta(l_i(a))}{u(a)} \\ PC^P(L) &= C^P(0). \end{cases}$$
(13)

• Our optimization problem reads: Find a permutation matrix P_{max} and a parameter vector a^{*} solving the maximization problem:

$$\max_{P\in\mathcal{P}}\max_{a\in\mathbb{R}^M}\bar{\mu}^P_{\Delta}(a).$$

• Lagrangian:

$$\mathcal{L}^{P}(C, p, a) = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} -\gamma(I_{i}(a))C_{i}^{P} + \zeta(I_{i}(a))dx$$
$$-\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}(C_{i}^{P'} + \frac{\alpha(I_{i}(a))C_{i}^{P} - \beta(I_{i}(a))}{u(a)})dx$$

• Lagrangian:

$$\mathcal{L}^{P}(C, p, a) = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} -\gamma(I_{i}(a))C_{i}^{P} + \zeta(I_{i}(a))dx$$
$$-\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}(C_{i}^{P'} + \frac{\alpha(I_{i}(a))C_{i}^{P} - \beta(I_{i}(a))}{u(a)})dx$$

• p_i^P is the Lagrange multiplier associated with the constraint (13).

$$\begin{cases} p_i^{P'} - p_i^{P} \frac{\alpha(I_i(a))}{u(a)} - \frac{1}{LN_z} \gamma(I_i(a)) &= 0\\ p^{P}(L) - p^{P}(0)P &= 0. \end{cases}$$

The gradient $abla ar{\mu}^{P}_{\Delta}(a)$ is obtained from

$$\nabla \bar{\mu}^{P}_{\Delta}(a) = \partial_{a} \mathcal{L}^{P},$$

where

$$\partial_{a}\mathcal{L}^{P} = \frac{1}{LN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \left(-\gamma'(I_{i}(a))C_{i}^{P} + \zeta'(I_{i}(a)) \right) \partial_{a}I_{i}(a) dx$$
$$+ \sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha'(I_{i}(a))C_{i}^{P} + \beta'(I_{i}(a))}{u(a)} \partial_{a}I_{i}(a) dx$$
$$- \sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha(I_{i}(a))C_{i}^{P} + \beta(I_{i}(a))}{u^{2}(a)} \partial_{a}u(a) dx.$$

Introduction

- 2 Raceway Modeling
- 3 Optimization problem

4 Numerical Experiments

- Numerical Settings
- Numerical results

Conclusion and Perspective

• Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon,* etc
- Numerical solvers: Euler Explicit, Heun, etc

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon*, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Light intensity at free surface: $I_s = 2000 \,\mu \text{mol} \cdot \text{m}^{-2} \,\text{s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).

- Numerical Algorithm: Gradient-based optimization algorithm, *fminunc, fmincon,* etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x = 0.01 \,\mathrm{m}$
- Light intensity at free surface: $I_s = 2000 \,\mu \text{mol} \cdot \text{m}^{-2} \text{s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).
- Assume that only q percent of I_s is available at the bottom $q \in [0,1]$

$$\varepsilon = (1/h(0,a))\ln(1/q).$$

Parameter Settings

- Standard settings for a raceway pond
 - Length of one lap of the raceway $L = 100 \,\mathrm{m}$
 - Averaged discharge $Q_0 = 0.04 \text{ m}^2 \cdot \text{s}^{-1}$
 - Initial position of the topography $z_b(0) = -0.4 \,\mathrm{m}$
 - First Fourier coefficient $a_0(=h(0,a))=0.4$
- The free-fall acceleration is set to be $g = 9.81 \,\mathrm{m \cdot s^{-2}}$.

Parameter Settings

- Standard settings for a raceway pond
 - Length of one lap of the raceway $L = 100 \,\mathrm{m}$
 - Averaged discharge $Q_0 = 0.04 \text{ m}^2 \cdot \text{s}^{-1}$
 - Initial position of the topography $z_b(0) = -0.4 \,\mathrm{m}$
 - First Fourier coefficient $a_0(=h(0,a))=0.4$
- The free-fall acceleration is set to be $g = 9.81 \,\mathrm{m \cdot s^{-2}}$.
- All the numerical parameters values for Han's model are taken from [3] and given in table 1.

k _r	6.8 10 ⁻³	s ⁻¹
k _d	$2.99 \ 10^{-4}$	-
τ	0.25	S
σ	0.047	$m^2 \cdot (\mu mol)^{-1}$
k	$8.7 \ 10^{-6}$	-
R	$1.389 \ 10^{-7}$	s^{-1}

Table: Parameter values for Han Model

Convergence of N_z

For 100 random a chosen, the average value of the functional $ar{\mu}_\Delta$

Figure: The value of the functional $\bar{\mu}_{\Delta}$ for $N_z = [1, 100]$.

C no periodic

The initial condition $C_0 = 0.1$

Figure: The optimal topography for $C_0 = 0.1$. The red thick line represents the topography (z_b) , the blue thick line represents the free surface (η) , and all the other curves between represent the different trajectories.

	D ·	
T III-	Di -	ПU
	<u> </u>	
Optimal topography for a given permutation

The permutation: $\pi = (1 \ N_z)(2 \ N_z - 1)(3 \ N_z - 2) \cdots$,

Figure: The evolution of the photo-inhibition state C for two laps.

Optimal topography for a given permutation

The permutation: $\pi = (1 N_z)(2 N_z - 1)(3 N_z - 2) \cdots$,

The increase in the optimal value of the objective function $\bar{\mu}_{\Delta}$ compared to a flat topography is around 0.228%, and compare to a flat topography and non permutation case is around 0.277%.

Liu-Di LU

Optimal matrix and optimal topography

• Test N_z! cases.

- Test N_z! cases.
- Set $N_z = 7$, the optimal matrix:

$$P_{\max} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Optimal matrix and optimal topography

Set $N_z = 7$, the optimal topography:

Compare to a flat topography with this P_{max} , we have a gain of 0.224%, and a gain of 1.511% compare to the case a flat topography without permutation (i.e. \mathcal{I}_{N_z}).

Liu-Di LU

Introduction

- 2 Raceway Modeling
- 3 Optimization problem
- 4 Numerical Experiments
- 5 Conclusion and Perspective

• Theoretical results

• A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation

Theoretical results

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one

Theoretical results

- A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution in the case C is periodic and no permutation
 - A non flat topography slightly enhances the average growth rate

- Theoretical results
 - A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
 - Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution in the case C is periodic and no permutation
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate

- Theoretical results
 - A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
 - Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution in the case C is periodic and no permutation
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
 - More general matrix P

- Theoretical results
 - A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
 - Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution in the case C is periodic and no permutation
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
 - More general matrix P
 - What happens in the case torrential

- Theoretical results
 - A flat topography cancels the gradient of the objective function in the case *C* is periodic and no permutation
 - Periodicity in the permutation case is actually one
- Numerical results
 - Flat topography is optimal solution in the case C is periodic and no permutation
 - A non flat topography slightly enhances the average growth rate
 - No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
 - More general matrix P
 - What happens in the case torrential
 - An extra diffusion term in Shallow water equations or a Brownian in Lagrangian trajectories

Olivier Bernard, Liudi Lu, Jacques Sainte-Marie, and Julien Salomon. Shape optimization of a microalgal raceway to enhance productivity. Working paper or Preprint, November 2020.

Olivier Bernard, Liudi Lu, and Julien Salomon. Optimizing microalgal productivity in raceway ponds through a controlled mixing device. Working paper or Preprint, October 2020.

Jérôme Grenier, F. Lopes, Hubert Bonnefond, and Olivier Bernard. Worldwide perspectives of rotating algal biofilm up-scaling. Submitted, 2020.

 Pierre-Olivier Lamare, Nina Aguillon, Jacques Sainte-Marie, Jérôme Grenier, Hubert Bonnefond, and Olivier Bernard.
Gradient-based optimization of a rotating algal biofilm process.
Automatica, 105:80–88, July 2019.

Victor Michel-Dansac, Christophe Berthon, Stéphane Clain, and Françoise Foucher.

A well-balanced scheme for the shallow-water equations with topography.

Computers and Mathematics with Applications, 72(3):586–593, August 2016.