Optimization problem for a microalgal raceway pond to enhance productivity

Olivier Bernard, Liu-Di LU, Jacques Sainte-Marie, Julien Salomon

December 3, 2020

Overview

(1) Introduction
(2) Raceway Modeling
(3) Optimization problem
(4) Numerical Experiments
(5) Conclusion and Perspective

Introduction

- Who?

Introduction

Figure: Microalgae

Introduction

- Who? Microalgae
- Why?

Introduction

- Who? Microalgae
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc

Introduction

- Who? Microalgae
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?

Introduction

- Who? Microalgae: photosynthetic organisms
- Why? Biotechnological potential: colorants, antioxydants, cosmetics, pharmaceuticals, food complements, green energy, etc
- Where?
- All aquatic environments
- Industrial cultivation: photobioreactors

Introduction

Figure: Chemostats

Introduction

Figure: Rotating Algal Biofilm

Introduction

Figure: Raceways

Overview

(1) Introduction
(2) Raceway Modeling

- Hydrodynamic model
- Light intensity
- Biologic model
- Mixing device
(3) Optimization problem

4 Numerical Experiments
(5) Conclusion and Perspective

Shallow Water Equations

- 1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

- h water elevation, u horizontal averaged velocity, g gravitational acceleration, z_{b} topography.
- Free surface $\eta:=h+z_{b}$, averaged discharge $Q=h u$.

Shallow Water Equations

Figure: Representation of the hydrodynamic model.

Shallow Water Equations

- 1D steady state shallow water equation

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h, \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>$ 1: supercritical case (i.e. the flow regime is torrential)

Shallow Water Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h, \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_{b}, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [5, Lemma 1]

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
\begin{equation*}
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x) \tag{4}
\end{equation*}
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
\begin{equation*}
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x) \tag{4}
\end{equation*}
$$

- The Lagrangian trajectory is characterized by the system

$$
\begin{equation*}
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} . \tag{5}
\end{equation*}
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
\begin{equation*}
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x) \tag{4}
\end{equation*}
$$

- The Lagrangian trajectory is characterized by the system

$$
\begin{equation*}
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} . \tag{5}
\end{equation*}
$$

- A time-free reformulation for z as

$$
\begin{equation*}
z(x)=\eta(x)+\frac{u(0)}{u(x)}(z(0)-\eta(0)) \tag{6}
\end{equation*}
$$

Beer-Lambert Law

- The Beer-Lambert law describes how light is attenuated with depth:

$$
\begin{equation*}
I(x, z)=I_{s} \exp (-\varepsilon(\eta(x)-z)) \tag{7}
\end{equation*}
$$

Here ε is the light extinction coefficient.

Beer-Lambert Law

- The Beer-Lambert law describes how light is attenuated with depth:

$$
\begin{equation*}
I(x, z)=I_{s} \exp (-\varepsilon(\eta(x)-z)) . \tag{7}
\end{equation*}
$$

Here ε is the light extinction coefficient.

- Replacing z by (6):

$$
\begin{equation*}
I(x, z)=I_{s} \exp \left(-\varepsilon \frac{u(0)}{u(x)}(\eta(0)-z(0))\right) \tag{8}
\end{equation*}
$$

Beer-Lambert Law

- The Beer-Lambert law describes how light is attenuated with depth:

$$
\begin{equation*}
I(x, z)=I_{s} \exp (-\varepsilon(\eta(x)-z)) \tag{7}
\end{equation*}
$$

Here ε is the light extinction coefficient.

- Replacing z by (6):

$$
\begin{equation*}
I(x, z)=I_{s} \exp \left(-\varepsilon \frac{u(0)}{u(x)}(\eta(0)-z(0))\right) \tag{8}
\end{equation*}
$$

- For a given position $z(0)=\eta(0)-q h(0)$ with $q \in[0,1]$, we have

$$
I(x, z)=I_{s} \exp \left(-\varepsilon \frac{u(0)}{u(x)} q h(0)\right)=I_{s} \exp (-\varepsilon q h(x))
$$

Han model

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy, C : inhibited if several photons have been absorbed simultaneously.

Han model

Figure: Scheme of the Han model, representing the probability of state transition, as a function of the photon flux density.

Han model

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{9}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

Han model

- A: open and ready to harvest a photon,
B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{9}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states

$$
A+B+C=1
$$

Han model

- Using a fast-slow approximation and the singular perturbation theory(see [4]), this system can be reduced to one single evolution equation:

$$
\dot{C}=-\alpha(I) C+\beta(I)
$$

where

$$
\alpha(I)=\beta(I)+k_{r}, \text { with } \beta(I)=k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}
$$

Han model

- Using a fast-slow approximation and the singular perturbation theory(see [4]), this system can be reduced to one single evolution equation:

$$
\dot{C}=-\alpha(I) C+\beta(I)
$$

where

$$
\alpha(I)=\beta(I)+k_{r}, \text { with } \beta(I)=k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}
$$

- The net specific growth rate:

$$
\mu(C, I):=-\gamma(I) C+\zeta(I)
$$

where

$$
\zeta(I)=\gamma(I)-R, \text { with } \gamma(I)=\frac{k \sigma I}{\tau \sigma I+1}
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}=\frac{-\alpha(I) C+\beta(I)}{u}
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}=\frac{-\alpha(I) C+\beta(I)}{u}
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{L} \int_{0}^{L} \frac{1}{h(x)} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}=\frac{-\alpha(I) C+\beta(I)}{u}
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{L} \int_{0}^{L} \frac{1}{h(x)} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x .
$$

- In order to compute numerically, consider a uniform vertical discretization of the initial position $z(0)$ for N_{z} cells:

$$
z_{i}(0)=\eta(0)-\frac{i-\frac{1}{2}}{N_{z}} h(0), \quad i=1, \ldots, N_{z}
$$

Han model

- A time-free reformulation of C

$$
C^{\prime}=\frac{-\alpha(I) C+\beta(I)}{u}
$$

- The average net specific growth rate over the domain is defined by

$$
\bar{\mu}:=\frac{1}{L} \int_{0}^{L} \frac{1}{h(x)} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x .
$$

- In order to compute numerically, consider a uniform vertical discretization of the initial position $z(0)$ for N_{z} cells:

$$
z_{i}(0)=\eta(0)-\frac{i-\frac{1}{2}}{N_{z}} h(0), \quad i=1, \ldots, N_{z}
$$

- The semi-discrete average net specific growth rate:

$$
\begin{equation*}
\bar{\mu}_{\Delta}=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}(x), I_{i}(x)\right) \mathrm{d} x . \tag{10}
\end{equation*}
$$

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_{z} \times N_{z}$ and by $\mathfrak{S}_{N_{z}}$ the associated set of permutations of N_{z} elements.

Mixing device

Figure: Representation of the hydrodynamic model with an example of mixing device (P). Here, P corresponds to the cyclic permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right.$.

Mixing device

- Paddle wheel:
- set this hydrodynamic-biologic coupling system in motion,
- modifies the elevation of the algae passing through it, and giving successively access to light to all the population.
- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_{i}(0)$ are entirely transferred into the position $z_{j}(0)$ when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N_{z} \times N_{z}$ and by $\mathfrak{S}_{N_{z}}$ the associated set of permutations of N_{z} elements.

Theorem

The average growth rate of K laps equals to one lap (see [2]).

Overview

(1) Introduction

(2) Raceway Modeling
(3) Optimization problem

- No permutation
- With a mixing device

4 Numerical Experiments

(5) Conclusion and Perspective

Optimization problem

- Our goal:
- Topography z_{b},
- Mixing strategy P.

Optimization problem

- Our goal:
- Topography z_{b},
- Mixing strategy P.
- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

Optimization problem

- Our goal:
- Topography z_{b},
- Mixing strategy P.
- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.

Optimization problem

- Our goal:
- Topography z_{b},
- Mixing strategy P.
- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- For instance: a truncated Fourier series

$$
\begin{equation*}
h(x, a)=a_{0}+\sum_{m=1}^{M} a_{m} \sin \left(2 m \pi \frac{x}{L}\right) \tag{11}
\end{equation*}
$$

Optimization problem

- Our goal:
- Topography z_{b},
- Mixing strategy P.
- Volume of the system

$$
V=\int_{0}^{L} h(x) \mathrm{d} x
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{M}\right] \in \mathbb{R}^{M}$.
- For instance: a truncated Fourier series

$$
\begin{equation*}
h(x, a)=a_{0}+\sum_{m=1}^{M} a_{m} \sin \left(2 m \pi \frac{x}{L}\right) \tag{11}
\end{equation*}
$$

- The computational chain:

$$
a \rightarrow h \rightarrow u, z_{b} \rightarrow z \rightarrow I \rightarrow C \rightarrow \bar{\mu}_{\Delta} .
$$

No permutation

- Objective function:

$$
\bar{\mu}_{\Delta}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right) \mathrm{d} x
$$

No permutation

- Objective function:

$$
\bar{\mu}_{\Delta}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right) \mathrm{d} x
$$

- Constraints:

$$
\begin{equation*}
C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right)}{u(a)} C_{i}=\frac{\beta\left(I_{i}(a)\right)}{u(a)} \tag{12}
\end{equation*}
$$

No permutation

- Objective function:

$$
\bar{\mu}_{\Delta}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right) \mathrm{d} x
$$

- Constraints:

$$
\begin{equation*}
C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right)}{u(a)} C_{i}=\frac{\beta\left(I_{i}(a)\right)}{u(a)} \tag{12}
\end{equation*}
$$

- The optimization problem reads:

Find a^{*} solving the maximization problem:

$$
\max _{a \in \mathbb{R}^{N}} \bar{\mu}_{\Delta}(a) .
$$

No permutation

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right) C_{i}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

No permutation

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right) C_{i}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

- p_{i} the Lagrange multipliers associated with the constraint (12).

$$
\left\{\begin{array}{l}
\partial_{C_{i}} \mathcal{L}=p_{i}^{\prime}-p_{i} \frac{\alpha\left(l_{i}(a)\right)}{u(a)}-\frac{1}{L N_{z}} \gamma\left(I_{i}(a)\right) \\
\partial_{C_{i}(L)} \mathcal{L}=p_{i}(L)
\end{array}\right.
$$

No permutation

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right) C_{i}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

- p_{i} the Lagrange multipliers associated with the constraint (12).

$$
\left\{\begin{array}{l}
\partial_{C_{i}} \mathcal{L}=p_{i}^{\prime}-p_{i} \frac{\alpha\left(l_{i}(a)\right)}{u(a)}-\frac{1}{L N_{z}} \gamma\left(I_{i}(a)\right) \\
\partial_{C_{i}(L)} \mathcal{L}=p_{i}(L)
\end{array}\right.
$$

- If C is periodic (i.e. $C(0)=C(L))$, then $\partial_{C_{i}(L)} \mathcal{L}=p_{i}(L)-p_{i}(0)$.

No permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

No permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

- where

$$
\begin{aligned}
\partial_{a} \mathcal{L}=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}\left(-\gamma^{\prime}\left(I_{i}(a)\right) C_{i}+\zeta^{\prime}\left(I_{i}(a)\right)\right) \partial_{a} I_{i}(a) \mathrm{d} x \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha^{\prime}\left(I_{i}(a)\right) C_{i}+\beta^{\prime}\left(I_{i}(a)\right)}{u(a)} \partial_{a} I_{i}(a) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i} \frac{-\alpha\left(I_{i}(a)\right) C_{i}+\beta\left(I_{i}(a)\right)}{u^{2}(a)} \partial_{a} u(a) \mathrm{d} x .
\end{aligned}
$$

No permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

Theorem

Under the parameterization (11), if C is periodic, then $\nabla \bar{\mu}_{\Delta}(0)=0$ (see [1]).

No permutation

- The gradient $\nabla \bar{\mu}_{\Delta}(a)$ is obtained by

$$
\nabla \bar{\mu}_{\Delta}(a)=\partial_{a} \mathcal{L}
$$

Theorem

Under the parameterization (11), if C is periodic, then $\nabla \bar{\mu}_{\Delta}(0)=0$ (see [1]).

- Numerically, the flat topography is the optimum.

With a mixing device

- Objective function:

$$
\bar{\mu}_{\Delta}^{P}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(l_{i}(a)\right) C_{i}^{P}+\zeta\left(l_{i}(a)\right) \mathrm{d} x
$$

With a mixing device

- Objective function:

$$
\bar{\mu}_{\Delta}^{P}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right) \mathrm{d} x
$$

- Constraint:

$$
\begin{cases}C_{i}^{P^{\prime}}+\frac{\alpha\left(l_{i}(a)\right)}{u(a)} C_{i}^{P} & =\frac{\beta\left(l_{i}(a)\right)}{u(a)} \tag{13}\\ P C^{P}(L) & =C^{P}(0) .\end{cases}
$$

With a mixing device

- Objective function:

$$
\bar{\mu}_{\Delta}^{P}(a)=\frac{1}{L N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(l_{i}(a)\right) C_{i}^{P}+\zeta\left(l_{i}(a)\right) \mathrm{d} x
$$

- Constraint:

$$
\begin{cases}C_{i}^{P^{\prime}}+\frac{\alpha\left(l_{i}(a)\right)}{u(a)} C_{i}^{P} & =\frac{\beta\left(l_{i}(a)\right)}{u(a)} \tag{13}\\ P C^{P}(L) & =C^{P}(0)\end{cases}
$$

- Our optimization problem reads:

Find a permutation matrix $P_{\max }$ and a parameter vector a* solving the maximization problem:

$$
\max _{P \in \mathcal{P}} \max _{a \in \mathbb{R}^{M}} \bar{\mu}_{\Delta}^{P}(a) .
$$

With a mixing device

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}^{P}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}\left(C_{i}^{P^{\prime}}+\frac{\alpha\left(I_{i}(a)\right) C_{i}^{P}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

With a mixing device

- Lagrangian:

$$
\begin{aligned}
\mathcal{L}^{P}(C, p, a)=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}-\gamma\left(I_{i}(a)\right) C_{i}^{P}+\zeta\left(I_{i}(a)\right) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P}\left(C_{i}^{P^{\prime}}+\frac{\alpha\left(I_{i}(a)\right) C_{i}^{P}-\beta\left(I_{i}(a)\right)}{u(a)}\right) \mathrm{d} x
\end{aligned}
$$

- p_{i}^{P} is the Lagrange multiplier associated with the constraint (13).

$$
\begin{cases}p_{i}^{P^{\prime}}-p_{i}^{P} \frac{\alpha\left(l_{i}(a)\right)}{u(a)}-\frac{1}{L N_{z}} \gamma\left(l_{i}(a)\right) & =0 \\ p^{P}(L)-p^{P}(0) P & =0 .\end{cases}
$$

With a mixing device

The gradient $\nabla \bar{\mu}_{\Delta}^{P}(a)$ is obtained from

$$
\nabla \bar{\mu}_{\Delta}^{P}(a)=\partial_{a} \mathcal{L}^{P}
$$

where

$$
\begin{aligned}
\partial_{a} \mathcal{L}^{P}=\frac{1}{L N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}\left(-\gamma^{\prime}\left(I_{i}(a)\right) C_{i}^{P}+\zeta^{\prime}\left(I_{i}(a)\right)\right) \partial_{a} I_{i}(a) \mathrm{d} x \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha^{\prime}\left(I_{i}(a)\right) C_{i}^{P}+\beta^{\prime}\left(I_{i}(a)\right)}{u(a)} \partial_{a} I_{i}(a) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}^{P} \frac{-\alpha\left(I_{i}(a)\right) C_{i}^{P}+\beta\left(I_{i}(a)\right)}{u^{2}(a)} \partial_{a} u(a) \mathrm{d} x
\end{aligned}
$$

Overview

(1) Introduction
(2) Raceway Modeling
(3) Optimization problem
(4) Numerical Experiments

- Numerical Settings
- Numerical results

(5) Conclusion and Perspective

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x=0.01 \mathrm{~m}$

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Light intensity at free surface: $I_{s}=2000 \mu \mathrm{~mol} \cdot \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).

Numerical Settings

- Numerical Algorithm: Gradient-based optimization algorithm, fminunc, fmincon, etc
- Numerical solvers: Euler Explicit, Heun, etc
- The spatial increment: $\Delta x=0.01 \mathrm{~m}$
- Light intensity at free surface: $I_{s}=2000 \mu \mathrm{~mol} \cdot \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ (which corresponds to a maximum value during summer in the south of France).
- Assume that only q percent of I_{s} is available at the bottom $q \in[0,1]$

$$
\varepsilon=(1 / h(0, a)) \ln (1 / q)
$$

Parameter Settings

- Standard settings for a raceway pond
- Length of one lap of the raceway $L=100 \mathrm{~m}$
- Averaged discharge $Q_{0}=0.04 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$
- Initial position of the topography $z_{b}(0)=-0.4 \mathrm{~m}$
- First Fourier coefficient $a_{0}(=h(0, a))=0.4$
- The free-fall acceleration is set to be $g=9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.

Parameter Settings

- Standard settings for a raceway pond
- Length of one lap of the raceway $L=100 \mathrm{~m}$
- Averaged discharge $Q_{0}=0.04 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$
- Initial position of the topography $z_{b}(0)=-0.4 \mathrm{~m}$
- First Fourier coefficient $a_{0}(=h(0, a))=0.4$
- The free-fall acceleration is set to be $g=9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
- All the numerical parameters values for Han's model are taken from [3] and given in table 1.

Table: Parameter values for Han Model

k_{r}	6.810^{-3}	$\mathrm{~s}^{-1}$
k_{d}	2.9910^{-4}	-
τ	0.25	s
σ	0.047	$\mathrm{~m}^{2} \cdot(\mu \mathrm{~mol})^{-1}$
k	8.710^{-6}	-
R	1.38910^{-7}	$\mathrm{~s}^{-1}$

Convergence of N_{z}

For 100 random a chosen, the average value of the functional $\bar{\mu}_{\Delta}$

Figure: The value of the functional $\bar{\mu}_{\Delta}$ for $N_{z}=[1,100]$.

C no periodic

The initial condition $C_{0}=0.1$

Figure: The optimal topography for $C_{0}=0.1$. The red thick line represents the topography $\left(z_{b}\right)$, the blue thick line represents the free surface (η), and all the other curves between represent the different trajectories.

Optimal topography for a given permutation

The permutation: $\pi=\left(1 N_{z}\right)\left(2 N_{z}-1\right)\left(3 N_{z}-2\right) \cdots$,

Figure: The evolution of the photo-inhibition state C for two laps.

Optimal topography for a given permutation

The permutation: $\pi=\left(1 N_{z}\right)\left(2 N_{z}-1\right)\left(3 N_{z}-2\right) \cdots$,

The increase in the optimal value of the objective function $\bar{\mu}_{\Delta}$ compared to a flat topography is around 0.228%, and compare to a flat topography and non permutation case is around 0.277%.

Optimal matrix and optimal topography

- Test N_{z} ! cases.

Optimal matrix and optimal topography

- Test N_{z} ! cases.
- Set $N_{z}=7$, the optimal matrix:

$$
P_{\max }=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Optimal matrix and optimal topography

Set $N_{z}=7$, the optimal topography:

Compare to a flat topography with this $P_{\max }$, we have a gain of 0.224%, and a gain of 1.511% compare to the case a flat topography without permutation (i.e. $\mathcal{I}_{N_{z}}$).

Overview

(1) Introduction
(2) Raceway Modeling
(3) Optimization problem
(4) Numerical Experiments
(5) Conclusion and Perspective

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution in the case C is periodic and no permutation
- A non flat topography slightly enhances the average growth rate

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution in the case C is periodic and no permutation
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution in the case C is periodic and no permutation
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
- More general matrix P

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution in the case C is periodic and no permutation
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
- More general matrix P
- What happens in the case torrential

Conclusion

- Theoretical results
- A flat topography cancels the gradient of the objective function in the case C is periodic and no permutation
- Periodicity in the permutation case is actually one
- Numerical results
- Flat topography is optimal solution in the case C is periodic and no permutation
- A non flat topography slightly enhances the average growth rate
- No trivial permutation strategies can be found to enhance the average growth rate
- Perspectives
- More general matrix P
- What happens in the case torrential
- An extra diffusion term in Shallow water equations or a Brownian in Lagrangian trajectories

Olivier Bernard，Liudi Lu，Jacques Sainte－Marie，and Julien Salomon． Shape optimization of a microalgal raceway to enhance productivity． Working paper or Preprint，November 2020.

围 Olivier Bernard，Liudi Lu，and Julien Salomon．
Optimizing microalgal productivity in raceway ponds through a controlled mixing device．
Working paper or Preprint，October 2020.
围 Jérôme Grenier，F．Lopes，Hubert Bonnefond，and Olivier Bernard． Worldwide perspectives of rotating algal biofilm up－scaling． Submitted， 2020.
Pierre－Olivier Lamare，Nina Aguillon，Jacques Sainte－Marie，Jérôme Grenier，Hubert Bonnefond，and Olivier Bernard．
Gradient－based optimization of a rotating algal biofilm process． Automatica，105：80－88，July 2019.

囦 Victor Michel－Dansac，Christophe Berthon，Stéphane Clain，and Franoise Foucher．

A well-balanced scheme for the shallow-water equations with topography.
Computers and Mathematics with Applications, 72(3):586-593, August 2016.

