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Introduction

Who? Microalgae: photosynthetic organisms

Why? Biotechnological potential: colorants, antioxydants, cosmetics,
pharmaceuticals, food complements, green energy, etc

Where?

All aquatic environments
Industrial cultivation: photobioreactors
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Figure: Chemostats
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Introduction

Figure: Rotating Algal Biofilm
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Figure: Raceways
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Shallow Water Equations

1D steady state shallow water equation

∂x(hu) = 0, (1)

∂x(hu2 + g
h2

2
) = −gh∂xzb. (2)

h water elevation, u horizontal averaged velocity, g gravitational
acceleration, zb topography.

Free surface η := h + zb, averaged discharge Q = hu.
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Shallow Water Equations

0 L

z

0 x
η(x)

Is

zb(x)h(x)u(x)

Figure: Representation of the hydrodynamic model.
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Shallow Water Equations

u, zb as a function of h

u =
Q0

h
, (1)

zb =
M0

g
− Q2

0

2gh2
− h, (2)

Q0,M0 ∈ R+ are two constants.

Froude number:
Fr :=

u√
gh

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

Given a smooth topography zb, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition [5, Lemma
1]
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Lagrangian Trajectories

Incompressibility of the flow: ∇ · u = 0 with u = (u(x),w(x , z))

∂xu + ∂zw = 0. (3)

Integrating (3) from zb to z and using the kinematic condition at
bottom (w(x , zb) = u(x)∂xzb) gives:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x). (4)

The Lagrangian trajectory is characterized by the system(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t))

)
. (5)

A time-free reformulation for z as

z(x) = η(x) +
u(0)

u(x)
(z(0)− η(0)), (6)
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Beer-Lambert Law

The Beer-Lambert law describes how light is attenuated with depth:

I (x , z) = Is exp
(
− ε(η(x)− z)

)
. (7)

Here ε is the light extinction coefficient.

Replacing z by (6):

I (x , z) = Is exp
(
− εu(0)

u(x)
(η(0)− z(0))

)
. (8)

For a given position z(0) = η(0)− qh(0) with q ∈ [0, 1], we have

I (x , z) = Is exp
(
− εu(0)

u(x)
qh(0)

)
= Is exp

(
− εqh(x)

)
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Han model

A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.


Ȧ = −σIA + B

τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

(9)

A,B,C are the relative frequencies of the three possible states

A + B + C = 1.
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Han model

A B CσI kdσI

τ−1 kr

Photon I Photon I

Figure: Scheme of the Han model, representing the probability of state transition,
as a function of the photon flux density.

Liu-Di LU CAN-J 2020 December 3, 2020 9 / 28



Han model

A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.
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Han model

Using a fast-slow approximation and the singular perturbation
theory(see [4]), this system can be reduced to one single evolution
equation:

Ċ = −α(I )C + β(I ),

where

α(I ) = β(I ) + kr ,with β(I ) = kdτ
(σI )2

τσI + 1
.

The net specific growth rate:

µ(C , I ) := −γ(I )C + ζ(I ),

where

ζ(I ) = γ(I )− R, with γ(I ) =
kσI

τσI + 1
.
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Han model

A time-free reformulation of C

C ′ =
−α(I )C + β(I )

u
.

The average net specific growth rate over the domain is defined by

µ̄ :=
1

L

∫ L

0

1

h(x)

∫ η(x)

zb(x)
µ
(
C (x , z), I (x , z)

)
dzdx .

In order to compute numerically, consider a uniform vertical
discretization of the initial position z(0) for Nz cells:

zi (0) = η(0)−
i − 1

2

Nz
h(0), i = 1, . . . ,Nz .

The semi-discrete average net specific growth rate:

µ̄∆ =
1

LNz

Nz∑
i=1

∫ L

0
µ(Ci (x), Ii (x))dx . (10)
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Mixing device

Paddle wheel:

set this hydrodynamic-biologic coupling system in motion,
modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.

An ideal rearrangement of trajectories: at each new lap, the algae at
depth zi (0) are entirely transferred into the position zj(0) when
passing through the mixing device.

We denote by P the set of permutation matrices of size Nz × Nz and
by SNz the associated set of permutations of Nz elements.
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Mixing device

0 L 0 L

P

z

x
0

z1 = zσ(4)

z2 = zσ(1)

z3 = zσ(2)

z4 = zσ(3)

η(x)

zb(x)
h(x)

u(x) u(x)

Is Is

Figure: Representation of the hydrodynamic model with an example of mixing
device (P). Here, P corresponds to the cyclic permutation σ = (1 2 3 4).
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Mixing device

Paddle wheel:

set this hydrodynamic-biologic coupling system in motion,
modifies the elevation of the algae passing through it, and giving
successively access to light to all the population.

An ideal rearrangement of trajectories: at each new lap, the algae at
depth zi (0) are entirely transferred into the position zj(0) when
passing through the mixing device.

We denote by P the set of permutation matrices of size Nz × Nz and
by SNz the associated set of permutations of Nz elements.

Theorem

The average growth rate of K laps equals to one lap (see [2]).
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Optimization problem

Our goal:
Topography zb,
Mixing strategy P.

Volume of the system

V =

∫ L

0
h(x)dx .

Parameterize h by a vector a := [a1, · · · , aM ] ∈ RM .

For instance: a truncated Fourier series

h(x , a) = a0 +
M∑

m=1

am sin(2mπ
x

L
), (11)

The computational chain:

a→ h→ u, zb → z → I → C → µ̄∆.
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No permutation

Objective function:

µ̄∆(a) =
1

LNz

Nz∑
i=1

∫ L

0
−γ(Ii (a))Ci + ζ(Ii (a))dx ,

Constraints:

C ′i +
α(Ii (a))

u(a)
Ci =

β(Ii (a))

u(a)
. (12)

The optimization problem reads:
Find a∗ solving the maximization problem:

max
a∈RN

µ̄∆(a).
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No permutation

Lagrangian:

L(C , p, a) =
1

LNz

Nz∑
i=1

∫ L

0
−γ(Ii (a))Ci + ζ(Ii (a))dx

−
Nz∑
i=1

∫ L

0
pi
(
Ci
′ +

α(Ii (a))Ci − β(Ii (a))

u(a)

)
dx

pi the Lagrange multipliers associated with the constraint (12).{
∂Ci
L = p′i − pi

α(Ii (a))
u(a) −

1
LNz

γ(Ii (a))

∂Ci (L)L = pi (L).

If C is periodic (i.e. C (0) = C (L)), then ∂Ci (L)L = pi (L)− pi (0).

Liu-Di LU CAN-J 2020 December 3, 2020 15 / 28



No permutation

Lagrangian:

L(C , p, a) =
1

LNz

Nz∑
i=1

∫ L

0
−γ(Ii (a))Ci + ζ(Ii (a))dx

−
Nz∑
i=1

∫ L

0
pi
(
Ci
′ +

α(Ii (a))Ci − β(Ii (a))

u(a)

)
dx

pi the Lagrange multipliers associated with the constraint (12).{
∂Ci
L = p′i − pi

α(Ii (a))
u(a) −

1
LNz

γ(Ii (a))

∂Ci (L)L = pi (L).

If C is periodic (i.e. C (0) = C (L)), then ∂Ci (L)L = pi (L)− pi (0).

Liu-Di LU CAN-J 2020 December 3, 2020 15 / 28



No permutation

Lagrangian:

L(C , p, a) =
1

LNz

Nz∑
i=1

∫ L

0
−γ(Ii (a))Ci + ζ(Ii (a))dx

−
Nz∑
i=1

∫ L

0
pi
(
Ci
′ +

α(Ii (a))Ci − β(Ii (a))

u(a)

)
dx

pi the Lagrange multipliers associated with the constraint (12).{
∂Ci
L = p′i − pi

α(Ii (a))
u(a) −

1
LNz

γ(Ii (a))

∂Ci (L)L = pi (L).

If C is periodic (i.e. C (0) = C (L)), then ∂Ci (L)L = pi (L)− pi (0).

Liu-Di LU CAN-J 2020 December 3, 2020 15 / 28



No permutation

The gradient ∇µ̄∆(a) is obtained by

∇µ̄∆(a) = ∂aL,

where

∂aL =
1

LNz

Nz∑
i=1

∫ L

0

(
− γ′(Ii (a))Ci + ζ ′(Ii (a))

)
∂aIi (a)dx

+
Nz∑
i=1

∫ L

0
pi
−α′(Ii (a))Ci + β′(Ii (a))

u(a)
∂aIi (a)dx

−
Nz∑
i=1

∫ L

0
pi
−α(Ii (a))Ci + β(Ii (a))

u2(a)
∂au(a)dx .
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With a mixing device

Objective function:

µ̄P∆(a) =
1

LNz

Nz∑
i=1

∫ L

0
−γ(Ii (a))CP

i + ζ(Ii (a))dx ,

Constraint: {
CP
i
′

+ α(Ii (a))
u(a) CP

i = β(Ii (a))
u(a)

PCP(L) = CP(0).
(13)

Our optimization problem reads:
Find a permutation matrix Pmax and a parameter vector a∗ solving
the maximization problem:

max
P∈P

max
a∈RM

µ̄P∆(a).
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With a mixing device

Lagrangian:

LP(C , p, a) =
1

LNz

Nz∑
i=1

∫ L

0
−γ(Ii (a))CP

i + ζ(Ii (a))dx

−
Nz∑
i=1

∫ L

0
pPi
(
CP
i
′

+
α(Ii (a))CP

i − β(Ii (a))

u(a)

)
dx

pPi is the Lagrange multiplier associated with the constraint (13).{
pPi
′ − pPi

α(Ii (a))
u(a) −

1
LNz

γ(Ii (a)) = 0

pP(L)− pP(0)P = 0.
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With a mixing device
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Numerical Settings

Numerical Algorithm: Gradient-based optimization algorithm,
fminunc, fmincon, etc

Numerical solvers: Euler Explicit, Heun, etc

The spatial increment: ∆x = 0.01 m

Light intensity at free surface: Is = 2000µmol ·m−2 s−1 (which
corresponds to a maximum value during summer in the south of
France).

Assume that only q percent of Is is available at the bottom q ∈ [0, 1]

ε = (1/h(0, a)) ln(1/q).
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Parameter Settings

Standard settings for a raceway pond
Length of one lap of the raceway L = 100 m
Averaged discharge Q0 = 0.04 m2 · s−1

Initial position of the topography zb(0) = −0.4 m
First Fourier coefficient a0(= h(0, a)) = 0.4

The free-fall acceleration is set to be g = 9.81 m · s−2.

All the numerical parameters values for Han’s model are taken
from [3] and given in table 1.

Table: Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -

τ 0.25 s

σ 0.047 m2 · (µ mol)−1

k 8.7 10−6 -

R 1.389 10−7 s−1
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Convergence of Nz

For 100 random a chosen, the average value of the functional µ̄∆
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Figure: The value of the functional µ̄∆ for Nz = [1, 100].
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C no periodic

The initial condition C0 = 0.1
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Figure: The optimal topography for C0 = 0.1. The red thick line represents the
topography (zb), the blue thick line represents the free surface (η), and all the
other curves between represent the different trajectories.
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Optimal topography for a given permutation

The permutation: π = (1 Nz)(2 Nz − 1)(3 Nz − 2) · · · ,

Figure: The evolution of the photo-inhibition state C for two laps.
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Optimal topography for a given permutation

The permutation: π = (1 Nz)(2 Nz − 1)(3 Nz − 2) · · · ,
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The increase in the optimal value of the objective function µ̄∆ compared
to a flat topography is around 0.228%, and compare to a flat topography
and non permutation case is around 0.277%.
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Optimal matrix and optimal topography

Test Nz ! cases.

Set Nz = 7, the optimal matrix:

Pmax =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0


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Optimal matrix and optimal topography

Set Nz = 7, the optimal topography:
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Compare to a flat topography with this Pmax, we have a gain of 0.224%,
and a gain of 1.511% compare to the case a flat topography without
permutation (i.e. INz ).
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Conclusion

Theoretical results

A flat topography cancels the gradient of the objective function in the
case C is periodic and no permutation

Periodicity in the permutation case is actually one

Numerical results

Flat topography is optimal solution in the case C is periodic and no
permutation
A non flat topography slightly enhances the average growth rate
No trivial permutation strategies can be found to enhance the average
growth rate

Perspectives

More general matrix P
What happens in the case torrential
An extra diffusion term in Shallow water equations or a Brownian in
Lagrangian trajectories
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