Non-overlapping Domain Decomposition Methods for Elliptic Control Problems

Martin J. Gander, Liu-Di LU

Section of Mathematics
University of Geneva

June 14th, 2022

Optimal control

Idea: At a given time horizon we want the system under study to behave exactly as we wish

Optimal control

Idea: At a given time horizon we want the system under study to behave exactly as we wish
\star Ingredients:

- A system governed by an ODE/PDE (state y),
- A control function u as an input to the system,
- A target state \hat{y} as the desired state of the system,
- A cost functional J, e.g., cost of u, discrepancy between y and \hat{y}, etc.

Optimal control

Idea: At a given time horizon we want the system under study to behave exactly as we wish
\star Ingredients:

- A system governed by an ODE/PDE (state y),
- A control function u as an input to the system,
- A target state \hat{y} as the desired state of the system,
- A cost functional J, e.g., cost of u, discrepancy between y and \hat{y}, etc.
\star Goal:
- Find the control u^{\star} which minimizes the cost such that the system reaches the desired state.

Example 1

Problem: Compute the force of thrust F

$$
\min _{F \in U_{\mathrm{ad}}} \frac{1}{2}\|F\|_{U_{\mathrm{ad}}}^{2}+\frac{1}{2} \int_{0}^{T}|q(t)-\hat{q}(t)|^{2} \mathrm{~d} t
$$

subject to

$$
\ddot{q}=-\frac{q}{|q|^{3}}+\frac{F}{m}, \quad \text { in }(0, T)
$$

with m the mass of the satellite.

Example 2

Problem: Compute the bottom topography z_{b}

$$
\max _{z_{b} \in U_{\mathrm{ad}}} \mathcal{P}\left(z_{b}, X, I\right),
$$

subject to

$$
\dot{X}=f(X, I)
$$

with I the light perceived.

Example 3

Problem: Compute the heat source u

$$
\min _{u \in U_{\mathrm{ad}}} \frac{1}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x
$$

subject to

$$
-\operatorname{div}(\kappa(x) \nabla y(x))=u(x), \quad \text { in } \Omega,
$$

$\kappa(x)$ the thermal conductivity of Ω.

Poisson's equation

\star Model:

$$
\begin{align*}
-\Delta y=u & \text { in } \Omega \tag{1}\\
y=0 & \text { on } \partial \Omega
\end{align*}
$$

with $\Omega \subset \mathbb{R}^{n}, n=1,2,3$.

Poisson's equation

\star Model:

$$
\begin{align*}
-\Delta y=u & \text { in } \Omega \\
y=0 & \text { on } \partial \Omega \tag{1}
\end{align*}
$$

with $\Omega \subset \mathbb{R}^{n}, n=1,2,3$.
\star Problem:

$$
\begin{equation*}
J(y, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}, \tag{2}
\end{equation*}
$$

with $\nu>0$.

Poisson's equation

\star Model:

$$
\begin{align*}
-\Delta y=u & \text { in } \Omega \\
y=0 & \text { on } \partial \Omega \tag{1}
\end{align*}
$$

with $\Omega \subset \mathbb{R}^{n}, n=1,2,3$.
\star Problem:

$$
\begin{equation*}
J(y, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}, \tag{2}
\end{equation*}
$$

with $\nu>0$.
\star Goal: Find

$$
\min J(y, u)
$$

subject to the PDE constraint (1).

Poisson's equation

\star Model:

$$
\begin{align*}
-\Delta y=u & \text { in } \Omega \\
y=0 & \text { on } \partial \Omega \tag{1}
\end{align*}
$$

with $\Omega \subset \mathbb{R}^{n}, n=1,2,3$.
\star Problem:

$$
\begin{equation*}
J(y, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2} \tag{2}
\end{equation*}
$$

with $\nu>0$.
\star Goal: Find

$$
\min J(y, u)
$$

subject to the PDE constraint (1).
\star Lagrange multiplier approach:

$$
\mathcal{L}(y, \lambda, u)=J(y, u)+\langle\lambda,-\Delta y-u\rangle,
$$

λ is the Lagrange multiplier or adjoint state.

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:

$$
\partial_{\lambda} \mathcal{L}(y, \lambda, u)=0, \quad \Rightarrow \quad-\Delta y-u=0
$$

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:

$$
\partial_{\lambda} \mathcal{L}(y, \lambda, u)=0, \quad \Rightarrow \quad-\Delta y-u=0
$$

- Adjoint problem:

$$
\partial_{y} \mathcal{L}(y, \lambda, u)=0 .
$$

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:

$$
\partial_{\lambda} \mathcal{L}(y, \lambda, u)=0, \quad \Rightarrow \quad-\Delta y-u=0
$$

- Adjoint problem:

$$
\partial_{y} \mathcal{L}(y, \lambda, u)=0 .
$$

- Integration by parts

$$
\langle\lambda,-\Delta y\rangle=\langle-\Delta \lambda, y\rangle-\int_{\partial \Omega} \lambda \partial_{n} y+\int_{\partial \Omega} y \partial_{n} \lambda
$$

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:

$$
\partial_{\lambda} \mathcal{L}(y, \lambda, u)=0, \quad \Rightarrow \quad-\Delta y-u=0 .
$$

- Adjoint problem:

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:

$$
\partial_{\lambda} \mathcal{L}(y, \lambda, u)=0, \quad \Rightarrow \quad-\Delta y-u=0
$$

- Adjoint problem:

$$
\begin{array}{rlrl}
\partial_{y} L(y, \lambda, u)=0, & \Rightarrow & -\Delta \lambda & =y-\hat{y} \\
& & \text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega,
\end{array}
$$

- Optimality condition:

$$
\partial_{u} L(y, \lambda, u)=0 \quad \Rightarrow \quad-\lambda+\nu u=0 .
$$

with $U_{\mathrm{ad}}:=L^{2}(\Omega)$.

Optimality system

\star First-order optimality system:

$$
\begin{array}{rlrlrl}
-\Delta y & =u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & & \text { in } \Omega, \\
y=0 & \text { on } \partial \Omega, & \lambda & =0 & & \text { on } \partial \Omega, \\
-\lambda+\nu u & =0 . & &
\end{array}
$$

Optimality system

\star First-order optimality system:

$$
\begin{array}{rlrlrl}
-\Delta y & =u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & & \text { in } \Omega, \\
y & =0 \text { on } \partial \Omega, & \lambda & =0 & & \text { on } \partial \Omega, \\
-\lambda+\nu u & =0 . & &
\end{array}
$$

\star First-order optimality system:

$$
\begin{array}{rlrlrl}
-\Delta y & =\nu^{-1} \lambda & \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & \\
\text { in } \Omega, \\
y & =0 & & \text { on } \partial \Omega, & \lambda & =0
\end{array}
$$

Optimality system

\star First-order optimality system:

$$
\begin{array}{rlrlrl}
-\Delta y & =u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & & \text { in } \Omega, \\
y=0 \text { on } \partial \Omega, & \lambda & =0 & & \text { on } \partial \Omega, \\
-\lambda+\nu u & =0 . & &
\end{array}
$$

\star First-order optimality system:

$$
\begin{array}{rlrlrl}
-\Delta y & =\nu^{-1} \lambda & \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & \\
\text { in } \Omega, \\
y & =0 & & \text { on } \partial \Omega, & \lambda & =0
\end{array}
$$

\star First-order optimality system:

$$
\begin{aligned}
\nu \Delta^{2} y & =y-\hat{y} & & \text { in } \Omega, \\
y & =0 & & \text { on } \partial \Omega, \\
\Delta y & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann (Bjørstad, Widlund 1986)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface, $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$, and $\hat{y}=0$.

$$
\begin{aligned}
\nu D^{(4)} y_{1}^{k}-y_{1}^{k} & =0, & \nu D^{(4)} y_{2}^{k}-y_{2}^{k} & =0, \\
y_{1}^{k} k(\Gamma) & =y_{2}^{k-1}(\Gamma), & D^{(1)} y_{2}^{k}(\Gamma) & =D^{(1)} y_{1}^{k}(\Gamma), \\
D^{(2)} y_{1}^{k}(\Gamma) & =D^{(2)} y_{2}^{k-1}(\Gamma), & D^{(3)} y_{2}^{k}(\Gamma) & =D^{(3)} y_{1}^{k}(\Gamma) .
\end{aligned}
$$

Dirichlet-Neumann with relaxation

Relaxation parameter: $\theta_{1}, \theta_{2} \in(0,1)$.

$$
\begin{aligned}
& \nu D^{(4)} y_{1}^{k}-y_{1}^{k}=0, \quad \nu D^{(4)} y_{2}^{k}-y_{2}^{k}=0, \\
& y_{1}^{k}(\Gamma)=y_{\Gamma}^{k-1}, \quad D^{(1)} y_{2}^{k}(\Gamma)=D^{(1)} y_{1}^{k}(\Gamma), \\
& D^{(2)} y_{1}^{k}(\Gamma)=\tilde{y}_{\Gamma}^{k-1}, \quad D^{(3)} y_{2}^{k}(\Gamma)=D^{(3)} y_{1}^{k}(\Gamma), \\
& y_{\Gamma}^{k}:=\theta_{1} y_{2}^{k-1}(\Gamma)+\left(1-\theta_{1}\right) y_{\Gamma}^{k-1}, \tilde{y}_{\Gamma}^{k}:=\theta_{2} D^{(2)} y_{2}^{k-1}(\Gamma)+\left(1-\theta_{2}\right) \tilde{y}_{\Gamma}^{k-1} \text {. }
\end{aligned}
$$

Dirichlet-Neumann with relaxation

Relaxation parameter: $\theta_{1}, \theta_{2} \in(0,1)$.

$$
\begin{aligned}
& \nu D^{(4)} y_{1}^{k}-y_{1}^{k}=0, \quad \nu D^{(4)} y_{2}^{k}-y_{2}^{k}=0, \\
& y_{1}^{k}(\Gamma)=y_{\Gamma}^{k-1}, \quad D^{(1)} y_{2}^{k}(\Gamma)=D^{(1)} y_{1}^{k}(\Gamma), \\
& D^{(2)} y_{1}^{k}(\Gamma)=\tilde{y}_{\Gamma}^{k-1}, \quad D^{(3)} y_{2}^{k}(\Gamma)=D^{(3)} y_{1}^{k}(\Gamma), \\
& y_{\Gamma}^{k}:=\theta_{1} y_{2}^{k-1}(\Gamma)+\left(1-\theta_{1}\right) y_{\Gamma}^{k-1}, \tilde{y}_{\Gamma}^{k}:=\theta_{2} D^{(2)} y_{2}^{k-1}(\Gamma)+\left(1-\theta_{2}\right) \tilde{y}_{\Gamma}^{k-1} \text {. }
\end{aligned}
$$

Convergence Analysis

- Solve y_{1}^{k}, y_{2}^{k} by using $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$.

$$
\begin{gathered}
y_{1}^{k}(x)=A^{k} \sinh \left(\frac{\mu x}{\sqrt{2}}\right) \cos \left(\frac{\mu x}{\sqrt{2}}\right)+B^{k} \cosh \left(\frac{\mu x}{\sqrt{2}}\right) \sin \left(\frac{\mu x}{\sqrt{2}}\right), \\
y_{2}^{k}(x)=C^{k} \sinh \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \cos \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \\
+E^{k} \cosh \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \sin \left(\frac{\mu(1-x)}{\sqrt{2}}\right) .
\end{gathered}
$$

Convergence Analysis

- Solve y_{1}^{k}, y_{2}^{k} by using $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$.

$$
\begin{gathered}
y_{1}^{k}(x)=A^{k} \sinh \left(\frac{\mu x}{\sqrt{2}}\right) \cos \left(\frac{\mu x}{\sqrt{2}}\right)+B^{k} \cosh \left(\frac{\mu x}{\sqrt{2}}\right) \sin \left(\frac{\mu x}{\sqrt{2}}\right), \\
y_{2}^{k}(x)=C^{k} \sinh \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \cos \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \\
+E^{k} \cosh \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \sin \left(\frac{\mu(1-x)}{\sqrt{2}}\right) .
\end{gathered}
$$

- Evaluate $A^{k}, B^{k}, C^{k}, E^{k}$ by using the transmission condition at Γ.

Convergence Analysis

- Solve y_{1}^{k}, y_{2}^{k} by using $y_{1}^{k}(0)=y_{2}^{k}(1)=D^{(2)} y_{1}^{k}(0)=D^{(2)} y_{2}^{k}(1)=0$.

$$
\begin{gathered}
y_{1}^{k}(x)=A^{k} \sinh \left(\frac{\mu x}{\sqrt{2}}\right) \cos \left(\frac{\mu x}{\sqrt{2}}\right)+B^{k} \cosh \left(\frac{\mu x}{\sqrt{2}}\right) \sin \left(\frac{\mu x}{\sqrt{2}}\right), \\
y_{2}^{k}(x)=C^{k} \sinh \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \cos \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \\
+E^{k} \cosh \left(\frac{\mu(1-x)}{\sqrt{2}}\right) \sin \left(\frac{\mu(1-x)}{\sqrt{2}}\right) .
\end{gathered}
$$

- Evaluate $A^{k}, B^{k}, C^{k}, E^{k}$ by using the transmission condition at Γ.
- Different behaviours according to the interface Г:

围 Gander, Kwok and Mandal, Convergence of Substructuring Methods for Elliptic Optimal Control Problems, 2018

Neumann-Neumann (Bourgat, Glowinski, Tallec, Vidrascu 1989)

Primal problem:

$$
\begin{array}{rlrrl}
-\Delta y_{j}^{k} & =\nu^{-1} \lambda_{j}^{k}, & & \text { in } \Omega_{j} & \\
y_{j}^{k} & =0, & & \text { on } \partial \Omega_{j} / \Gamma & \\
y_{j}^{k} & =y_{\Gamma}^{k-1}, & & \text { on } \Gamma & \\
\psi_{j}^{k} & =0, & \Omega_{j} \\
\partial_{n_{j}} \psi_{j}^{k} & =\partial_{n_{1}} y_{1}^{k}+\partial_{n_{2}} y_{2}^{k}, & & \text { on } \Gamma
\end{array}
$$

with $y_{\Gamma}^{k}:=y_{\Gamma}^{k-1}-\theta_{1}\left(\psi_{1}^{k} \mid\left\ulcorner+\left.\psi_{2}^{k}\right|_{\Gamma}\right)\right.$.

Adjoint problem:

$$
\begin{array}{rlrrr}
-\Delta \lambda_{j}^{k} & =y_{j}^{k}-\hat{y}, & & \text { in } \Omega_{j} & -\Delta \phi_{j}^{k}
\end{array}=0, \quad \text { in } \Omega_{j},
$$

with $\lambda_{\Gamma}^{k}:=\lambda_{\Gamma}^{k-1}-\theta_{2}\left(\phi_{1}^{k}\left|\Gamma+\phi_{2}^{k}\right|\ulcorner)\right.$.

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:
- Adjoint problem:

$$
\begin{array}{rlrlrl}
\partial_{y} L(y, \lambda, u)=0, & \Rightarrow & & -\Delta \lambda & =y-\hat{y} & \\
\text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega .
\end{array}
$$

Optimality system

$$
\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\|u\|_{U_{\mathrm{ad}}}^{2}+\langle\lambda,-\Delta y-u\rangle
$$

- Primal problem:

$$
\partial_{\lambda} L(y, \lambda, u)=0, \quad \Rightarrow \quad \begin{aligned}
-\Delta y & =u
\end{aligned} \quad \text { in } \Omega, ~ \begin{aligned}
& =0
\end{aligned} \quad \text { on } \partial \Omega .
$$

- Adjoint problem:

$$
\begin{array}{rlrl}
\partial_{y} L(y, \lambda, u)=0, & \Rightarrow & -\Delta \lambda & =y-\hat{y} \\
& & \text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega .
\end{array}
$$

- Optimality condition:

$$
\partial_{u} L(y, \lambda, u)=0
$$

with $U_{\text {ad }}:=H^{-1}(\Omega)$.

Energy norm

- A linear operator $\mathcal{H}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ such that $\mathcal{H} u$ is the unique solution of the variational problem related to (1)

$$
\int_{\Omega} \nabla \mathcal{H} u(x) \cdot \nabla v(x) \mathrm{d} x=\langle u, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Energy norm

- A linear operator $\mathcal{H}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ such that $\mathcal{H} u$ is the unique solution of the variational problem related to (1)

$$
\int_{\Omega} \nabla \mathcal{H} u(x) \cdot \nabla v(x) \mathrm{d} x=\langle u, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

- The norm in $H^{-1}(\Omega)$ which is equivalent to the energy norm

$$
\|u\|_{H^{-1}(\Omega)}^{2}:=\langle u, \mathcal{H} u\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=\|\nabla y\|_{L^{2}(Q)}^{2}
$$

Energy norm

- A linear operator $\mathcal{H}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ such that $\mathcal{H} u$ is the unique solution of the variational problem related to (1)

$$
\int_{\Omega} \nabla \mathcal{H} u(x) \cdot \nabla v(x) \mathrm{d} x=\langle u, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

- The norm in $H^{-1}(\Omega)$ which is equivalent to the energy norm

$$
\|u\|_{H^{-1}(\Omega)}^{2}:=\langle u, \mathcal{H} u\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=\|\nabla y\|_{L^{2}(Q)}^{2}
$$

- \mathcal{H} is self-adjoint.

Energy norm

- A linear operator $\mathcal{H}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ such that $\mathcal{H} u$ is the unique solution of the variational problem related to (1)

$$
\int_{\Omega} \nabla \mathcal{H} u(x) \cdot \nabla v(x) \mathrm{d} x=\langle u, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

- The norm in $H^{-1}(\Omega)$ which is equivalent to the energy norm

$$
\|u\|_{H^{-1}(\Omega)}^{2}:=\langle u, \mathcal{H} u\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=\|\nabla y\|_{L^{2}(Q)}^{2}
$$

- \mathcal{H} is self-adjoint.
- Identity: $y=\mathcal{H} u$.

Energy norm

- A linear operator $\mathcal{H}: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ such that $\mathcal{H} u$ is the unique solution of the variational problem related to (1)

$$
\int_{\Omega} \nabla \mathcal{H} u(x) \cdot \nabla v(x) \mathrm{d} x=\langle u, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega)
$$

- The norm in $H^{-1}(\Omega)$ which is equivalent to the energy norm

$$
\|u\|_{H^{-1}(\Omega)}^{2}:=\langle u, \mathcal{H} u\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=\|\nabla y\|_{L^{2}(Q)}^{2}
$$

- \mathcal{H} is self-adjoint.
- Identity: $y=\mathcal{H} u$.
- Neumüller and Steinbach, Regularization error estimates for distributed control problems in energy spaces, 2021

Optimality system

$\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\langle\mathcal{H} u, u\rangle_{H_{0}^{1}(\Omega), H^{-1}(\Omega)}+\langle\lambda,-\Delta y-u\rangle$.

- Primal problem:

$$
\partial_{\lambda} L(y, \lambda, u)=0, \quad \Rightarrow \quad \begin{aligned}
-\Delta y & =u
\end{aligned} \quad \text { in } \Omega,
$$

- Adjoint problem:

$$
\begin{array}{rlrlrl}
\partial_{y} L(y, \lambda, u)=0, & \Rightarrow & & -\Delta \lambda & =y-\hat{y} & \\
\text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega .
\end{array}
$$

Optimality system

$\mathcal{L}(y, \lambda, u)=\frac{1}{2} \int_{\Omega}|y(x)-\hat{y}(x)|^{2} \mathrm{~d} x+\frac{\nu}{2}\langle\mathcal{H} u, u\rangle_{H_{0}^{1}(\Omega), H^{-1}(\Omega)}+\langle\lambda,-\Delta y-u\rangle$.

- Primal problem:
- Adjoint problem:

$$
\begin{array}{rlrlrl}
\partial_{y} L(y, \lambda, u)=0, & \Rightarrow & -\Delta \lambda & =y-\hat{y} & & \text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega .
\end{array}
$$

- Optimality condition:

$$
\partial_{u} L(y, \lambda, u)=0 \quad \Rightarrow \quad-\lambda+\nu \mathcal{H} u=0
$$

Optimality system

\star First-order optimality system:

$$
\begin{aligned}
-\Delta y & =u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} \\
y & =0 \text { on } \partial \Omega, & & \text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega, \\
-\lambda+\nu \mathcal{H} u & =0 . & &
\end{aligned}
$$

Optimality system

\star First-order optimality system:

$$
\begin{aligned}
-\Delta y & =u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} \\
y & =0 \text { on } \partial \Omega, & & \text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega, \\
-\lambda+\nu \mathcal{H} u & =0 . & &
\end{aligned}
$$

\star First-order optimality system:

$$
\begin{aligned}
& y=\mathcal{H} u \Leftarrow \begin{array}{rlrl}
-\Delta y=u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & \\
\text { in } \Omega, \\
y=0 \text { in } \partial \Omega, & \lambda & =0 & \\
\text { on } \partial \Omega,
\end{array} \\
& -\lambda+\nu \mathcal{H} u=0 .
\end{aligned}
$$

Optimality system

\star First-order optimality system:

$$
\begin{aligned}
-\Delta y & =u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} \\
y & =0 \text { on } \partial \Omega, & & \text { in } \Omega, \\
\lambda & =0 & & \text { on } \partial \Omega, \\
-\lambda+\nu \mathcal{H} u & =0 . & &
\end{aligned}
$$

\star First-order optimality system:

$$
\begin{aligned}
& y=\mathcal{H} u \Leftarrow \begin{array}{rlrl}
-\Delta y=u \text { in } \Omega, & -\Delta \lambda & =y-\hat{y} & \\
\text { in } \Omega, \\
y=0 \text { in } \partial \Omega, & \lambda & =0 & \\
\text { on } \partial \Omega,
\end{array} \\
& -\lambda+\nu \mathcal{H} u=0 .
\end{aligned}
$$

\star First-order optimality system:

$$
\begin{aligned}
-\nu \Delta y+y & =\hat{y} \text { in } \Omega \\
y & =0 \text { on } \partial \Omega .
\end{aligned}
$$

Error Analysis (DN)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface.

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$

$$
\begin{array}{lll}
\nu \ddot{e}_{1}^{k}-e_{1}^{k}=0, & e_{1}^{k}(0)=0, & e_{1}^{k}(\Gamma)=e_{2}^{k-1}(\Gamma), \\
\nu \ddot{e}_{2}^{k}-e_{2}^{k}=0, & e_{2}^{k}(1)=0, & \dot{e}_{2}^{k}(\Gamma)=\dot{e}_{1}^{k}(\Gamma) .
\end{array}
$$

Error Analysis (DN)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface.

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$

$$
\begin{array}{lll}
\nu \ddot{e}_{1}^{k}-e_{1}^{k}=0, & e_{1}^{k}(0)=0, & e_{1}^{k}(\Gamma)=e_{2}^{k-1}(\Gamma), \\
\nu \ddot{e}_{2}^{k}-e_{2}^{k}=0, & e_{2}^{k}(1)=0, & \dot{e}_{2}^{k}(\Gamma)=\dot{e}_{1}^{k}(\Gamma) .
\end{array}
$$

- Solution:

$$
e_{1}^{k}(x)=A^{k} \sinh \left(\sqrt{\nu^{-1}} x\right), \quad e_{2}^{k}(x)=B^{k} \sinh \left(\sqrt{\nu^{-1}}(1-x)\right) e^{-\sqrt{\nu^{-1}}} .
$$

Error Analysis (DN)

One dimensional case: $\Omega=(0,1), \Omega_{1}=(0, \Gamma), \Omega_{2}=(\Gamma, 1)$ with Γ the interface.

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$

$$
\begin{array}{lll}
\nu \ddot{e}_{1}^{k}-e_{1}^{k}=0, & e_{1}^{k}(0)=0, & e_{1}^{k}(\Gamma)=e_{2}^{k-1}(\Gamma), \\
\nu \ddot{e}_{2}^{k}-e_{2}^{k}=0, & e_{2}^{k}(1)=0, & \dot{e}_{2}^{k}(\Gamma)=\dot{e}_{1}^{k}(\Gamma) .
\end{array}
$$

- Solution:

$$
e_{1}^{k}(x)=A^{k} \sinh \left(\sqrt{\nu^{-1}} x\right), \quad e_{2}^{k}(x)=B^{k} \sinh \left(\sqrt{\nu^{-1}}(1-x)\right) e^{-\sqrt{\nu^{-1}}} .
$$

- Convergence factor:

$$
e_{2}^{k}(\Gamma)=-e_{2}^{k-1}(\Gamma) \underbrace{\tanh \left(\sqrt{\nu^{-1}}(1-\Gamma)\right) \operatorname{coth}\left(\sqrt{\nu^{-1}} \Gamma\right)}_{\rho_{\text {DN }}} .
$$

Error Analysis (DNR)

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$

$$
\begin{array}{ll}
\nu \ddot{e}_{1}^{k}-e_{1}^{k}=0, & e_{1}^{k}(0)=0, \\
\nu e_{1}^{k}(\Gamma)=e_{\Gamma}^{k-1} \\
\nu e_{2}^{k}-e_{2}^{k}=0, & e_{2}^{k}(1)=0,
\end{array} \dot{e}_{2}^{k}(\Gamma)=\dot{e}_{1}^{k}(\Gamma), ~ l
$$

with $e_{\Gamma}^{k}:=(1-\theta) e_{\Gamma}^{k-1}+\theta e_{2}^{k}(\Gamma), \theta \in(0,1)$.

Error Analysis (DNR)

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$

$$
\begin{array}{lll}
\nu \ddot{e}_{1}^{k}-e_{1}^{k}=0, & e_{1}^{k}(0)=0, & e_{1}^{k}(\Gamma)=e_{\Gamma}^{k-1} \\
\nu \ddot{e}_{2}^{k}-e_{2}^{k}=0, & e_{2}^{k}(1)=0, & \dot{e}_{2}^{k}(\Gamma)=\dot{e}_{1}^{k}(\Gamma)
\end{array}
$$

with $e_{\Gamma}^{k}:=(1-\theta) e_{\Gamma}^{k-1}+\theta e_{2}^{k}(\Gamma), \theta \in(0,1)$.

- Convergence factor:

$$
\rho_{\mathrm{DNR}}:=\left|1-\theta\left[1+\tanh \left(\sqrt{\nu^{-1}}(1-\Gamma)\right) \operatorname{coth}\left(\sqrt{\nu^{-1}} \Gamma\right)\right]\right| .
$$

Error Analysis (NN)

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$:

$$
\begin{aligned}
& \nu \ddot{e}_{j}^{k}-e_{j}^{k}=0, \quad e_{1}^{k}(0)=0, \quad e_{2}^{k}(1)=0, \quad e_{j}^{k}(\Gamma)=e_{\Gamma}^{k-1}, \\
& \nu \ddot{\psi}_{j}^{k}-\psi_{j}^{k}=0, \quad \psi_{1}^{k}(0)=0, \quad \psi_{2}^{k}(1)=0, \quad \partial_{n_{j}} \psi_{j}^{k}=\partial_{n_{1}} e_{1}^{k}+\partial_{n_{2}} e_{2}^{k},
\end{aligned}
$$

$$
\text { with } e_{\Gamma}^{k}:=e_{\Gamma}^{k-1}-\theta\left(\psi_{1}^{k}(\Gamma)+\psi_{2}^{k}(\Gamma)\right), \theta \in(0,1)
$$

Error Analysis (NN)

- Error equation for $e_{j}^{k}:=y-y_{j}^{k}$:

$$
\begin{aligned}
& \nu \ddot{e}_{j}^{k}-e_{j}^{k}=0, \quad e_{1}^{k}(0)=0, \quad e_{2}^{k}(1)=0, \quad e_{j}^{k}(\Gamma)=e_{\Gamma}^{k-1}, \\
& \nu \ddot{\psi}_{j}^{k}-\psi_{j}^{k}=0, \quad \psi_{1}^{k}(0)=0, \quad \psi_{2}^{k}(1)=0, \quad \partial_{n_{j}} \psi_{j}^{k}=\partial_{n_{1}} e_{1}^{k}+\partial_{n_{2}} e_{2}^{k},
\end{aligned}
$$

$$
\text { with } e_{\Gamma}^{k}:=e_{\Gamma}^{k-1}-\theta\left(\psi_{1}^{k}(\Gamma)+\psi_{2}^{k}(\Gamma)\right), \theta \in(0,1)
$$

- Convergence factor:

$$
\begin{aligned}
\rho_{\mathrm{NN}} & :=\mid 1-\theta\left(\tanh \left(\sqrt{\nu^{-1}} \Gamma\right)\right. \\
& \left.+\tanh \left(\sqrt{\nu^{-1}}(1-\Gamma)\right)\right)\left(\operatorname{coth}\left(\sqrt{\nu^{-1}} \Gamma\right)+\operatorname{coth}\left(\sqrt{\nu^{-1}}(1-\Gamma)\right)\right) \mid .
\end{aligned}
$$

Convergence tests (DNR)

Convergence tests (NN)

References

Gander, Kwok and Mandal, Convergence of Substructuring Methods for Elliptic Optimal Control Problems, 2018
图 Neumüller and Steinbach, Regularization error estimates for distributed control problems in energy spaces, 2021
Langer, Steinbach, Tröltzsch and Yang, Space-time finite element discretization of parabolic optimal control problems with energy regularization, 2021

Thanks for your attention!

