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Introduction

Motivation: High potential on commercial applications, e.g.,
cosmetics, pharmaceuticals, food complements, wastewater
treatment, green energy, etc.
Raceway ponds

Figure: A typical raceway for cultivating microalgae. Notice the
paddle-wheel which mixes the culture suspension. Picture from INRA (ANR
Symbiose project) [1].
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1D Illustration

0 L

z

0 x
η(x)

Is

zb(x)h(x)u(x)

Figure: Representation of the hydrodynamic model.
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Saint-Venant Equations

1D steady state Saint-Venant equations

∂x(hu) = 0, (1)

∂x(hu2 + g
h2

2
) = −gh∂xzb. (2)

Froude number:
Fr :=

u√
gh

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

Given a smooth topography zb, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition [5, Lemma
1].
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Saint-Venant Equations

u, zb as a function of h

u =
Q0

h
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zb =
M0
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− Q2
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2gh2
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Lagrangian Trajectories

Incompressibility of the flow: ∇ · u = 0 with u = (u(x),w(x , z))

∂xu + ∂zw = 0. (3)

Integrating (3) from zb to z and using the kinematic condition at
bottom (w(x , zb) = u(x)∂xzb) gives:

w(x , z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

The Lagrangian trajectory is characterized by the system(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t))

)
.

A time free formulation of the Lagrangian trajectory:

z(x) = η(x) +
h(x)

h(0)
(z(0)− η(0)). (4)
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Han model [4]

A: open and ready to harvest a photon,
B: closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

Ȧ = −σIA + B
τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

(5)

A,B,C are the relative frequencies of the three possible states with
A + B + C = 1.
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τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

(5)

A,B,C are the relative frequencies of the three possible states with
A + B + C = 1.

Using their sum equals to one to eliminate B{
Ȧ = −(σI + 1

τ )A + 1−C
τ ,

Ċ = −(kr + kdσI )C + kdσI (1− A),
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Ċ = −(kdτ
(σI )2

τσI + 1
+ kr )C + kdτ
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.

The net growth rate:
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τσI + 1
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The Beer-Lambert law describes how light is attenuated with depth

I (x , z) = Is exp
(
− ε(η(x)− z)

)
, (6)

where ε is the light extinction defined by:

ε(X ) = α0X + α1, (7)

with α0 light extinction coefficient, α1 background turbidity and X
biomass concentration.
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Optimization Problem

Our goal: Topography zb.

Objective function: Average net growth rate

µ̄∞ :=
1

V

∫ L

0

∫ η(x)

zb(x)
µ
(
C (x , z), I (x , z)

)
dzdx ,

µ̄Nz :=
1

VNz

Nz∑
i=1

∫ L

0
µ(Ci , Ii )hdx .

Volume of the system

V =

∫ L

0
h(x)dx . (8)

Parameterize h by a vector a := [a1, · · · , aN ] ∈ RN .

The computational chain:

a→ h→ zi → Ii → Ci → µ̄Nz .
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Optimization Problem: µ̄Nz (a) = 1
VNz

∑Nz
i=1

∫ L
0 µ(Ci , Ii (a))h(a)dx ,

where Ci satisfy

C ′i = (−α (Ii (a))Ci + β (Ii (a)))
h(a)

Q0
.

Lagrangian

L(Ci , a, pi ) =
1

VNz

Nz∑
i=1

∫ L

0

(
− γ(Ii (a))Ci + ζ(Ii (a))

)
h(a)dx

−
Nz∑
i=1

∫ L

0
pi

(
C ′i +

α(Ii (a))− β(Ii (a))

Q0
h(a)

)
dx .

The gradient ∇µ̄Nz (a) = ∂aL is given by

∂aL =
Nz∑
i=1

∫ L

0

(−γ′ (Ii )Ci + ζ ′ (Ii )

VNz
+ pi
−α′(Ii )Ci + β′(Ii )

Q0

)
h∂aIidx

+
Nz∑
i=1

∫ L

0

(−γ (Ii )Ci + ζ (Ii )

VNz
+ pi
−α(Ii )Ci + β(Ii )

Q0

)
∂ahdx .

Liu-Di LU Séminaire Biocore Thursday June 3, 2021 9 / 27



Optimization Problem: µ̄Nz (a) = 1
VNz

∑Nz
i=1

∫ L
0 µ(Ci , Ii (a))h(a)dx ,

where Ci satisfy

C ′i = (−α (Ii (a))Ci + β (Ii (a)))
h(a)

Q0
.

Lagrangian

L(Ci , a, pi ) =
1

VNz

Nz∑
i=1

∫ L

0

(
− γ(Ii (a))Ci + ζ(Ii (a))

)
h(a)dx

−
Nz∑
i=1

∫ L

0
pi

(
C ′i +

α(Ii (a))− β(Ii (a))

Q0
h(a)

)
dx .

The gradient ∇µ̄Nz (a) = ∂aL is given by

∂aL =
Nz∑
i=1

∫ L

0

(−γ′ (Ii )Ci + ζ ′ (Ii )

VNz
+ pi
−α′(Ii )Ci + β′(Ii )

Q0

)
h∂aIidx

+
Nz∑
i=1

∫ L

0

(−γ (Ii )Ci + ζ (Ii )

VNz
+ pi
−α(Ii )Ci + β(Ii )

Q0

)
∂ahdx .
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Liu-Di LU Séminaire Biocore Thursday June 3, 2021 9 / 27



Numerical settings

Parameterization of h: Truncated Fourier

h(x) = a0 +
N∑

n=1

an sin(2nπ
x

L
). (9)

Parameter to be optimized: Fourier coefficients a := [a1, . . . , aN ]. We use
this parameterization based on the following reasons :

We consider a hydrodynamic regime where the solutions of the
shallow water equations are smooth and hence the water depth can
be approximated by (9).

One has naturally h(0) = h(L) under this parameterization, which
means that we have accomplished one lap of the raceway pond.

We assume a constant volume of the system V , which can be
achieved by fixing a0. Indeed, under this parameterization and
using (8), one finds V = a0L.
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Convergence on vertical discretization number

We fix N = 5 and take 100 random vector a. For Nz varying from 1 to 80,
we compute the average value of µ̄Nz for each Nz .

Figure: The value of µ̄Nz for Nz = [1, 80].
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Optimal Topography

We keep N = 5 and take Nz = 40. As an initial guess, we consider the flat
topography, meaning that a is set to 0.
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Periodic case

Assumption

Photoinhibition state C is periodic meaning that Ci (L) = Ci (0)

Theorem (Flat topography [2])

Assume the volume of the system V is constant. Then ∇µ̄Nz (0) = 0.

Liu-Di LU Séminaire Biocore Thursday June 3, 2021 13 / 27



Optimal topography (C periodic)

We keep N = 5 and Nz = 40. As an initial guess, we consider a random
topography.
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Summary on the topography

In the case C non periodic, one can find no flat optimal topographies,
however the increase is limited.

In the case C periodic, the flat topography is actually the optimal
topography.

What do we do next?
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Liu-Di LU Séminaire Biocore Thursday June 3, 2021 15 / 27



Summary on the topography

In the case C non periodic, one can find no flat optimal topographies,
however the increase is limited.

In the case C periodic, the flat topography is actually the optimal
topography.

What do we do next?

Liu-Di LU Séminaire Biocore Thursday June 3, 2021 15 / 27



Mixing devices

An ideal rearrangement of trajectories: at each new lap, the algae at
depth zi are entirely transferred into the position zj when passing
through the mixing device.

We denote by P the set of permutation matrices of size N × N and
by SN the associated set of permutations of N elements.

0 L 0 L

P

z

x
0

z1 = zσ(4)

z2 = zσ(1)

z3 = zσ(2)

z4 = zσ(3)
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Test with a permutation

We keep N = 5, Nz = 40 and choose σ = Id

Figure: The optimal topography.
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Test with a permutation

We keep N = 5, Nz = 40 and choose σ = (1 Nz)(2 Nz − 1) . . .
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Test with a permutation

Figure: The evolution of the photo-inhibition state C for two laps.

We can observe that the period of C equals to one.
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General problem

Given a period T , and initial time T0 and a sequence (Tk)k∈N, with
Tk = kT + T0, we consider the following resource allocation problem:

Periodic dynamical resource allocation problem

Consider N resources denoted by (In)Nn=1 ∈ RN which can be allocated to
N activities denoted by (xn)Nn=1 where xn consists of a real function of
time. On a time interval [Tk ,Tk+1), each activity uses the assigned
resource and evolves according to a linear dynamics

ẋn = −α(In)xn + β(In), (10)

where α : R→ R+ and β : R→ R+ are given. At time Tk+1, the
resources is re-assigned, meaning that x(Tk+1) = Px(T−k+1) for some
P ∈ P. In this way, k ∈ N represents the number of re-assignments and
T−k represents the moment just before re-assignment.
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Assumption

Resources (In)Nn=1 are constant with respect to time.

Consequence

For a given initial vector of states (xn(T0))Nn=1, we have

x(t) = D(t)x(Tk) + v(t), t ∈ [Tk ,Tk+1), (11)

where D(t) and v(t) are time dependent.

Let u ∈ RN an arbitrary vector. Define

f k := 〈u, 1

T

∫ Tk+1

Tk

x(t)dt〉, (12)

the benefit attached to the time period [Tk ,Tk+1) after k times of
re-assignment. Then the average benefit after K operations is given by

1

K

K∑
k=0

f k .
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Liu-Di LU Séminaire Biocore Thursday June 3, 2021 19 / 27



According to (11) and by the definition of P, we have

x(Tk+1) = Px(T−k+1) = P(Dx(Tk) + v). (13)

Lemma

Given k ∈ N and P ∈ P, the matrix IN − (PD)k is invertible.

Theorem (One periodic [3])

(x(Tk))k∈N is a constant sequence and we have for all k ∈ N

x(Tk) = (IN − PD)−1Pv .

The result shows that every KT−periodic evolution will actually be
T−periodic.
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Optimization problem

max
P∈P

J(P) := max
P∈P
〈u, (INz − PD)−1Pv〉, (14)

Remark

Since #S = N!, this problem cannot be tackled in realistic cases where
large values of N must be considered, e.g., to keep a good numerical
accuracy.

Expand the functional (14) as follows

〈u, (INz − PD)−1Pv〉 =
+∞∑
l=0

〈u, (PD)lPv〉 = 〈u,Pv〉+
+∞∑
l=1

〈u, (PD)lPv〉,

Approximation problem

max
P∈P

Japprox(P) := max
P∈P
〈u,Pv〉. (15)
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Lemma

Let σ+, σ− ∈ S such that vσ+(1) ≤ vσ+(2) · · · ≤ vσ+(N) and
vσ−(N) ≤ vσ−(N−1) ≤ · · · ≤ vσ−(1) and P+, P− ∈ P, the corresponding
permutation matrices. Then

P+ = argmaxP∈PJ
approx(P), P− = argminP∈PJ

approx(P).

Remark (Optimal matrix)

P+: associates the largest coefficient of u with the largest coefficient
of v , the second largest coefficient with the second largest, and so on.

P−: associates the largest coefficient of u with the smallest
coefficient of v , the second largest coefficient with the second
smallest, and so on.
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Theorem (Criterion [3])

Assume that u and v have positive entries and define

φ(m1) :=
1

sdm1
2 e

( +∞∑
l=1

d l
maxF

+
(l+1)m1

− d l
minF

−
(l+1)m1

)
, (16)

where m1 := # {n = 1, . . . ,N | σ(n) 6= σ+(n)}, dmax := maxn=1,...,N(dn)
and dmin := minn=1,...,N(dn). Assume that:

max
m1≥2

φ(m1) ≤ 1. (17)

Then the problem maxP∈P〈u, (INz − PD)−1Pv〉 (resp.
minP∈P〈u, (INz − PD)−1Pv〉) and the problem maxP∈P〈u,Pv〉 (resp.
minP∈P〈u,Pv〉) have the same solution.
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Figure: Optimal matrix Pmax for Problem (14) and N = 11 (Left) and P+ for
Problem (15) and N = 100 (Right) for the two parameters triplets. The blue
points represent non-zero entries, i.e., entries equal to 1.
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Figure: Average net specific growth rate µ̄N for T = 1 s (Top) and for T = 1000 s
(Bottom). Left: N = 5. Right: N = 9. The red surface is obtained with Pmax

and the blue surface is obtained with P+. The purple stars represent the cases
where Pmax = P+ or, in case of multiple solution, µ̄N(Pmax) = µ̄N(P+). The
green circle represent the cases where the criterion (17) is satisfied.
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Variable volume

Volume related parameter a0 as the average depth of the raceway
system:

a0 := h̄ =
1

L

∫ L

0
h(x)dx =

V

L
. (18)

New parameter ã = [a0, a1, . . . , aN ].

Optimization Problem:

ΠNz (ã) := µ̄Nz (ã)Xh(ã) =
Yopt − α1a0

VNzα0

Nz∑
i=1

∫ L

0
µ(CP

i , Ii (ã))h(ã)dx

where CP
i satisfy

CP
i
′

=
(
−α (Ii (ã))CP

i + β (Ii (ã))
) h(ã)

Q0
,

PCP(L) = CP(0).

Extra element in gradient: ∇ΠNz (ã) = [∂a0L, ∂aL].
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New parameter ã = [a0, a1, . . . , aN ].

Optimization Problem:
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Optimal Topography (Variable volume)

We keep Nz = 7. As an initial guess, we consider the flat topography with
a0 = 0.4.

P100
max =



0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


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