Some optimization problems in an algal raceway pond

Olivier Bernard, Liu-Di LU, Jacques Sainte-Marie, Julien Salomon

Thursday June 3, 2021

Introduction

- Motivation: High potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements, wastewater treatment, green energy, etc.
- Raceway ponds

Figure: A typical raceway for cultivating microalgae. Notice the paddle-wheel which mixes the culture suspension. Picture from INRA (ANR Symbiose project) [1].

1D Illustration

Figure: Representation of the hydrodynamic model.

Saint-Venant Equations

- 1D steady state Saint-Venant equations

$$
\begin{align*}
& \partial_{x}(h u)=0 \tag{1}\\
& \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} \tag{2}
\end{align*}
$$

Saint-Venant Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

Saint-Venant Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

Saint-Venant Equations

- u, z_{b} as a function of h

$$
\begin{align*}
u & =\frac{Q_{0}}{h} \tag{1}\\
z_{b} & =\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{2}
\end{align*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\operatorname{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_{b}, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [5, Lemma $1]$.

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- The Lagrangian trajectory is characterized by the system

$$
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} .
$$

Lagrangian Trajectories

- Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}}=0$ with $\underline{\mathbf{u}}=(u(x), w(x, z))$

$$
\begin{equation*}
\partial_{x} u+\partial_{z} w=0 \tag{3}
\end{equation*}
$$

- Integrating (3) from z_{b} to z and using the kinematic condition at bottom $\left(w\left(x, z_{b}\right)=u(x) \partial_{x} z_{b}\right)$ gives:

$$
w(x, z)=\left(\frac{M_{0}}{g}-\frac{3 u^{2}(x)}{2 g}-z\right) u^{\prime}(x)
$$

- The Lagrangian trajectory is characterized by the system

$$
\binom{\dot{x}(t)}{\dot{z}(t)}=\binom{u(x(t))}{w(x(t), z(t))} .
$$

- A time free formulation of the Lagrangian trajectory:

$$
\begin{equation*}
z(x)=\eta(x)+\frac{h(x)}{h(0)}(z(0)-\eta(0)) \tag{4}
\end{equation*}
$$

Han model [4]

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{5}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.

Han model [4]

- A: open and ready to harvest a photon, B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{5}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.
- Using their sum equals to one to eliminate B

$$
\left\{\begin{array}{l}
\dot{A}=-\left(\sigma I+\frac{1}{\tau}\right) A+\frac{1-C}{\tau} \\
\dot{C}=-\left(k_{r}+k_{d} \sigma I\right) C+k_{d} \sigma l(1-A)
\end{array}\right.
$$

Han model [4]

- A: open and ready to harvest a photon,
B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau}, \tag{5}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B .
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.
- Using fast-slow approximation, (5) can be reduced to:

$$
\dot{C}=-\left(k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}+k_{r}\right) C+k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}
$$

Han model [4]

- A: open and ready to harvest a photon,
B : closed while processing the absorbed photon energy,
C : inhibited if several photons have been absorbed simultaneously.

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \tag{5}\\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

- A, B, C are the relative frequencies of the three possible states with $A+B+C=1$.
- Using fast-slow approximation, (5) can be reduced to:

$$
\dot{C}=-\left(k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}+k_{r}\right) C+k_{d} \tau \frac{(\sigma I)^{2}}{\tau \sigma I+1}
$$

- The net growth rate:

$$
\mu(C, I):=k \sigma I A-R=k \sigma I \frac{(1-C)}{\tau \sigma I+1}-R
$$

- The Beer-Lambert law describes how light is attenuated with depth

$$
\begin{equation*}
I(x, z)=I_{s} \exp (-\varepsilon(\eta(x)-z)) \tag{6}
\end{equation*}
$$

where ε is the light extinction defined by:

$$
\begin{equation*}
\varepsilon(X)=\alpha_{0} X+\alpha_{1} \tag{7}
\end{equation*}
$$

with α_{0} light extinction coefficient, α_{1} background turbidity and X biomass concentration.

Optimization Problem

- Our goal: Topography z_{b}.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
& \bar{\mu}_{N_{z}}
\end{aligned}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x .
$$

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
& \bar{\mu}_{N_{z}}:=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x .
\end{aligned}
$$

- Volume of the system

$$
\begin{equation*}
V=\int_{0}^{L} h(x) \mathrm{d} x \tag{8}
\end{equation*}
$$

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
& \bar{\mu}_{N_{z}}
\end{aligned}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x .
$$

- Volume of the system

$$
\begin{equation*}
V=\int_{0}^{L} h(x) \mathrm{d} x \tag{8}
\end{equation*}
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{N}\right] \in \mathbb{R}^{N}$.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{aligned}
& \bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
& \bar{\mu}_{N_{z}}:=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x .
\end{aligned}
$$

- Volume of the system

$$
\begin{equation*}
V=\int_{0}^{L} h(x) \mathrm{d} x \tag{8}
\end{equation*}
$$

- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{N}\right] \in \mathbb{R}^{N}$.
- The computational chain:

$$
a \rightarrow h \rightarrow z_{i} \rightarrow I_{i} \rightarrow C_{i} \rightarrow \bar{\mu}_{N_{z}}
$$

- Optimization Problem: $\bar{\mu}_{N_{z}}(a)=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, I_{i}(a)\right) h(a) \mathrm{d} x$, where C_{i} satisfy

$$
C_{i}^{\prime}=\left(-\alpha\left(I_{i}(a)\right) C_{i}+\beta\left(I_{i}(a)\right)\right) \frac{h(a)}{Q_{0}}
$$

- Optimization Problem: $\bar{\mu}_{N_{z}}(a)=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}(a)\right) h(a) \mathrm{d} x$, where C_{i} satisfy

$$
C_{i}^{\prime}=\left(-\alpha\left(l_{i}(a)\right) C_{i}+\beta\left(l_{i}(a)\right)\right) \frac{h(a)}{Q_{0}} .
$$

- Lagrangian

$$
\begin{aligned}
\mathcal{L}\left(C_{i}, a, p_{i}\right)=\frac{1}{V N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}\left(-\gamma\left(I_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)\right) h(a) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(I_{i}(a)\right)-\beta\left(I_{i}(a)\right)}{Q_{0}} h(a)\right) \mathrm{d} x .
\end{aligned}
$$

- Optimization Problem: $\bar{\mu}_{N_{z}}(a)=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}(a)\right) h(a) \mathrm{d} x$, where C_{i} satisfy

$$
C_{i}^{\prime}=\left(-\alpha\left(l_{i}(a)\right) C_{i}+\beta\left(l_{i}(a)\right)\right) \frac{h(a)}{Q_{0}} .
$$

- Lagrangian

$$
\begin{aligned}
\mathcal{L}\left(C_{i}, a, p_{i}\right)=\frac{1}{V N_{z}} & \sum_{i=1}^{N_{z}} \int_{0}^{L}\left(-\gamma\left(l_{i}(a)\right) C_{i}+\zeta\left(I_{i}(a)\right)\right) h(a) \mathrm{d} x \\
& -\sum_{i=1}^{N_{z}} \int_{0}^{L} p_{i}\left(C_{i}^{\prime}+\frac{\alpha\left(l_{i}(a)\right)-\beta\left(l_{i}(a)\right)}{Q_{0}} h(a)\right) \mathrm{d} x
\end{aligned}
$$

- The gradient $\nabla \bar{\mu}_{N_{z}}(a)=\partial_{a} \mathcal{L}$ is given by

$$
\begin{aligned}
\partial_{a} \mathcal{L} & =\sum_{i=1}^{N_{z}} \int_{0}^{L}\left(\frac{-\gamma^{\prime}\left(I_{i}\right) C_{i}+\zeta^{\prime}\left(I_{i}\right)}{V N_{z}}+p_{i} \frac{-\alpha^{\prime}\left(I_{i}\right) C_{i}+\beta^{\prime}\left(I_{i}\right)}{Q_{0}}\right) h \partial_{a} I_{i} \mathrm{~d} x \\
& +\sum_{i=1}^{N_{z}} \int_{0}^{L}\left(\frac{-\gamma\left(I_{i}\right) C_{i}+\zeta\left(I_{i}\right)}{V N_{z}}+p_{i} \frac{-\alpha\left(I_{i}\right) C_{i}+\beta\left(I_{i}\right)}{Q_{0}}\right) \partial_{a} h \mathrm{~d} x .
\end{aligned}
$$

Numerical settings

Parameterization of h : Truncated Fourier

$$
\begin{equation*}
h(x)=a_{0}+\sum_{n=1}^{N} a_{n} \sin \left(2 n \pi \frac{x}{L}\right) \tag{9}
\end{equation*}
$$

Parameter to be optimized: Fourier coefficients $a:=\left[a_{1}, \ldots, a_{N}\right]$. We use this parameterization based on the following reasons :

- We consider a hydrodynamic regime where the solutions of the shallow water equations are smooth and hence the water depth can be approximated by (9).
- One has naturally $h(0)=h(L)$ under this parameterization, which means that we have accomplished one lap of the raceway pond.
- We assume a constant volume of the system V, which can be achieved by fixing a_{0}. Indeed, under this parameterization and using (8), one finds $V=a_{0} L$.

Convergence on vertical discretization number

We fix $N=5$ and take 100 random vector a. For N_{z} varying from 1 to 80, we compute the average value of $\bar{\mu}_{N_{z}}$ for each N_{z}.

Figure: The value of $\bar{\mu}_{N_{z}}$ for $N_{z}=[1,80]$.

Optimal Topography

We keep $N=5$ and take $N_{z}=40$. As an initial guess, we consider the flat topography, meaning that a is set to 0 .

Periodic case

Assumption
 Photoinhibition state C is periodic meaning that $C_{i}(L)=C_{i}(0)$

Theorem (Flat topography [2])

Assume the volume of the system V is constant. Then $\nabla \bar{\mu}_{N_{z}}(0)=0$.

Optimal topography (C periodic)

We keep $N=5$ and $N_{z}=40$. As an initial guess, we consider a random topography.

Summary on the topography

- In the case C non periodic, one can find no flat optimal topographies, however the increase is limited.

Summary on the topography

- In the case C non periodic, one can find no flat optimal topographies, however the increase is limited.
- In the case C periodic, the flat topography is actually the optimal topography.

Summary on the topography

- In the case C non periodic, one can find no flat optimal topographies, however the increase is limited.
- In the case C periodic, the flat topography is actually the optimal topography.
- What do we do next?

Mixing devices

- An ideal rearrangement of trajectories: at each new lap, the algae at depth z_{i} are entirely transferred into the position z_{j} when passing through the mixing device.

Mixing devices

- An ideal rearrangement of trajectories: at each new lap, the algae at depth z_{i} are entirely transferred into the position z_{j} when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N \times N$ and by \mathfrak{S}_{N} the associated set of permutations of N elements.

Mixing devices

- An ideal rearrangement of trajectories: at each new lap, the algae at depth z_{i} are entirely transferred into the position z_{j} when passing through the mixing device.
- We denote by \mathcal{P} the set of permutation matrices of size $N \times N$ and by \mathfrak{S}_{N} the associated set of permutations of N elements.

Test with a permutation

We keep $N=5, N_{z}=40$ and choose $\sigma=I d$

Figure: The optimal topography.

Test with a permutation

We keep $N=5, N_{z}=40$ and choose $\sigma=\left(1 N_{z}\right)\left(2 N_{z}-1\right) \ldots$

Test with a permutation

Figure: The evolution of the photo-inhibition state C for two laps.

We can observe that the period of C equals to one.

General problem

Given a period T, and initial time T_{0} and a sequence $\left(T_{k}\right)_{k \in \mathbb{N}}$, with $T_{k}=k T+T_{0}$, we consider the following resource allocation problem:

Periodic dynamical resource allocation problem

Consider N resources denoted by $\left(I_{n}\right)_{n=1}^{N} \in \mathbb{R}^{N}$ which can be allocated to N activities denoted by $\left(x_{n}\right)_{n=1}^{N}$ where x_{n} consists of a real function of time. On a time interval [T_{k}, T_{k+1}), each activity uses the assigned resource and evolves according to a linear dynamics

$$
\begin{equation*}
\dot{x}_{n}=-\alpha\left(I_{n}\right) x_{n}+\beta\left(I_{n}\right), \tag{10}
\end{equation*}
$$

where $\alpha: \mathbb{R} \rightarrow \mathbb{R}_{+}$and $\beta: \mathbb{R} \rightarrow \mathbb{R}_{+}$are given. At time T_{k+1}, the resources is re-assigned, meaning that $x\left(T_{k+1}\right)=P x\left(T_{k+1}^{-}\right)$for some $P \in \mathcal{P}$. In this way, $k \in \mathbb{N}$ represents the number of re-assignments and T_{k}^{-}represents the moment just before re-assignment.

Assumption

Resources $\left(I_{n}\right)_{n=1}^{N}$ are constant with respect to time.

Consequence

For a given initial vector of states $\left(x_{n}\left(T_{0}\right)\right)_{n=1}^{N}$, we have

$$
\begin{equation*}
x(t)=D(t) x\left(T_{k}\right)+v(t), \quad t \in\left[T_{k}, T_{k+1}\right), \tag{11}
\end{equation*}
$$

where $D(t)$ and $v(t)$ are time dependent.

Assumption

Resources $\left(I_{n}\right)_{n=1}^{N}$ are constant with respect to time.

Consequence

For a given initial vector of states $\left(x_{n}\left(T_{0}\right)\right)_{n=1}^{N}$, we have

$$
\begin{equation*}
x(t)=D(t) x\left(T_{k}\right)+v(t), \quad t \in\left[T_{k}, T_{k+1}\right) \tag{11}
\end{equation*}
$$

where $D(t)$ and $v(t)$ are time dependent.
Let $u \in \mathbb{R}^{N}$ an arbitrary vector. Define

$$
\begin{equation*}
f^{k}:=\left\langle u, \frac{1}{T} \int_{T_{k}}^{T_{k+1}} x(t) \mathrm{d} t\right\rangle, \tag{12}
\end{equation*}
$$

the benefit attached to the time period [T_{k}, T_{k+1}) after k times of re-assignment. Then the average benefit after K operations is given by

$$
\frac{1}{K} \sum_{k=0}^{K} f^{k}
$$

According to (11) and by the definition of P, we have

$$
\begin{equation*}
x\left(T_{k+1}\right)=P x\left(T_{k+1}^{-}\right)=P\left(D x\left(T_{k}\right)+v\right) \tag{13}
\end{equation*}
$$

According to (11) and by the definition of P, we have

$$
\begin{equation*}
x\left(T_{k+1}\right)=P x\left(T_{k+1}^{-}\right)=P\left(D x\left(T_{k}\right)+v\right) \tag{13}
\end{equation*}
$$

Lemma

Given $k \in \mathbb{N}$ and $P \in \mathcal{P}$, the matrix $\mathcal{I}_{N}-(P D)^{k}$ is invertible.

Theorem (One periodic [3])

$\left(x\left(T_{k}\right)\right)_{k \in \mathbb{N}}$ is a constant sequence and we have for all $k \in \mathbb{N}$

$$
x\left(T_{k}\right)=\left(\mathcal{I}_{N}-P D\right)^{-1} P v
$$

The result shows that every $K T$-periodic evolution will actually be T-periodic.

Optimization problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J(P):=\max _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P v\right\rangle \tag{14}
\end{equation*}
$$

Remark

Since \#S $=$ N!, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Optimization problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J(P):=\max _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P v\right\rangle \tag{14}
\end{equation*}
$$

Remark

Since \#S $=$ N!, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Expand the functional (14) as follows

$$
\left\langle u,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P v\right\rangle=\sum_{l=0}^{+\infty}\left\langle u,(P D)^{\prime} P v\right\rangle=\langle u, P v\rangle+\sum_{l=1}^{+\infty}\left\langle u,(P D)^{l} P v\right\rangle
$$

Approximation problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J^{\text {approx }}(P):=\max _{P \in \mathcal{P}}\langle u, P v\rangle \tag{15}
\end{equation*}
$$

Lemma

Let $\sigma_{+}, \sigma_{-} \in \mathfrak{S}$ such that $v_{\sigma_{+}(1)} \leq v_{\sigma_{+}(2)} \cdots \leq v_{\sigma_{+}(N)}$ and $v_{\sigma_{-}(N)} \leq v_{\sigma_{-}(N-1)} \leq \cdots \leq v_{\sigma_{-}(1)}$ and $P_{+}, P_{-} \in \mathcal{P}$, the corresponding permutation matrices. Then

$$
P_{+}=\operatorname{argmax}_{P \in \mathcal{P}} J^{\text {approx }}(P), \quad P_{-}=\operatorname{argmin}_{P \in \mathcal{P}} J^{\text {approx }}(P) .
$$

Remark (Optimal matrix)

- P_{+}: associates the largest coefficient of u with the largest coefficient of v, the second largest coefficient with the second largest, and so on.
- P_{-}: associates the largest coefficient of u with the smallest coefficient of v, the second largest coefficient with the second smallest, and so on.

Theorem (Criterion [3])

Assume that u and v have positive entries and define

$$
\begin{equation*}
\phi\left(m_{1}\right):=\frac{1}{s_{\left\lceil\frac{m_{1}}{2}\right\rceil}}\left(\sum_{l=1}^{+\infty} d_{\max }^{l} F_{(I+1) m_{1}}^{+}-d_{\min }^{\prime} F_{(I+1) m_{1}}^{-}\right), \tag{16}
\end{equation*}
$$

where $m_{1}:=\#\left\{n=1, \ldots, N \mid \sigma(n) \neq \sigma_{+}(n)\right\}, d_{\text {max }}:=\max _{n=1, \ldots, N}\left(d_{n}\right)$ and $d_{\text {min }}:=\min _{n=1, \ldots, N}\left(d_{n}\right)$. Assume that:

$$
\begin{equation*}
\max _{m_{1} \geq 2} \phi\left(m_{1}\right) \leq 1 . \tag{17}
\end{equation*}
$$

Then the problem $\max _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P v\right\rangle$ (resp. $\left.\min _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N_{z}}-P D\right)^{-1} P v\right\rangle\right)$ and the problem $\max _{P \in \mathcal{P}}\langle u, P v\rangle$ (resp. $\left.\min _{P \in \mathcal{P}}\langle u, P v\rangle\right)$ have the same solution.

Figure: Optimal matrix $P_{\text {max }}$ for Problem (14) and $N=11$ (Left) and P_{+}for Problem (15) and $N=100$ (Right) for the two parameters triplets. The blue points represent non-zero entries, i.e., entries equal to 1.

Figure: Average net specific growth rate $\bar{\mu}_{N}$ for $T=1 \mathrm{~s}$ (Top) and for $T=1000 \mathrm{~s}$ (Bottom). Left: $N=5$. Right: $N=9$. The red surface is obtained with $P_{\max }$ and the blue surface is obtained with P_{+}. The purple stars represent the cases where $P_{\max }=P_{+}$or, in case of multiple solution, $\bar{\mu}_{N}\left(P_{\max }\right)=\bar{\mu}_{N}\left(P_{+}\right)$. The green circle represent the cases where the criterion (17) is satisfied.

R Olivier Bernard, Anne-Céline Boulanger, Marie-Odile Bristeau, and Jacques Sainte-Marie.
A 2d model for hydrodynamics and biology coupling applied to algae growth simulations.
ESAIM: Mathematical Modelling and Numerical Analysis,
47(5):1387-1412, September 2013.
雷 Olivier Bernard, Liu-Di Lu, Jacques Sainte-Marie, and Julien Salomon. Shape optimization of a microalgal raceway to enhance productivity. Submitted paper, November 2020.

囲 Olivier Bernard, Liu-Di Lu, and Julien Salomon.
Optimization of mixing strategy in microalgal raceway ponds. Submitted paper, March 2021.

Bo-Ping Han.
A mechanistic model of algal photoinhibition induced by photodamage to photosystem-ii.
Journal of theoretical biology, 214(4):519-527, February 2002.

围 Victor Michel-Dansac, Christophe Berthon, Stéphane Clain, and Franoise Foucher.
A well-balanced scheme for the shallow-water equations with topography.
Computers and Mathematics with Applications, 72(3):586-593, August 2016.

Variable volume

- Volume related parameter a_{0} as the average depth of the raceway system:

$$
\begin{equation*}
a_{0}:=\bar{h}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x=\frac{V}{L} . \tag{18}
\end{equation*}
$$

New parameter $\tilde{a}=\left[a_{0}, a_{1}, \ldots, a_{N}\right]$.

Variable volume

- Volume related parameter a_{0} as the average depth of the raceway system:

$$
\begin{equation*}
a_{0}:=\bar{h}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x=\frac{V}{L} . \tag{18}
\end{equation*}
$$

New parameter $\tilde{a}=\left[a_{0}, a_{1}, \ldots, a_{N}\right]$.

- Optimization Problem:

$$
\Pi_{N_{z}}(\tilde{a}):=\bar{\mu}_{N_{z}}(\tilde{a}) X h(\tilde{a})=\frac{Y_{\mathrm{opt}}-\alpha_{1} a_{0}}{V N_{z} \alpha_{0}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}^{P}, I_{i}(\tilde{a})\right) h(\tilde{a}) \mathrm{d} x
$$

where C_{i}^{P} satisfy

$$
\begin{aligned}
& C_{i}^{P^{\prime}}=\left(-\alpha\left(I_{i}(\tilde{a})\right) C_{i}^{P}+\beta\left(I_{i}(\tilde{a})\right)\right) \frac{h(\tilde{a})}{Q_{0}}, \\
& P C^{P}(L)=C^{P}(0) .
\end{aligned}
$$

Variable volume

- Volume related parameter a_{0} as the average depth of the raceway system:

$$
\begin{equation*}
a_{0}:=\bar{h}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x=\frac{V}{L} . \tag{18}
\end{equation*}
$$

New parameter $\tilde{a}=\left[a_{0}, a_{1}, \ldots, a_{N}\right]$.

- Optimization Problem:

$$
\Pi_{N_{z}}(\tilde{a}):=\bar{\mu}_{N_{z}}(\tilde{a}) X h(\tilde{a})=\frac{Y_{\mathrm{opt}}-\alpha_{1} a_{0}}{V N_{z} \alpha_{0}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}^{P}, I_{i}(\tilde{a})\right) h(\tilde{a}) \mathrm{d} x
$$

where C_{i}^{P} satisfy

$$
\begin{aligned}
& C_{i}^{P^{\prime}}=\left(-\alpha\left(I_{i}(\tilde{a})\right) C_{i}^{P}+\beta\left(I_{i}(\tilde{a})\right)\right) \frac{h(\tilde{a})}{Q_{0}}, \\
& P C^{P}(L)=C^{P}(0) .
\end{aligned}
$$

- Extra element in gradient: $\nabla \Pi_{N_{z}}(\tilde{a})=\left[\partial_{a_{0}} \mathcal{L}, \partial_{a} \mathcal{L}\right]$.

Optimal Topography (Variable volume)

We keep $N_{z}=7$. As an initial guess, we consider the flat topography with $a_{0}=0.4$.

$$
P_{\max }^{100}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Optimal Topography (Variable volume)

We keep $N_{z}=7$. As an initial guess, we consider the flat topography with $a_{0}=0.4$.

