Some modelling and optimization problems for microalgal raceway ponds

Liu-Di LU

University of Geneva

Jouy-en-Josas, January 24, 2022

Overview

- Motivation and Modelling
- 2 Topography
- Mixing
- 4 Topography, Mixing and Volume
- Depth and Biomass Concentration
- 6 Conclusion and Perspectives

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters,

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters,
 - aquatic environment: river, lake, ocean, etc,

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters.
 - aquatic environment: river, lake, ocean, etc,
 - CO₂ fixation.

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters.
 - aquatic environment: river, lake, ocean, etc,
 - CO₂ fixation.
- Advantages:
 - wastewater treatment, biofuel,
 - various secondary metabolites.

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters,
 - aquatic environment: river, lake, ocean, etc,
 - CO₂ fixation.
- Advantages:
 - wastewater treatment, biofuel,
 - various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors.

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters.
 - aquatic environment: river, lake, ocean, etc,
 - CO₂ fixation.
- Advantages:
 - wastewater treatment, biofuel,
 - various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors: Raceway ponds.

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters.
 - aguatic environment: river, lake, ocean, etc,
 - CO₂ fixation.
- Advantages:
 - wastewater treatment, biofuel,
 - various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors: Raceway ponds.
- Impact factor: Light, Temperature, pH, Nutrients, etc.

- Microalgae:
 - photosynthetic micro-organisms,
 - 2 to 50 micro-meters,
 - aquatic environment: river, lake, ocean, etc,
 - CO₂ fixation.
- Advantages:
 - wastewater treatment, biofuel,
 - various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors: Raceway ponds.
- Impact factor: Light, Temperature, pH, Nutrients, etc.

Photoinhibition: Strong light induces damage to the photosystem.

• Eilers & Peeters (Eilers and Peeters 1993)

- Eilers & Peeters (Eilers and Peeters 1993)
- Han model (Han 2002)
 - widely used
 - relatively simple dynamics
 - validated parameters

- Eilers & Peeters (Eilers and Peeters 1993)
- Han model (Han 2002)
 - widely used
 - relatively simple dynamics
 - validated parameters
- Variants of Han model (e.g. Nikolaou et al. 2016, Bernardini et al. 2016)

- Eilers & Peeters (Eilers and Peeters 1993)
- Han model (Han 2002)
 - widely used,
 - · relatively simple dynamics,
 - validated parameters.
- Variants of Han model (e.g. *Nikolaou et al.* 2016, *Bernardini et al.* 2016)

• The Han system:

$$\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau} \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB \\ \dot{C} = -k_r C + k_d \sigma IB \end{cases}$$

• The Han system:

$$\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau} \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB \\ \dot{C} = -k_r C + k_d \sigma IB \end{cases} \implies \begin{cases} \dot{A} = \frac{1}{\epsilon} f(A, C) \\ \dot{C} = g(A, C) \end{cases}$$

• The Han system:

$$\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau} \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB \\ \dot{C} = -k_r C + k_d \sigma IB \end{cases} \implies \begin{cases} \dot{A} = \frac{1}{\epsilon} f(A, C) \\ \dot{C} = g(A, C) \end{cases}$$

• Fast/slow approximation: $\dot{C} = -\alpha(I)C + \beta(I)$.

• The Han system:

$$\left\{ \begin{array}{l} \dot{A} = -\sigma IA + \frac{B}{\tau} \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB \\ \dot{C} = -k_r C + k_d \sigma IB \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} \dot{A} = \frac{1}{\epsilon} f(A,C) \\ \dot{C} = g(A,C) \end{array} \right.$$

- Fast/slow approximation: $\dot{C} = -\alpha(I)C + \beta(I)$.
- The growth rate:

$$\mu(C,I) := k\sigma I \frac{(1-C)}{\tau\sigma I + 1}$$

• The Han system:

$$\left\{ \begin{array}{l} \dot{A} = -\sigma IA + \frac{B}{\tau} \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB \\ \dot{C} = -k_r C + k_d \sigma IB \end{array} \right. \implies \left\{ \begin{array}{l} \dot{A} = \frac{1}{\epsilon} f(A,C) \\ \dot{C} = g(A,C) \end{array} \right.$$

- Fast/slow approximation: $\dot{C} = -\alpha(I)C + \beta(I)$.
- The growth rate:

$$\mu(\mathit{C},\mathit{I}) := k\sigma \mathit{I} \frac{(1-\mathit{C})}{\tau\sigma\mathit{I}+1}$$

$$\downarrow \qquad \qquad \qquad \text{steady state}$$

$$\mu(\mathit{I}) = \mu_{\max} \frac{\mathit{I}}{\mathit{I} + \frac{\mu_{\max}}{\theta} (\frac{\mathit{I}}{\mathit{I}^*} - 1)^2} \text{ (Haldane)}$$

Haldane description

• The Han system:

$$\begin{cases} \dot{A} = -\sigma IA + \frac{B}{\tau} \\ \dot{B} = \sigma IA - \frac{B}{\tau} + k_r C - k_d \sigma IB \\ \dot{C} = -k_r C + k_d \sigma IB \end{cases} \implies \begin{cases} \dot{A} = \frac{1}{\epsilon} f(A, C) \\ \dot{C} = g(A, C) \end{cases}$$

- Fast/slow approximation: $\dot{C} = -\alpha(I)C + \beta(I)$.
- The growth rate:

$$\mu(\mathit{C},\mathit{I}) := k\sigma \mathit{I} \frac{(1-\mathit{C})}{\tau\sigma\mathit{I}+1}$$

$$\downarrow \qquad \qquad \qquad \text{steady state}$$

$$\mu(\mathit{I}) = \mu_{\max} \frac{\mathit{I}}{\mathit{I} + \frac{\mu_{\max}}{\theta} \left(\frac{\mathit{I}}{\mathit{I}^*} - 1\right)^2} \text{ (Haldane model)}$$

• The Beer-Lambert law: $I(z) = I_s \exp(-\varepsilon z)$.

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Simulation of the trajectories with the code FreshKiss3D (*Demory et al.* 2018).

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Parameters to be optimized:

topography,

1D illustration

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Parameters to be optimized:

topography,

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Parameters to be optimized:

- topography,
- mixing.

Overview

- Motivation and Modelling
- 2 Topography
- Mixing
- 4 Topography, Mixing and Volume
- Depth and Biomass Concentration
- 6 Conclusion and Perspectives

1D Illustration

1D steady state Saint-Venant equations

$$\partial_x(hu)=0, \quad \partial_x(hu^2+g\frac{h^2}{2})=-gh\partial_x z_b.$$

• Relation between z_b and h

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,\tag{1}$$

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Relation between z_b and h

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,\tag{1}$$

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial)

Fr > 1: supercritical case (i.e. the flow regime is torrential)

• Relation between z_b and h

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,\tag{1}$$

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial) Fr > 1: supercritical case (i.e. the flow regime is torrential)

• Given a smooth topography z_b , there exists a unique positive smooth solution of h which satisfies the subcritical flow condition (*Michel-Dansac et al* 2016).

Relation between z_b and h

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,\tag{1}$$

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial)

Fr > 1: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_b , there exists a unique positive smooth solution of h which satisfies the subcritical flow condition (Michel-Dansac et al 2016).
- A time free formulation of the Lagrangian trajectory starting from z(0):

$$z(x) = \frac{\eta(x)}{h(0)} + \frac{h(x)}{h(0)} (z(0) - \eta(0)). \tag{2}$$

• Our goal: Topography *z_b*.

- Our goal: Topography z_b.
- Objective function: Average net growth rate

$$ar{\mu}_{\infty} := rac{1}{V} \int_0^L \int_{z_b(x)}^{\eta(x)} \muig(C(x,z),I(x,z)ig) \mathrm{d}z \mathrm{d}x$$

- Our goal: Topography z_b .
- Objective function: Average net growth rate

- Our goal: Topography z_b .
- Objective function: Average net growth rate

• Volume of the system $V = \int_0^L h(x) dx$.

- Our goal: Topography z_b.
- Objective function: Average net growth rate

$$\begin{split} \bar{\mu}_{\infty} := \frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu \big(C(x,z), I(x,z) \big) \mathrm{d}z \mathrm{d}x \\ & \qquad \\ \bar{\mu}_{N_{z}} = \frac{1}{VN_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu \big(C_{i}, I_{i} \big) h \mathrm{d}x \end{split}$$

- Volume of the system $V = \int_0^L h(x) dx$.
- Parameterize h by a vector $a := [a_1, \cdots, a_{N_a}] \in \mathbb{R}^{N_a}$, e.g. Truncated Fourier.

- Our goal: Topography z_b.
- Objective function: Average net growth rate

- Volume of the system $V = \int_0^L h(x) dx$.
- Parameterize h by a vector $a := [a_1, \cdots, a_{N_a}] \in \mathbb{R}^{N_a}$, e.g. Truncated Fourier.
- The computational chain:

$$h(a) \rightarrow z_i \rightarrow I_i \rightarrow C_i \rightarrow \bar{\mu}_{N_z}$$
.

- Our goal: Topography z_b .
- Objective function: Average net growth rate

- Volume of the system $V = \int_0^L h(x) dx$.
- Parameterize h by a vector $a := [a_1, \cdots, a_{N_a}] \in \mathbb{R}^{N_a}$, e.g. Truncated Fourier.
- The computational chain:

$$h(a) \rightarrow z_i \rightarrow I_i \rightarrow C_i \rightarrow \bar{\mu}_{N_z}.$$

• Adjoint method $\rightarrow \nabla \bar{\mu}_{N_z}(a)$.

Optimal Topography

- Number of parameters: $N_a = 5$.
- Number of trajectories: $N_z = 40$.
- Initial guess: flat topography.

Permanent regime

Assumption

Photoinhibition state C is periodic meaning that $C_i(L) = C_i(0)$, $i = [1, \dots, N_z]$.

Permanent regime

Assumption

Photoinhibition state C is periodic meaning that $C_i(L) = C_i(0)$, $i = [1, \dots, N_z]$.

Theorem (Flat topography)

Assume the volume of the system V is constant. Then $\nabla \bar{\mu}_{N_z}(0) = 0$.

Optimal topography (C periodic)

- Number of parameters: $N_a = 5$.
- Number of trajectories: $N_z = 40$.
- Initial guess: random topography.

Summary on the topography

• In the case *C* non periodic, one can find no flat optimal topographies, however the increase is limited.

Summary on the topography

- In the case *C* non periodic, one can find no flat optimal topographies, however the increase is limited.
- In the case *C* periodic, the flat topography is not only a critical point but also the optimal topography.

Summary on the topography

- In the case *C* non periodic, one can find no flat optimal topographies, however the increase is limited.
- In the case *C* periodic, the flat topography is not only a critical point but also the optimal topography.
- What can be further optimized?

Overview

- Motivation and Modelling
- 2 Topography
- Mixing
- 4 Topography, Mixing and Volume
- 5 Depth and Biomass Concentration
- 6 Conclusion and Perspectives

Simulation of the trajectories with the code FreshKiss3D (*Demory et al.* 2018).

Assumption (Ideal rearrangement)

At each new lap, the algae at depth z_i are entirely transferred into the position z_i when passing through the mixing device.

Assumption (Ideal rearrangement)

At each new lap, the algae at depth z_i are entirely transferred into the position z_i when passing through the mixing device.

Notations

We denote by \mathcal{P} the set of **permutation matrices** of size $N_z \times N_z$ and by \mathfrak{S}_{N_z} the associated set of permutations of N_z elements.

• Illustration with the permutation $\sigma = (1 \ 2 \ 3 \ 4)$.

• Choice of Period?

• Illustration with the permutation $\sigma = (1 \ 2 \ 3 \ 4)$.

• Choice of Period? Order of σ .

- Choice of Period? Order of σ .
- Re-distribution of light.

Theorem (One period is enough)

If w is KT-periodic (i.e., $w(T_K) = w(T_0)$), then w is T-periodic.

Original problem

Optimization problem

$$\max_{P \in \mathcal{P}} J(P) := \max_{P \in \mathcal{P}} \langle u, (\mathcal{I}_N - PD)^{-1} P v \rangle, \tag{3}$$

Two vectors u, v and a diagonal matrix D all depend on $(I_n)_{n=1}^N$.

Original problem

Optimization problem

$$\max_{P \in \mathcal{P}} J(P) := \max_{P \in \mathcal{P}} \langle u, (\mathcal{I}_N - PD)^{-1} P v \rangle, \tag{3}$$

Two vectors u, v and a diagonal matrix D all depend on $(I_n)_{n=1}^N$.

Remark

Since $\#\mathfrak{S} = N!$, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Original problem

Optimization problem

$$\max_{P \in \mathcal{P}} J(P) := \max_{P \in \mathcal{P}} \langle u, (\mathcal{I}_N - PD)^{-1} P v \rangle, \tag{3}$$

Two vectors u, v and a diagonal matrix D all depend on $(I_n)_{n=1}^N$.

Remark

Since $\#\mathfrak{S} = N!$, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Expand the functional (3) as follows

$$\underbrace{\langle u, (\mathcal{I}_N - PD)^{-1} Pv \rangle}_{J(P)} = \sum_{\ell=0}^{+\infty} \langle u, (PD)^{\ell} Pv \rangle = \underbrace{\langle u, Pv \rangle}_{J^{\text{approx}}(P)} + \sum_{\ell=1}^{+\infty} \langle u, (PD)^{\ell} Pv \rangle,$$

Simplified problem

$$\max_{P \in \mathcal{P}} J^{\text{approx}}(P) := \max_{P \in \mathcal{P}} \langle u, Pv \rangle. \tag{4}$$

Simplified problem

$$\max_{P \in \mathcal{P}} J^{\mathsf{approx}}(P) := \max_{P \in \mathcal{P}} \langle u, Pv \rangle. \tag{4}$$

Lemma (Optimal matrix)

- P₊: associates the largest coefficient of u with the largest coefficient
 of v, the second largest coefficient with the second largest, and so on.
- P_: associates the largest coefficient of u with the smallest coefficient of v, the second largest coefficient with the second smallest, and so on.

Optimal Matrix

Test for $(I_s, q, T) = (2000, 5\%, 1000)$.

 P_{max} for J(P)

Optimal Matrix

Test for $(I_s, q, T) = (800, 0.5\%, 1)$.

Quality of the approximation

Theorem (Coincidence Criterion: $P_{\text{max}} = P_{+}$?)

Assume that u and v have positive entries and define

$$\phi(m) := \frac{1}{s_{\lceil \frac{m}{2} \rceil}} \left(\sum_{\ell=1}^{+\infty} d_{\max}^{\ell} F_{(\ell+1)m}^{+} - d_{\min}^{\ell} F_{(\ell+1)m}^{-} \right), \tag{5}$$

where $m := \# \{ n = 1, ..., N \mid \sigma(n) \neq \sigma_{+}(n) \}$, $d_{\text{max}} := \max_{n=1,...,N} (d_n)$ and $d_{\text{min}} := \min_{n=1,...,N} (d_n)$. Assume that:

$$\max_{m \ge 2} \phi(m) \le 1. \tag{6}$$

Then $P_{\text{max}} = P_{+}$.

Approximation and criterion

$$T = 1000.$$

$$N = 5$$

- $\bar{\mu}_N(P_{\text{max}})$ and $\bar{\mu}_N(P_+)$.
- \bullet $P_{\text{max}} = P_{+}$.
- Coincidence Criterion satisfied.

Approximation and criterion

$$T = 1$$
.

- N = 5
- $\bar{\mu}_N(P_{\text{max}})$ and $\bar{\mu}_N(P_+)$.
- \bullet $P_{\text{max}} = P_{+}$.
- Coincidence Criterion satisfied

Overview

- Motivation and Modelling
- 2 Topography
- Mixing
- Topography, Mixing and Volume
- Depth and Biomass Concentration
- 6 Conclusion and Perspectives

Test with a permutation

We keep $N_a = 5$, $N_z = 40$ and choose $\sigma = Id$

Test with a permutation

- Test permutation: $\sigma = (1 N_z)(2 N_z 1)...$
- Initial guess: flat topography.

One periodic

We keep $N_a=5$, $N_z=40$ and choose $\sigma=(1\ N_z)(2\ N_z-1)\dots$

Variable volume

• Volume related parameter a_0 as the average depth of the raceway system:

$$a_0 := \bar{h} = \frac{1}{L} \int_0^L h(x) dx = \frac{V}{L}.$$
 (7)

New parameter $\tilde{a} = [a_0, a_1, \dots, a_{N_a}] \in \mathbb{R}^{N_a+1}$.

Variable volume

 Volume related parameter a₀ as the average depth of the raceway system:

$$a_0 := \bar{h} = \frac{1}{L} \int_0^L h(x) dx = \frac{V}{L}.$$
 (7)

New parameter $\tilde{a} = [a_0, a_1, \dots, a_{N_a}] \in \mathbb{R}^{N_a+1}$.

• Relation between X and V: Y_{opt} .

Variable volume

• Volume related parameter a_0 as the average depth of the raceway system:

$$a_0 := \bar{h} = \frac{1}{L} \int_0^L h(x) dx = \frac{V}{L}.$$
 (7)

New parameter $\tilde{a} = [a_0, a_1, \dots, a_{N_a}] \in \mathbb{R}^{N_a+1}$.

- Relation between X and V: Y_{opt} .
- Optimization Problem:

$$\Pi_{N_z}(\tilde{a}) := \bar{\mu}_{N_z}(\tilde{a})Xh(\tilde{a}) = \frac{Y_{\text{opt}} - \alpha_1 a_0}{VN_z \alpha_0} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i(\tilde{a}))h(\tilde{a}) dx.$$

Optimal Topography (Variable volume)

- Initial average depth: $a_0 = 0.4$ m.
- Initial guess: flat topography.

Optimal Topography (Variable volume)

- Number of trajectories: $N_z = 7$.
- Initial average depth: $a_0 = 0.4$ m.
- Initial guess: flat topography.

$$P_{\mathsf{max}}^{\mathsf{100}} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Optimal Topography (Variable volume)

- Number of trajectories: $N_z = 7$.
- Initial average depth: $a_0 = 0.4$ m.
- Initial guess: flat topography.

Overview

- Motivation and Modelling
- 2 Topography
- Mixing
- Topography, Mixing and Volume
- 5 Depth and Biomass Concentration
- 6 Conclusion and Perspectives

Masci et al. 2010:

• Growth μ : Droop function.

Masci et al. 2010:

- Growth μ : Droop function.
- Extinction ε : linear function $\varepsilon(X) = \alpha_0 X$.

Masci et al. 2010:

- Growth μ : Droop function.
- Extinction ε : linear function $\varepsilon(X) = \alpha_0 X$.
- Productivity: surface biomass productivity $\Pi := (\bar{\mu} R)Xh$.

Masci et al. 2010:

- Growth μ : Droop function.
- Extinction ε : linear function $\varepsilon(X) = \alpha_0 X$.
- Productivity: surface biomass productivity $\Pi := (\bar{\mu} R)Xh$.
- Optimal condition: $\mu(I(h_{\text{opt}})) = R$ (compensation condition).

• Growth μ : Haldane description $\mu(I) = \mu_{\max} \frac{I}{I + \frac{\mu_{\max}}{I} \frac{I}{I^*} - 1)^2}$.

- Growth μ : Haldane description $\mu(I) = \mu_{\max} \frac{I}{I + \frac{\mu_{\max}}{I} (\frac{I}{I^*} 1)^2}$.
- Extinction ε : general form $\varepsilon(X)$.

- Growth μ : Haldane description $\mu(I) = \mu_{\max} \frac{I}{I + \frac{\mu_{\max}}{I} (\frac{I}{I^*} 1)^2}$.
- Extinction ε : general form $\varepsilon(X)$.
- New concept: optical depth productivity $P := (\bar{\mu} R)Y$ with the optical depth $Y := \varepsilon(X)h$.

- Growth μ : Haldane description.
- Extinction ε : general form $\varepsilon(X)$.
- Productivity: optical depth productivity $P := (\bar{\mu} R)Y$.

- Growth μ : Haldane description.
- Extinction ε : general form $\varepsilon(X)$.
- Productivity: optical depth productivity $P := (\bar{\mu} - R)Y$.
- Optimal condition:

$$\mu\left(I(Y_{\text{opt}})\right) = R.$$

- Growth μ : Haldane description.
- Extinction ε : general form $\varepsilon(X)$.
- Productivity: optical depth productivity $P := (\bar{\mu} R)Y$.
- Optimal condition: $\mu(I(Y_{opt})) = R$.

• Surface biomass productivity $\Pi := (\bar{\mu} - R)Xh = \frac{X}{\varepsilon(X)}P$.

• Surface biomass productivity $\Pi := (\bar{\mu} - R)Xh = \frac{X}{\varepsilon(X)}P$.

Corollary

For a given biomass concentration X, there exists a unique reactor depth h_1 which satisfies $\varepsilon(X)h_1=Y_{opt}$ and maximizes the productivity $\Pi(X,\cdot)$.

• Surface biomass productivity $\Pi := (\bar{\mu} - R)Xh = \frac{X}{\varepsilon(X)}P$.

Corollary

For a given biomass concentration X, there exists a unique reactor depth h_1 which satisfies $\varepsilon(X)h_1=Y_{opt}$ and maximizes the productivity $\Pi(X,\cdot)$.

• The extinction function $\varepsilon(X) := \alpha_0 X^s + \alpha_1$ (Morel 1988, Martínez 2018).

• Surface biomass productivity $\Pi := (\bar{\mu} - R)Xh = \frac{X}{\varepsilon(X)}P$.

Corollary

For a given biomass concentration X, there exists a unique reactor depth h_1 which satisfies $\varepsilon(X)h_1=Y_{opt}$ and maximizes the productivity $\Pi(X,\cdot)$.

- The extinction function $\varepsilon(X) := \alpha_0 X^s + \alpha_1$ (Morel 1988, Martínez 2018).
- For a given depth h, Y_{opt} is generally NOT the optimal condition.

Theorem

In general case, there is no global optimum for Π .

Theorem

In general case, there is no global optimum for Π .

Given X_0 and consider the sequence $(X_n,h_n)_{n\in\mathbb{N}}$ defined by

$$h_n = \frac{Y_{ ext{opt}}}{\varepsilon(X_{n-1})}, \quad X_n := \operatorname{argmax}_{X \in \mathbb{R}_+} \Pi(X, h_n).$$

Theorem

In general case, there is no global optimum for Π .

Given X_0 and consider the sequence $(X_n, h_n)_{n \in \mathbb{N}}$ defined by

$$h_n = rac{Y_{ ext{opt}}}{arepsilon(X_{n-1})}, \quad X_n := rgmax_{X \in \mathbb{R}_+} \Pi(X, h_n).$$

Theorem

If
$$s=1$$
, $\lim_{n\to\infty}\Pi(X_n,h_n)=\frac{P(Y_{opt})}{\alpha_0}$. If $s<1$, $\lim_{n\to\infty}\Pi(X_n,h_n)=+\infty$.

In real life application, h is given, one would like to find $X_{\text{opt}}(h)$.

In real life application, h is given, one would like to find $X_{\rm opt}(h)$. Evolution of the biomass concentration $\dot{X} = (\bar{\mu} - R - D)X$.

In real life application, h is given, one would like to find $X_{\rm opt}(h)$. Evolution of the biomass concentration $\dot{X} = (\bar{\mu} - R - D)X$.

Proposition

The control law

$$D = \begin{cases} D_{\text{max}} & X \ge \bar{X} \\ (\bar{\mu}(X, h) - R) \frac{X}{X^*} & X < \bar{X} \end{cases}$$

globally stabilizes the evolution of X towards the positive point X^* .

In real life application, h is given, one would like to find $X_{\rm opt}(h)$. Evolution of the biomass concentration $\dot{X}=(\bar{\mu}-R-D)X$.

Proposition

The control law

$$D = \begin{cases} D_{\text{max}} & X \ge \bar{X} \\ (\bar{\mu}(X, h) - R) \frac{X}{X^*} & X < \bar{X} \end{cases}$$

globally stabilizes the evolution of X towards the positive point X^* .

Overview

- Motivation and Modelling
- 2 Topography
- Mixing
- Topography, Mixing and Volume
- Depth and Biomass Concentration
- 6 Conclusion and Perspectives

Conclusion

Topography:

- Flat topography is optimal in periodic case.
- Non flat topography with limited increase.

Mixing:

- Periodic dynamic resource allocation problem.
- One period is enough.
- Approximation and criterion.

Conclusion

Topography:

- Flat topography is optimal in periodic case.
- Non flat topography with limited increase.

Mixing:

- Periodic dynamic resource allocation problem.
- One period is enough.
- Approximation and criterion.

	Topography	Mixing	Depth / Biomass concentration
Gain	pprox 1 %	\approx 30 %	pprox 100 %

Future work

Further step that can lead to higher gains:

• Consider the turbulence regime (much more complex...).

But for this:

Future work

Further step that can lead to higher gains:

• Consider the turbulence regime (much more complex...).

But for this:

- Include the faster time scales of the Han model.
- A more refined model of the mixing device (and its implication on hydrodynamics) must be developed.
- Higher energetic cost for maintaining a turbulent regime must be taken into account.

Thanks for your attention

Fast/slow illustration

Effect on vertical discretization number

We fix $N_a = 5$ and take 100 random vector a. For N_z varying from 1 to 80, we compute the average value of $\bar{\mu}_{N_z}$ for each N_z .

Objective function

Define the average benefit after K operations

$$\frac{1}{K}\sum_{k=0}^{K-1}\langle u,\frac{1}{T}\int_{T_k}^{T_{k+1}}x(t)\mathrm{d}t\rangle.$$

Theorem (One periodic)

If x is KT-periodic (i.e., $x(T_K) = x(T_0)$), then x is T-periodic.

$$\frac{1}{K}\sum_{k=0}^{K-1}\langle u,\frac{1}{T}\int_{T_k}^{T_{k+1}}x(t)dt\rangle=\langle u,\frac{1}{T}\int_{T_0}^{T_1}x(t)dt\rangle.$$