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Biological model

Photoinhibition: Strong light induces damage to the photosystem.

Eilers & Peeters (Eilers and Peeters 1993)

Han model (Han 2002)

widely used
relatively simple dynamics
validated parameters

Variants of Han model (e.g. Nikolaou et al. 2016, Bernardini et al.
2016)
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Adaptation of Han model to raceway

The Han dynamics:

A

open

Fast/slow approximation: Ċ = −α(I )C + β(I ).

The growth rate: µ(C , I ) := kσI (1−C)
τσI+1 .

Steady state → Haldane description µ(I ) = µmax
I

I+µmax
θ

( I
I∗−1)2

.

The Beer-Lambert law: I (z) = Is exp
(
− εz

)
.
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Ċ = −krC + kdσIB

=⇒
{
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Ċ = g(A,C )

Fast/slow approximation: Ċ = −α(I )C + β(I ).
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Raceway modelling

Raceway ponds:

widely used and cheapest
cultivation system,

water tank and paddle wheel.
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Raceway modelling

Simulation of the trajectories with the code FreshKiss3D (Demory et al.
2018).
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Raceway modelling
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1D Illustration

0 L

z

0 x
η(x)

Is

zb(x)h(x)
u(x)
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Saint-Venant Equations

1D steady state Saint-Venant equations

∂x(hu) = 0, ∂x(hu
2 + g

h2

2
) = −gh∂xzb.

Froude number:
Fr :=

u√
gh

Fr < 1: subcritical case (i.e. the flow regime is fluvial)
Fr > 1: supercritical case (i.e. the flow regime is torrential)

Given a smooth topography zb, there exists a unique positive smooth
solution of h which satisfies the subcritical flow condition.

A time free formulation of the Lagrangian trajectory:

z(x) = η(x) +
h(x)

h(0)
(z(0)− η(0)). (1)
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Saint-Venant Equations

Relation between zb and h

zb =
M0
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− Q2
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2gh2
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Q0,M0 ∈ R+ are two constants.
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Optimization Problem

Our goal: Topography zb.

Objective function: Average net growth rate

Volume of the system V =
∫ L
0 h(x)dx .

Parameterize h by a vector a := [a1, · · · , aNa ] ∈ RNa , e.g. Truncated
Fourier.

The computational chain:

h(a) → zi → Ii → Ci → µ̄Nz .

Adjoint method → ∇µ̄Nz (a).
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1

VNz

∑Nz
i=1

∫ L
0 µ(Ci , Ii )hdx

vertical discretization

Volume of the system V =
∫ L
0 h(x)dx .

Parameterize h by a vector a := [a1, · · · , aNa ] ∈ RNa , e.g. Truncated
Fourier.

The computational chain:

h(a) → zi → Ii → Ci → µ̄Nz .

Adjoint method → ∇µ̄Nz (a).
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Optimal Topography

Number of parameters: Na = 5.
Number of trajectories: Nz = 40.
Initial guess: flat topography.
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Permanent regime

Assumption

Photoinhibition state C is periodic meaning that Ci (L) = Ci (0),
i = [1, · · · ,Nz ].

Theorem (Flat topography)

Assume the volume of the system V is constant. Then ∇µ̄Nz (0) = 0.
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Optimal topography (C periodic)

Number of parameters: Na = 5.
Number of trajectories: Nz = 40.
Initial guess: random topography.
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Summary on the topography

In the case C non periodic, one can find no flat optimal topographies,
however the increase is limited.

In the case C periodic, the flat topography is not only a critical point
but also the optimal topography.

What can be further optimized?
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Mixing devices

Simulation of the trajectories with the code FreshKiss3D (Demory et al.
2018).
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Mixing devices

Assumption (Ideal rearrangement)

At each new lap, the algae at depth zi are entirely transferred into the
position zj when passing through the mixing device.

Notations

We denote by P the set of permutation matrices of size Nz × Nz and by
SNz the associated set of permutations of Nz elements.
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Mixing devices

Illustration with the permutation σ = (1 2 3 4).

z

x
0

Choice of Period?

Re-distribution of light.
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Periodic dynamical resource allocation problem

N resources

In

N activities

wn

Theorem (One period is enough)

If w is KT-periodic (i.e., w(TK ) = w(T0)), then w is T−periodic.
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Original problem

Optimization problem

max
P∈P

J(P) := max
P∈P

⟨u, (IN − PD)−1Pv⟩, (3)

Two vectors u, v and a diagonal matrix D all depend on (In)
N
n=1.

Remark

Since #S = N!, this problem cannot be tackled in realistic cases where
large values of N must be considered, e.g., to keep a good numerical
accuracy.

Expand the functional (3) as follows

⟨u, (IN − PD)−1Pv⟩︸ ︷︷ ︸
J(P)

=
+∞∑
ℓ=0

⟨u, (PD)ℓPv⟩ = ⟨u,Pv⟩︸ ︷︷ ︸
Japprox(P)

+
+∞∑
ℓ=1

⟨u, (PD)ℓPv⟩,
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Simplified problem

max
P∈P

Japprox(P) := max
P∈P

⟨u,Pv⟩. (4)

Lemma (Optimal matrix)

P+: associates the largest coefficient of u with the largest coefficient
of v , the second largest coefficient with the second largest, and so on.

P−: associates the largest coefficient of u with the smallest
coefficient of v , the second largest coefficient with the second
smallest, and so on.

Liu-Di LU (University of Geneva) Seminar MaIAGE Jouy-en-Josas, January 24, 2022 19 / 39



Simplified problem

max
P∈P

Japprox(P) := max
P∈P

⟨u,Pv⟩. (4)

Lemma (Optimal matrix)

P+: associates the largest coefficient of u with the largest coefficient
of v , the second largest coefficient with the second largest, and so on.

P−: associates the largest coefficient of u with the smallest
coefficient of v , the second largest coefficient with the second
smallest, and so on.

Liu-Di LU (University of Geneva) Seminar MaIAGE Jouy-en-Josas, January 24, 2022 19 / 39



Optimal Matrix

Test for (Is , q,T ) = (2000, 5%, 1000).

Pmax for J(P) P+ for Japprox(P)
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Test for (Is , q,T ) = (800, 0.5%, 1).

Pmax for J(P) P+ for Japprox(P)
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Quality of the approximation

Theorem (Coincidence Criterion: Pmax = P+?)

Assume that u and v have positive entries and define

ϕ(m) :=
1

s⌈m
2 ⌉

( +∞∑
ℓ=1

dℓ
maxF

+
(ℓ+1)m − dℓ

minF
−
(ℓ+1)m

)
, (5)

where m := # {n = 1, . . . ,N | σ(n) ̸= σ+(n)}, dmax := maxn=1,...,N(dn)
and dmin := minn=1,...,N(dn). Assume that:

max
m≥2

ϕ(m) ≤ 1. (6)

Then Pmax = P+.
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Approximation and criterion

T = 1000.

N = 5 N = 9
µ̄N(Pmax) and µ̄N(P+).

Pmax = P+.

Coincidence Criterion satisfied.
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Test with a permutation

We keep Na = 5, Nz = 40 and choose σ = Id
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Test with a permutation

Test permutation: σ = (1 Nz)(2 Nz − 1) . . ..

Initial guess: flat topography.
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One periodic

We keep Na = 5, Nz = 40 and choose σ = (1 Nz)(2 Nz − 1) . . .
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Variable volume

Volume related parameter a0 as the average depth of the raceway
system:

a0 := h̄ =
1

L

∫ L

0
h(x)dx =

V

L
. (7)

New parameter ã = [a0, a1, . . . , aNa ] ∈ RNa+1.

Relation between X and V : Yopt.

Optimization Problem:

ΠNz (ã) := µ̄Nz (ã)Xh(ã) =
Yopt − α1a0

VNzα0

Nz∑
i=1

∫ L

0
µ(Ci , Ii (ã))h(ã)dx .
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Optimal Topography (Variable volume)

Initial average depth: a0 = 0.4m.

Initial guess: flat topography.
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Optimal Topography (Variable volume)

Number of trajectories: Nz = 7.

Initial average depth: a0 = 0.4m.

Initial guess: flat topography.

P100
max =



0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


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Maximize productivity

Masci et al. 2010:

Growth µ: Droop function.

Extinction ε: linear function
ε(X ) = α0X .

Productivity: surface biomass
productivity Π := (µ̄− R)Xh.

Optimal condition:
µ(I (hopt)) = R (compensation
condition).
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Maximize productivity

Growth µ: Haldane description µ(I ) = µmax
I

I+µmax
θ

( I
I∗−1)2

.

Extinction ε: general form ε(X ).

New concept: optical depth productivity P := (µ̄− R)Y with the
optical depth Y := ε(X )h.

Optimal condition: µ (I (Yopt)) = R.
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Surface biomass productivity

Surface biomass productivity Π := (µ̄− R)Xh = X
ε(X )P.

Corollary

For a given biomass concentration X , there exists a unique reactor depth
h1 which satisfies ε(X )h1 = Yopt and maximizes the productivity Π(X , ·).

The extinction function ε(X ) := α0X
s + α1 (Morel 1988, Mart́ınez

2018).

For a given depth h, Yopt is generally NOT the optimal condition.
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Theorem

In general case, there is no global optimum for Π.

Given X0 and consider the sequence (Xn, hn)n∈N defined by

hn =
Yopt

ε(Xn−1)
, Xn := argmaxX∈R+

Π(X , hn).

Theorem

If s = 1, limn→∞Π(Xn, hn) =
P(Yopt)

α0
. If s < 1, limn→∞Π(Xn, hn) = +∞.
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Nonlinear Controller

In real life application, h is given, one would like to find Xopt(h).

Evolution of the biomass concentration Ẋ = (µ̄− R − D)X .

Proposition

The control law

D =

{
Dmax X ≥ X̄

(µ̄(X , h)− R) X
X⋆ X < X̄

globally stabilizes the evolution of X towards the positive point X ⋆.
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Conclusion

Topography:

Flat topography is optimal in periodic case.

Non flat topography with limited increase.

Mixing:

Periodic dynamic resource allocation problem.

One period is enough.

Approximation and criterion.
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Conclusion

Topography:

Flat topography is optimal in periodic case.

Non flat topography with limited increase.

Mixing:

Periodic dynamic resource allocation problem.

One period is enough.

Approximation and criterion.

Topography Mixing Depth / Biomass concentration

Gain ≈ 1 % ≈ 30 % ≈ 100 %
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Future work

Further step that can lead to higher gains:

Consider the turbulence regime (much more complex...).

But for this:

Include the faster time scales of the Han model.

A more refined model of the mixing device (and its implication on
hydrodynamics) must be developed.

Higher energetic cost for maintaining a turbulent regime must be
taken into account.
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Thanks for your attention
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Fast/slow illustration
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Effect on vertical discretization number

We fix Na = 5 and take 100 random vector a. For Nz varying from 1 to
80, we compute the average value of µ̄Nz for each Nz .
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Objective function

Define the average benefit after K operations

1

K

K−1∑
k=0

⟨u, 1
T

∫ Tk+1

Tk

x(t)dt⟩.

Theorem (One periodic)

If x is KT-periodic (i.e., x(TK ) = x(T0)), then x is T−periodic.

1

K

K−1∑
k=0

⟨u, 1
T

∫ Tk+1

Tk

x(t)dt⟩ = ⟨u, 1
T

∫ T1

T0

x(t)dt⟩.
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