Some modelling and optimization problems for microalgal raceway ponds

Liu-Di LU

University of Geneva

Jouy-en-Josas, January 24, 2022

Overview

(1) Motivation and Modelling
(2) Topography
(3) Mixing
(4) Topography, Mixing and Volume
(5) Depth and Biomass Concentration
6) Conclusion and Perspectives

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,
- CO_{2} fixation.

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,
- CO_{2} fixation.
- Advantages:
- wastewater treatment, biofuel,
- various secondary metabolites.

Motivation and Framework

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,
- CO_{2} fixation.
- Advantages:
- wastewater treatment, biofuel,
- various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors.

Motivation and Framework

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,
- CO_{2} fixation.
- Advantages:
- wastewater treatment, biofuel,
- various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors: Raceway ponds.

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,
- CO_{2} fixation.
- Advantages:
- wastewater treatment, biofuel,
- various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors: Raceway ponds.
- Impact factor: Light, Temperature, pH, Nutrients, etc.

Motivation and Framework

- Microalgae:
- photosynthetic micro-organisms,
- 2 to 50 micro-meters,
- aquatic environment: river, lake, ocean, etc,
- CO_{2} fixation.
- Advantages:
- wastewater treatment, biofuel,
- various secondary metabolites with high potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements.
- Photobioreactors: Raceway ponds.
- Impact factor: Light, Temperature, pH, Nutrients, etc.

Biological model

Biological model

Photoinhibition: Strong light induces damage to the photosystem.

Biological model

Photoinhibition: Strong light induces damage to the photosystem.

- Eilers \& Peeters (Eilers and Peeters 1993)

Biological model

Photoinhibition: Strong light induces damage to the photosystem.

- Eilers \& Peeters (Eilers and Peeters 1993)
- Han model (Han 2002)
- widely used
- relatively simple dynamics
- validated parameters

Biological model

Photoinhibition: Strong light induces damage to the photosystem.

- Eilers \& Peeters (Eilers and Peeters 1993)
- Han model (Han 2002)
- widely used
- relatively simple dynamics
- validated parameters
- Variants of Han model (e.g. Nikolaou et al. 2016, Bernardini et al. 2016)

Biological model

Photoinhibition: Strong light induces damage to the photosystem.

- Eilers \& Peeters (Eilers and Peeters 1993)
- Han model (Han 2002)
- widely used,
- relatively simple dynamics,
- validated parameters.
- Variants of Han model (e.g. Nikolaou et al. 2016, Bernardini et al. 2016)

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han dynamics:

Adaptation of Han model to raceway

- The Han system:

$$
\left\{\begin{array}{l}
\dot{A}=-\sigma I A+\frac{B}{\tau} \\
\dot{B}=\sigma I A-\frac{B}{\tau}+k_{r} C-k_{d} \sigma I B \\
\dot{C}=-k_{r} C+k_{d} \sigma I B
\end{array}\right.
$$

Adaptation of Han model to raceway

- The Han system:

$$
\left\{\begin{array} { l }
{ \dot { A } = - \sigma I A + \frac { B } { \tau } } \\
{ \dot { B } = \sigma I A - \frac { B } { \tau } + k _ { r } C - k _ { d } \sigma I B } \\
{ \dot { C } = - k _ { r } C + k _ { d } \sigma I B }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{A}=\frac{1}{\epsilon} f(A, C) \\
\dot{C}=g(A, C)
\end{array}\right.\right.
$$

Adaptation of Han model to raceway

- The Han system:

$$
\left\{\begin{array} { l }
{ \dot { A } = - \sigma I A + \frac { B } { \tau } } \\
{ \dot { B } = \sigma I A - \frac { B } { \tau } + k _ { r } C - k _ { d } \sigma I B } \\
{ \dot { C } = - k _ { r } C + k _ { d } \sigma I B }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{A}=\frac{1}{\epsilon} f(A, C) \\
\dot{C}=g(A, C)
\end{array}\right.\right.
$$

- Fast/slow approximation: $\dot{C}=-\alpha(I) C+\beta(I)$.

Adaptation of Han model to raceway

- The Han system:

$$
\left\{\begin{array} { l }
{ \dot { A } = - \sigma I A + \frac { B } { \tau } } \\
{ \dot { B } = \sigma I A - \frac { B } { \tau } + k _ { r } C - k _ { d } \sigma I B } \\
{ \dot { C } = - k _ { r } C + k _ { d } \sigma I B }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{A}=\frac{1}{\epsilon} f(A, C) \\
\dot{C}=g(A, C)
\end{array}\right.\right.
$$

- Fast/slow approximation: $\dot{C}=-\alpha(I) C+\beta(I)$.
- The growth rate:

$$
\mu(C, I):=k \sigma l \frac{(1-C)}{\tau \sigma I+1}
$$

Adaptation of Han model to raceway

- The Han system:

$$
\left\{\begin{array} { l }
{ \dot { A } = - \sigma I A + \frac { B } { \tau } } \\
{ \dot { B } = \sigma I A - \frac { B } { \tau } + k _ { r } C - k _ { d } \sigma I B } \\
{ \dot { C } = - k _ { r } C + k _ { d } \sigma I B }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{A}=\frac{1}{\epsilon} f(A, C) \\
\dot{C}=g(A, C)
\end{array}\right.\right.
$$

- Fast/slow approximation: $\dot{C}=-\alpha(I) C+\beta(I)$.
- The growth rate:

$$
\begin{gathered}
\mu(C, I):=k \sigma I \frac{(1-C)}{\tau \sigma I+1} \\
\mu(I)=\mu_{\max } \frac{I}{I+\frac{\mu_{\max }}{\theta}\left(\frac{l}{I^{*}}-1\right)^{2}} \text { steady state } \\
\text { (Haldane) }
\end{gathered}
$$

Adaptation of Han model to raceway

Haldane description

Adaptation of Han model to raceway

- The Han system:

$$
\left\{\begin{array} { l }
{ \dot { A } = - \sigma I A + \frac { B } { \tau } } \\
{ \dot { B } = \sigma I A - \frac { B } { \tau } + k _ { r } C - k _ { d } \sigma I B } \\
{ \dot { C } = - k _ { r } C + k _ { d } \sigma I B }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{A}=\frac{1}{\epsilon} f(A, C) \\
\dot{C}=g(A, C)
\end{array}\right.\right.
$$

- Fast/slow approximation: $\dot{C}=-\alpha(I) C+\beta(I)$.
- The growth rate:

$$
\begin{gathered}
\mu(C, I):=k \sigma I \frac{(1-C)}{\tau \sigma I+1} \\
\mu(I)=\mu_{\max } \frac{I}{l+\frac{\mu_{\max }}{\theta}\left(\frac{1}{\left.I^{*}-1\right)^{2}}\right.} \text { steady state }
\end{gathered}
$$

- The Beer-Lambert law: $I(z)=I_{s} \exp (-\varepsilon z)$.

Raceway modelling

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Raceway modelling

Simulation of the trajectories with the code FreshKiss3D (Demory et al. 2018).

Raceway modelling

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Parameters to be optimized:

- topography,

Raceway modelling

1D illustration

Raceway modelling

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Parameters to be optimized:

- topography,

Raceway modelling

Raceway ponds:

- widely used and cheapest cultivation system,
- water tank and paddle wheel.

Parameters to be optimized:

- topography,
- mixing.

Overview

(1) Motivation and Modelling

(2) Topography

(3) Mixing
(4) Topography, Mixing and Volume
(5) Depth and Biomass Concentration
(6) Conclusion and Perspectives

1D Illustration

Saint-Venant Equations

- 1D steady state Saint-Venant equations

$$
\partial_{x}(h u)=0, \quad \partial_{x}\left(h u^{2}+g \frac{h^{2}}{2}\right)=-g h \partial_{x} z_{b} .
$$

Saint-Venant Equations

- Relation between z_{b} and h

$$
\begin{equation*}
z_{b}=\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{1}
\end{equation*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

Saint-Venant Equations

- Relation between z_{b} and h

$$
\begin{equation*}
z_{b}=\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{1}
\end{equation*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\mathrm{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

Saint-Venant Equations

- Relation between z_{b} and h

$$
\begin{equation*}
z_{b}=\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{1}
\end{equation*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\mathrm{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$ 1: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_{b}, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition (Michel-Dansac et al 2016).

Saint-Venant Equations

- Relation between z_{b} and h

$$
\begin{equation*}
z_{b}=\frac{M_{0}}{g}-\frac{Q_{0}^{2}}{2 g h^{2}}-h \tag{1}
\end{equation*}
$$

$Q_{0}, M_{0} \in \mathbb{R}^{+}$are two constants.

- Froude number:

$$
F r:=\frac{u}{\sqrt{g h}}
$$

$\mathrm{Fr}<1$: subcritical case (i.e. the flow regime is fluvial)
$\operatorname{Fr}>1$: supercritical case (i.e. the flow regime is torrential)

- Given a smooth topography z_{b}, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition (Michel-Dansac et al 2016).
- A time free formulation of the Lagrangian trajectory starting from $z(0)$:

$$
\begin{equation*}
z(x)=\eta(x)+\frac{h(x)}{h(0)}(z(0)-\eta(0)) . \tag{2}
\end{equation*}
$$

Optimization Problem

- Our goal: Topography z_{b}.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x
$$

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{gathered}
\bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
\\
\downarrow \text { vertical discretization } \\
\bar{\mu}_{N_{z}}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x
\end{gathered}
$$

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{gathered}
\bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
\downarrow \text { vertical discretization } \\
\bar{\mu}_{N_{z}}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x
\end{gathered}
$$

- Volume of the system $V=\int_{0}^{L} h(x) \mathrm{d} x$.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{gathered}
\bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
\downarrow \text { vertical discretization } \\
\bar{\mu}_{N_{z}}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x}
\end{gathered}
$$

- Volume of the system $V=\int_{0}^{L} h(x) \mathrm{d} x$.
- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{N_{a}}\right] \in \mathbb{R}^{N_{a}}$, e.g. Truncated Fourier.

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{gathered}
\bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
\\
\downarrow \text { vertical discretization } \\
\bar{\mu}_{N_{z}}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x
\end{gathered}
$$

- Volume of the system $V=\int_{0}^{L} h(x) \mathrm{d} x$.
- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{N_{a}}\right] \in \mathbb{R}^{N_{a}}$, e.g. Truncated Fourier.
- The computational chain:

$$
h(a) \rightarrow z_{i} \rightarrow I_{i} \rightarrow C_{i} \rightarrow \bar{\mu}_{N_{z}}
$$

Optimization Problem

- Our goal: Topography z_{b}.
- Objective function: Average net growth rate

$$
\begin{gathered}
\bar{\mu}_{\infty}:=\frac{1}{V} \int_{0}^{L} \int_{z_{b}(x)}^{\eta(x)} \mu(C(x, z), I(x, z)) \mathrm{d} z \mathrm{~d} x \\
\\
\downarrow \text { vertical discretization } \\
\bar{\mu}_{N_{z}}=\frac{1}{V N_{z}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, l_{i}\right) h \mathrm{~d} x
\end{gathered}
$$

- Volume of the system $V=\int_{0}^{L} h(x) \mathrm{d} x$.
- Parameterize h by a vector $a:=\left[a_{1}, \cdots, a_{N_{a}}\right] \in \mathbb{R}^{N_{a}}$, e.g. Truncated Fourier.
- The computational chain:

$$
h(a) \rightarrow z_{i} \rightarrow I_{i} \rightarrow C_{i} \rightarrow \bar{\mu}_{N_{z}}
$$

- Adjoint method $\rightarrow \nabla \bar{\mu}_{N_{z}}(a)$.

Optimal Topography

- Number of parameters: $N_{a}=5$.
- Number of trajectories: $N_{z}=40$.
- Initial guess: flat topography.

Permanent regime

Assumption

Photoinhibition state C is periodic meaning that $C_{i}(L)=C_{i}(0)$, $i=\left[1, \cdots, N_{z}\right]$.

Permanent regime

Assumption

Photoinhibition state C is periodic meaning that $C_{i}(L)=C_{i}(0)$, $i=\left[1, \cdots, N_{z}\right]$.

Theorem (Flat topography)

Assume the volume of the system V is constant. Then $\nabla \bar{\mu}_{N_{z}}(0)=0$.

Optimal topography (C periodic)

- Number of parameters: $N_{a}=5$.
- Number of trajectories: $N_{z}=40$.
- Initial guess: random topography.

Summary on the topography

- In the case C non periodic, one can find no flat optimal topographies, however the increase is limited.

Summary on the topography

- In the case C non periodic, one can find no flat optimal topographies, however the increase is limited.
- In the case C periodic, the flat topography is not only a critical point but also the optimal topography.

Summary on the topography

- In the case C non periodic, one can find no flat optimal topographies, however the increase is limited.
- In the case C periodic, the flat topography is not only a critical point but also the optimal topography.
- What can be further optimized?

Overview

(1) Motivation and Modelling

(2) Topography
(3) Mixing
(4) Topography, Mixing and Volume
(5) Depth and Biomass Concentration
6) Conclusion and Perspectives

Mixing devices

Simulation of the trajectories with the code FreshKiss3D (Demory et al. 2018).

Mixing devices

Assumption (Ideal rearrangement)

At each new lap, the algae at depth z_{i} are entirely transferred into the position z_{j} when passing through the mixing device.

Mixing devices

Assumption (Ideal rearrangement)

At each new lap, the algae at depth z_{i} are entirely transferred into the position z_{j} when passing through the mixing device.

Notations

We denote by \mathcal{P} the set of permutation matrices of size $N_{z} \times N_{z}$ and by $\mathfrak{S}_{N_{z}}$ the associated set of permutations of N_{z} elements.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

- Choice of Period?

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

- Choice of Period? Order of σ.

Mixing devices

- Illustration with the permutation $\sigma=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.

- Choice of Period? Order of σ.
- Re-distribution of light.

Periodic dynamical resource allocation problem

N resources

N activities

Periodic dynamical resource allocation problem

Periodic dynamical resource allocation problem

Periodic dynamical resource allocation problem

Periodic dynamical resource allocation problem

N resources $\quad N$ activities

Theorem (One period is enough)

If w is $K T$-periodic (i.e., $w\left(T_{K}\right)=w\left(T_{0}\right)$), then w is T-periodic.

Original problem

Optimization problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J(P):=\max _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N}-P D\right)^{-1} P v\right\rangle, \tag{3}
\end{equation*}
$$

Two vectors u, v and a diagonal matrix D all depend on $\left(I_{n}\right)_{n=1}^{N}$.

Original problem

Optimization problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J(P):=\max _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N}-P D\right)^{-1} P v\right\rangle, \tag{3}
\end{equation*}
$$

Two vectors u, v and a diagonal matrix D all depend on $\left(I_{n}\right)_{n=1}^{N}$.

Remark

Since $\# \mathfrak{S}=N!$, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Original problem

Optimization problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J(P):=\max _{P \in \mathcal{P}}\left\langle u,\left(\mathcal{I}_{N}-P D\right)^{-1} P v\right\rangle, \tag{3}
\end{equation*}
$$

Two vectors u, v and a diagonal matrix D all depend on $\left(I_{n}\right)_{n=1}^{N}$.

Remark

Since $\# \mathfrak{S}=N$!, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Expand the functional (3) as follows

$$
\underbrace{\left\langle u,\left(\mathcal{I}_{N}-P D\right)^{-1} P v\right\rangle}_{J(P)}=\sum_{\ell=0}^{+\infty}\left\langle u,(P D)^{\ell} P v\right\rangle=\underbrace{\langle u, P v\rangle}_{J \text { approx }(P)}+\sum_{\ell=1}^{+\infty}\left\langle u,(P D)^{\ell} P v\right\rangle,
$$

Simplified problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J^{\text {approx }}(P):=\max _{P \in \mathcal{P}}\langle u, P v\rangle . \tag{4}
\end{equation*}
$$

Simplified problem

$$
\begin{equation*}
\max _{P \in \mathcal{P}} J^{\text {approx }}(P):=\max _{P \in \mathcal{P}}\langle u, P v\rangle . \tag{4}
\end{equation*}
$$

Lemma (Optimal matrix)

- P_{+}: associates the largest coefficient of u with the largest coefficient of v, the second largest coefficient with the second largest, and so on.
- P_{-}: associates the largest coefficient of u with the smallest coefficient of v, the second largest coefficient with the second smallest, and so on.

Optimal Matrix

Test for $\left(I_{s}, q, T\right)=(2000,5 \%, 1000)$.

$P_{\text {max }}$ for $J(P)$

Optimal Matrix

Test for $\left(I_{s}, q, T\right)=(800,0.5 \%, 1)$.

$P_{\text {max }}$ for $J(P)$

P_{+}for $J^{\text {approx }}(P)$

Quality of the approximation

Theorem (Coincidence Criterion: $P_{\max }=P_{+}$?)

Assume that u and v have positive entries and define

$$
\begin{equation*}
\phi(m):=\frac{1}{S_{\left\lceil\frac{m}{2}\right\rceil}}\left(\sum_{\ell=1}^{+\infty} d_{\max }^{\ell} F_{(\ell+1) m}^{+}-d_{\min }^{\ell} F_{(\ell+1) m}^{-}\right), \tag{5}
\end{equation*}
$$

where $m:=\#\left\{n=1, \ldots, N \mid \sigma(n) \neq \sigma_{+}(n)\right\}, d_{\max }:=\max _{n=1, \ldots, N}\left(d_{n}\right)$ and $d_{\text {min }}:=\min _{n=1, \ldots, N}\left(d_{n}\right)$. Assume that:

$$
\begin{equation*}
\max _{m \geq 2} \phi(m) \leq 1 \tag{6}
\end{equation*}
$$

Then $P_{\max }=P_{+}$.

Approximation and criterion

$$
T=1000 .
$$

$$
N=5
$$

$$
N=9
$$

- $\bar{\mu}_{N}\left(P_{\max }\right)$ and $\bar{\mu}_{N}\left(P_{+}\right)$.
- $P_{\max }=P_{+}$.
- Coincidence Criterion satisfied.

Approximation and criterion

$$
T=1
$$

$$
N=5
$$

$$
N=9
$$

- $\bar{\mu}_{N}\left(P_{\max }\right)$ and $\bar{\mu}_{N}\left(P_{+}\right)$.
- $P_{\max }=P_{+}$.
- Coincidence Criterion satisfied

Overview

(1) Motivation and Modelling

(2) Topography
(3) Mixing

4 Topography, Mixing and Volume
(5) Depth and Biomass Concentration
(6) Conclusion and Perspectives

Test with a permutation

We keep $N_{a}=5, N_{z}=40$ and choose $\sigma=l d$

Test with a permutation

- Test permutation: $\sigma=\left(1 N_{z}\right)\left(2 N_{z}-1\right) \ldots$.
- Initial guess: flat topography.

One periodic

We keep $N_{a}=5, N_{z}=40$ and choose $\sigma=\left(1 N_{z}\right)\left(2 N_{z}-1\right) \ldots$

Variable volume

- Volume related parameter a_{0} as the average depth of the raceway system:

$$
\begin{equation*}
a_{0}:=\bar{h}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x=\frac{V}{L} . \tag{7}
\end{equation*}
$$

New parameter $\tilde{a}=\left[a_{0}, a_{1}, \ldots, a_{N_{a}}\right] \in \mathbb{R}^{N_{a}+1}$.

Variable volume

- Volume related parameter a_{0} as the average depth of the raceway system:

$$
\begin{equation*}
a_{0}:=\bar{h}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x=\frac{V}{L} . \tag{7}
\end{equation*}
$$

New parameter $\tilde{a}=\left[a_{0}, a_{1}, \ldots, a_{N_{a}}\right] \in \mathbb{R}^{N_{a}+1}$.

- Relation between X and V : $Y_{\text {opt }}$.

Variable volume

- Volume related parameter a_{0} as the average depth of the raceway system:

$$
\begin{equation*}
a_{0}:=\bar{h}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x=\frac{V}{L} . \tag{7}
\end{equation*}
$$

New parameter $\tilde{a}=\left[a_{0}, a_{1}, \ldots, a_{N_{a}}\right] \in \mathbb{R}^{N_{a}+1}$.

- Relation between X and V : $Y_{\text {opt }}$.
- Optimization Problem:

$$
\Pi_{N_{z}}(\tilde{a}):=\bar{\mu}_{N_{z}}(\tilde{a}) X h(\tilde{a})=\frac{Y_{\mathrm{opt}}-\alpha_{1} a_{0}}{V N_{z} \alpha_{0}} \sum_{i=1}^{N_{z}} \int_{0}^{L} \mu\left(C_{i}, I_{i}(\tilde{a})\right) h(\tilde{a}) \mathrm{d} x .
$$

Optimal Topography (Variable volume)

- Initial average depth: $a_{0}=0.4 \mathrm{~m}$.
- Initial guess: flat topography.

Optimal Topography (Variable volume)

- Number of trajectories: $N_{z}=7$.
- Initial average depth: $a_{0}=0.4 \mathrm{~m}$.
- Initial guess: flat topography.

$$
P_{\max }^{100}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Optimal Topography (Variable volume)

- Number of trajectories: $N_{z}=7$.
- Initial average depth: $a_{0}=0.4 \mathrm{~m}$.
- Initial guess: flat topography.

Overview

(1) Motivation and Modelling

(2) Topography
(3) Mixing
(4) Topography, Mixing and Volume
(5) Depth and Biomass Concentration
(6) Conclusion and Perspectives

Maximize productivity

Masci et al. 2010:

- Growth μ : Droop function.

Maximize productivity

Masci et al. 2010:

- Growth μ : Droop function.
- Extinction ε : linear function $\varepsilon(X)=\alpha_{0} X$.

Maximize productivity

Masci et al. 2010:

- Growth μ : Droop function.
- Extinction ε : linear function $\varepsilon(X)=\alpha_{0} X$.
- Productivity: surface biomass productivity $\Pi:=(\bar{\mu}-R) X h$.

Maximize productivity

Masci et al. 2010:

- Growth μ : Droop function.
- Extinction ε : linear function $\varepsilon(X)=\alpha_{0} X$.
- Productivity: surface biomass productivity $\Pi:=(\bar{\mu}-R) X h$.
- Optimal condition: $\mu\left(I\left(h_{\text {opt }}\right)\right)=R$ (compensation condition).

Maximize productivity

- Growth μ : Haldane description $\mu(I)=\mu_{\max } \frac{I}{1+\frac{\mu_{\max }}{\theta}\left(\frac{1}{I^{*}}-1\right)^{2}}$.

Maximize productivity

- Growth μ : Haldane description $\mu(I)=\mu_{\max } \frac{I}{I+\frac{\mu_{\max }}{\theta}\left(\frac{1}{I^{*}}-1\right)^{2}}$.
- Extinction ε : general form $\varepsilon(X)$.

Maximize productivity

- Growth μ : Haldane description $\mu(I)=\mu_{\max } \frac{I}{I+\frac{\mu_{\max }}{\theta}\left(\frac{1}{I^{*}}-1\right)^{2}}$.
- Extinction ε : general form $\varepsilon(X)$.
- New concept: optical depth productivity $P:=(\bar{\mu}-R) Y$ with the optical depth $Y:=\varepsilon(X) h$.

Maximize productivity

- Growth μ : Haldane description.
- Extinction ε : general form $\varepsilon(X)$.
- Productivity: optical depth productivity $P:=(\bar{\mu}-R) Y$.

Maximize productivity

- Growth μ : Haldane description.
- Extinction ε : general form $\varepsilon(X)$.
- Productivity: optical depth productivity $P:=(\bar{\mu}-R) Y$.
- Optimal condition:
$\mu\left(I\left(Y_{\text {opt }}\right)\right)=R$.

Maximize productivity

- Growth μ : Haldane description.
- Extinction ε : general form $\varepsilon(X)$.
- Productivity: optical depth productivity $P:=(\bar{\mu}-R) Y$.
- Optimal condition:
$\mu\left(I\left(Y_{\text {opt }}\right)\right)=R$.

Surface biomass productivity

- Surface biomass productivity $\Pi:=(\bar{\mu}-R) X h=\frac{X}{\varepsilon(X)} P$.

Surface biomass productivity

- Surface biomass productivity $\Pi:=(\bar{\mu}-R) X h=\frac{X}{\varepsilon(X)} P$.

Corollary

For a given biomass concentration X, there exists a unique reactor depth h_{1} which satisfies $\varepsilon(X) h_{1}=Y_{\text {opt }}$ and maximizes the productivity $\Pi(X, \cdot)$.

Surface biomass productivity

- Surface biomass productivity $\Pi:=(\bar{\mu}-R) X h=\frac{X}{\varepsilon(X)} P$.

Corollary

For a given biomass concentration X, there exists a unique reactor depth h_{1} which satisfies $\varepsilon(X) h_{1}=Y_{\text {opt }}$ and maximizes the productivity $\Pi(X, \cdot)$.

- The extinction function $\varepsilon(X):=\alpha_{0} X^{s}+\alpha_{1}$ (Morel 1988, Martínez 2018).

Surface biomass productivity

- Surface biomass productivity $\Pi:=(\bar{\mu}-R) X h=\frac{X}{\varepsilon(X)} P$.

Corollary

For a given biomass concentration X, there exists a unique reactor depth h_{1} which satisfies $\varepsilon(X) h_{1}=Y_{\text {opt }}$ and maximizes the productivity $\Pi(X, \cdot)$.

- The extinction function $\varepsilon(X):=\alpha_{0} X^{s}+\alpha_{1}$ (Morel 1988, Martínez 2018).
- For a given depth $h, Y_{\text {opt }}$ is generally NOT the optimal condition.

Theorem
 In general case, there is no global optimum for Π.

Theorem

In general case, there is no global optimum for Π.
Given X_{0} and consider the sequence $\left(X_{n}, h_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
h_{n}=\frac{Y_{\mathrm{opt}}}{\varepsilon\left(X_{n-1}\right)}, \quad X_{n}:=\operatorname{argmax}_{X \in \mathbb{R}_{+}} \Pi\left(X, h_{n}\right)
$$

Theorem

In general case, there is no global optimum for Π.
Given X_{0} and consider the sequence $\left(X_{n}, h_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
h_{n}=\frac{Y_{\mathrm{opt}}}{\varepsilon\left(X_{n-1}\right)}, \quad X_{n}:=\operatorname{argmax}_{X \in \mathbb{R}_{+}} \Pi\left(X, h_{n}\right) .
$$

Theorem

If $s=1, \lim _{n \rightarrow \infty} \Pi\left(X_{n}, h_{n}\right)=\frac{P\left(Y_{\text {opt }}\right)}{\alpha_{0}}$. If $s<1, \lim _{n \rightarrow \infty} \Pi\left(X_{n}, h_{n}\right)=+\infty$.

Nonlinear Controller

In real life application, h is given, one would like to find $X_{\text {opt }}(h)$.

Nonlinear Controller

In real life application, h is given, one would like to find $X_{\text {opt }}(h)$. Evolution of the biomass concentration $\dot{X}=(\bar{\mu}-R-D) X$.

Nonlinear Controller

In real life application, h is given, one would like to find $X_{\text {opt }}(h)$. Evolution of the biomass concentration $\dot{X}=(\bar{\mu}-R-D) X$.

Proposition

The control law

$$
D= \begin{cases}D_{\max } & X \geq \bar{X} \\ (\bar{\mu}(X, h)-R) \frac{X}{X^{\star}} & X<\bar{X}\end{cases}
$$

globally stabilizes the evolution of X towards the positive point X^{\star}.

Nonlinear Controller

In real life application, h is given, one would like to find $X_{\text {opt }}(h)$. Evolution of the biomass concentration $\dot{X}=(\bar{\mu}-R-D) X$.

Proposition

The control law

$$
D= \begin{cases}D_{\max } & X \geq \bar{X} \\ (\bar{\mu}(X, h)-R) \frac{X}{X^{\star}} & X<\bar{X}\end{cases}
$$

globally stabilizes the evolution of X towards the positive point X^{\star}.

Overview

(1) Motivation and Modelling

(2) Topography
(3) Mixing
(4) Topography, Mixing and Volume
(5) Depth and Biomass Concentration
(6) Conclusion and Perspectives

Conclusion

Topography:

- Flat topography is optimal in periodic case.
- Non flat topography with limited increase.

Mixing:

- Periodic dynamic resource allocation problem.
- One period is enough.
- Approximation and criterion.

Conclusion

Topography:

- Flat topography is optimal in periodic case.
- Non flat topography with limited increase.

Mixing:

- Periodic dynamic resource allocation problem.
- One period is enough.
- Approximation and criterion.

	Topography	Mixing	Depth / Biomass concentration
Gain	$\approx 1 \%$	$\approx 30 \%$	$\approx 100 \%$

Future work

Further step that can lead to higher gains:

- Consider the turbulence regime (much more complex...).

But for this:

Future work

Further step that can lead to higher gains:

- Consider the turbulence regime (much more complex...).

But for this:

- Include the faster time scales of the Han model.
- A more refined model of the mixing device (and its implication on hydrodynamics) must be developed.
- Higher energetic cost for maintaining a turbulent regime must be taken into account.

Thanks for your attention

Fast/slow illustration

Effect on vertical discretization number

We fix $N_{a}=5$ and take 100 random vector a. For N_{z} varying from 1 to 80, we compute the average value of $\bar{\mu}_{N_{z}}$ for each N_{z}.

Objective function

Define the average benefit after K operations

$$
\frac{1}{K} \sum_{k=0}^{K-1}\left\langle u, \frac{1}{T} \int_{T_{k}}^{T_{k+1}} x(t) \mathrm{d} t\right\rangle
$$

Theorem (One periodic)

If x is $K T$-periodic (i.e., $x\left(T_{K}\right)=x\left(T_{0}\right)$), then x is T-periodic.

$$
\frac{1}{K} \sum_{k=0}^{K-1}\left\langle u, \frac{1}{T} \int_{T_{k}}^{T_{k+1}} x(t) \mathrm{d} t\right\rangle=\left\langle u, \frac{1}{T} \int_{T_{0}}^{T_{1}} x(t) \mathrm{d} t\right\rangle
$$

