Some optimization problems in an algal raceway pond

Olivier Bernard, Liu-Di LU, Jacques Sainte-Marie, Julien Salomon

Tuesday May 18, 2021

Introduction

- Motivation: High potential on commercial applications, e.g., cosmetics, pharmaceuticals, food complements, wastewater treatment, green energy, etc.
- Raceway ponds

Figure: A typical raceway for cultivating microalgae. Notice the paddle-wheel which mixes the culture suspension. Picture from INRA (ANR Symbiose project) [1].

1D Illustration

Figure: Representation of the hydrodynamic model.

Saint-Venant Equations

• 1D steady state Saint-Venant equations

$$\partial_x(hu) = 0, \tag{1}$$

$$\partial_x(hu^2 + g\frac{h^2}{2}) = -gh\partial_x z_b.$$
 (2)

Saint-Venant Equations

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$$
(2)

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial) Fr > 1: supercritical case (i.e. the flow regime is torrential)

Saint-Venant Equations

• u, z_b as a function of h

$$u = \frac{Q_0}{h},$$
(1)

$$z_b = \frac{M_0}{g} - \frac{Q_0^2}{2gh^2} - h,$$
(2)

 $Q_0, M_0 \in \mathbb{R}^+$ are two constants.

• Froude number:

$$Fr := \frac{u}{\sqrt{gh}}$$

Fr < 1: subcritical case (i.e. the flow regime is fluvial) Fr > 1: supercritical case (i.e. the flow regime is torrential)

 Given a smooth topography z_b, there exists a unique positive smooth solution of h which satisfies the subcritical flow condition [4, Lemma 1].

Lagrangian Trajectories

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

Integrating (3) from z_b to z and using the kinematic condition at bottom (w(x, z_b) = u(x)∂_xz_b) gives:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

Lagrangian Trajectories

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

Integrating (3) from z_b to z and using the kinematic condition at bottom (w(x, z_b) = u(x)∂_xz_b) gives:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• The Lagrangian trajectory is characterized by the system

$$\begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} u(x(t)) \\ w(x(t), z(t)) \end{pmatrix}.$$

Lagrangian Trajectories

• Incompressibility of the flow: $\nabla \cdot \underline{\mathbf{u}} = 0$ with $\underline{\mathbf{u}} = (u(x), w(x, z))$

$$\partial_x u + \partial_z w = 0. \tag{3}$$

Integrating (3) from z_b to z and using the kinematic condition at bottom (w(x, z_b) = u(x)∂_xz_b) gives:

$$w(x,z) = (\frac{M_0}{g} - \frac{3u^2(x)}{2g} - z)u'(x).$$

• The Lagrangian trajectory is characterized by the system

$$\begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} u(x(t)) \\ w(x(t), z(t)) \end{pmatrix}.$$

• A time free formulation of the Lagrangian trajectory:

$$z(x) = \eta(x) + \frac{h(x)}{h(0)}(z(0) - \eta(0)).$$
(4)

Han model and connection

• Reduced Han model:

$$\dot{C} = -(k_d\tau \frac{(\sigma I)^2}{\tau \sigma I + 1} + k_r)C + k_d\tau \frac{(\sigma I)^2}{\tau \sigma I + 1}.$$

• The net growth rate:

$$\mu(C,I) := k\sigma I A - R = k\sigma I \frac{(1-C)}{\tau \sigma I + 1} - R,$$

Han model and connection

• Reduced Han model:

$$\dot{C} = -(k_d\tau \frac{(\sigma I)^2}{\tau \sigma I + 1} + k_r)C + k_d\tau \frac{(\sigma I)^2}{\tau \sigma I + 1}.$$

• The net growth rate:

$$\mu(C,I) := k\sigma IA - R = k\sigma I \frac{(1-C)}{\tau \sigma I + 1} - R,$$

• The Beer-Lambert law describes how light is attenuated with depth

$$I(x,z) = I_s \exp\left(-\varepsilon(\eta(x)-z)\right),\tag{5}$$

where ε is the light extinction defined by:

$$\varepsilon = \frac{1}{h} \ln(\frac{I_s}{I_b}).$$

• Our goal: Topography *z_b*.

- Our goal: Topography *z_b*.
- Objective function: Average net growth rate

$$\bar{\mu}_{\infty} := \frac{1}{V} \int_0^L \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx,$$
$$\bar{\mu}_{N_z} := \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i) h dx.$$

- Our goal: Topography *z_b*.
- Objective function: Average net growth rate

$$\bar{\mu}_{\infty} := \frac{1}{V} \int_0^L \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx,$$
$$\bar{\mu}_{N_z} := \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i) h dx.$$

• Volume of the system

$$V = \int_0^L h(x) \mathrm{d}x. \tag{6}$$

• Parameterize h by a vector $a := [a_1, \cdots, a_N] \in \mathbb{R}^N$.

- Our goal: Topography *z_b*.
- Objective function: Average net growth rate

$$\bar{\mu}_{\infty} := \frac{1}{V} \int_0^L \int_{z_b(x)}^{\eta(x)} \mu(C(x,z), I(x,z)) dz dx,$$
$$\bar{\mu}_{N_z} := \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i) h dx.$$

• Volume of the system

$$V = \int_0^L h(x) \mathrm{d}x. \tag{6}$$

- Parameterize *h* by a vector $a := [a_1, \cdots, a_N] \in \mathbb{R}^N$.
- The computational chain:

$$a \rightarrow h \rightarrow z_i \rightarrow I_i \rightarrow C_i \rightarrow \overline{\mu}_{N_z}.$$

• Optimization Problem: $\bar{\mu}_{N_z}(a) = \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i(a)) h(a) dx$, where C_i satisfy

$$C'_{i} = \left(-\alpha\left(I_{i}(a)\right)C_{i} + \beta\left(I_{i}(a)\right)\right)\frac{h(a)}{Q_{0}}$$

8/21

• Optimization Problem: $\bar{\mu}_{N_z}(a) = \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i(a)) h(a) dx$, where C_i satisfy

$$C'_{i} = (-\alpha (I_{i}(a)) C_{i} + \beta (I_{i}(a))) \frac{h(a)}{Q_{0}}.$$

• Lagrangian

$$\mathcal{L}(C_i, a, p_i) = \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \left(-\gamma(I_i(a))C_i + \zeta(I_i(a)) \right) h(a) dx$$
$$- \sum_{i=1}^{N_z} \int_0^L p_i \left(C'_i + \frac{\alpha(I_i(a)) - \beta(I_i(a))}{Q_0} h(a) \right) dx.$$

• Optimization Problem: $\bar{\mu}_{N_z}(a) = \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \mu(C_i, I_i(a)) h(a) dx$, where C_i satisfy

$$C'_{i} = (-\alpha (I_{i}(a)) C_{i} + \beta (I_{i}(a))) \frac{h(a)}{Q_{0}}.$$

Lagrangian

$$\mathcal{L}(C_i, a, p_i) = \frac{1}{VN_z} \sum_{i=1}^{N_z} \int_0^L \left(-\gamma(I_i(a))C_i + \zeta(I_i(a)) \right) h(a) dx$$
$$- \sum_{i=1}^{N_z} \int_0^L p_i \left(C'_i + \frac{\alpha(I_i(a)) - \beta(I_i(a))}{Q_0} h(a) \right) dx.$$

• The gradient $abla ar{\mu}_{N_z}(a) = \partial_a \mathcal{L}$ is given by

$$\partial_{a}\mathcal{L} = \sum_{i=1}^{N_{z}} \int_{0}^{L} \left(\frac{-\gamma'(I_{i}) C_{i} + \zeta'(I_{i})}{VN_{z}} + p_{i} \frac{-\alpha'(I_{i}) C_{i} + \beta'(I_{i})}{Q_{0}} \right) h \partial_{a} I_{i} dx$$
$$+ \sum_{i=1}^{N_{z}} \int_{0}^{L} \left(\frac{-\gamma(I_{i}) C_{i} + \zeta(I_{i})}{VN_{z}} + p_{i} \frac{-\alpha(I_{i}) C_{i} + \beta(I_{i})}{Q_{0}} \right) \partial_{a} h dx.$$

Numerical settings

Parameterization of h: Truncated Fourier

$$h(x) = a_0 + \sum_{n=1}^{N} a_n \sin(2n\pi \frac{x}{L}).$$
 (7)

9/21

Parameter to be optimized: Fourier coefficients $a := [a_1, ..., a_N]$. We use this parameterization based on the following reasons :

- We consider a hydrodynamic regime where the solutions of the shallow water equations are smooth and hence the water depth can be approximated by (7).
- One has naturally h(0) = h(L) under this parameterization, which means that we have accomplished one lap of the raceway pond.
- We assume a constant volume of the system V, which can be achieved by fixing a₀. Indeed, under this parameterization and using (6), one finds V = a₀L.

Convergence

We fix N = 5 and take 100 random initial guesses of *a*. For N_z varying from 1 to 80, we compute the average value of $\bar{\mu}_{N_z}$ for each N_z .

Figure: The value of $\bar{\mu}_{N_z}$ for $N_z = [1, 80]$.

Optimal Topography

We take $N_z = 40$. As an initial guess, we consider the flat topography, meaning that *a* is set to 0.

Assumption

Photoinhibition state C is periodic meaning that $C_i(L) = C_i(0)$

Consequence

Differentiating \mathcal{L} with respect to $C_i(L)$, we have

$$\partial_{C_i(L)}\mathcal{L}=p_i(L)-p_i(0).$$

so that equating the above equation to zero gives the periodicity for p_i .

Theorem (Flat topography [2])

Assume the volume of the system V is constant. Then $\nabla \overline{\mu}_{N_z}(0) = 0$.

Mixing devices

- An ideal rearrangement of trajectories: at each new lap, the algae at depth $z_i(0)$ are entirely transferred into the position $z_j(0)$ when passing through the mixing device.
- We denote by *P* the set of permutation matrices of size *N* × *N* and by *G_N* the associated set of permutations of *N* elements.

Nina Aguillon, Liu-Di LU

General problem

Given a period T, and initial time T_0 and a sequence $(T_k)_{k \in \mathbb{N}}$, with $T_k = kT + T_0$, we consider the following resource allocation problem:

Periodic dynamical resource allocation problem

Consider *N* resources denoted by $(I_n)_{n=1}^N \in \mathbb{R}^N$ which can be allocated to *N* activities denoted by $(x_n)_{n=1}^N$ where x_n consists of a real function of time. On a time interval $[T_k, T_{k+1})$, each activity uses the assigned resource and evolves according to a linear dynamics

$$\dot{\mathbf{x}}_n = -\alpha(\mathbf{I}_n)\mathbf{x}_n + \beta(\mathbf{I}_n),\tag{8}$$

where $\alpha : \mathbb{R} \to \mathbb{R}_+$ and $\beta : \mathbb{R} \to \mathbb{R}_+$ are given. At time T_{k+1} , the resources is re-assigned, meaning that $x(T_{k+1}) = Px(T_{k+1}^-)$ for some $P \in \mathcal{P}$. In this way, $k \in \mathbb{N}$ represents the number of re-assignments and T_k^- represents the moment just before re-assignment.

Assumption

Resource $(I_n)_{n=1}^N$ are constant with respect to time.

Consequence

For a given initial vector of states $(x_n(T_0))_{n=1}^N$, we have

$$x(t)=D(t)x(T_k)+v(t),\quad t\in[T_k,T_{k+1}),$$

where D(t) and v(t) are time dependent.

Let $u \in \mathbb{R}^N$ an arbitrary vector. Define

$$f^{k} := \langle u, \frac{1}{T} \int_{T_{k}}^{T_{k+1}} x(t) \mathrm{d}t \rangle, \qquad (10)$$

the benefit attached to the time period $[T_k, T_{k+1})$ after k times of re-assignment. Then the average benefit after K operations is given by

(9)

According to (9) and by the definition of P, we have

$$x(T_{k+1}) = P(Dx(T_k) + v).$$
 (11)

Lemma

Given $k \in \mathbb{N}$ and $P \in \mathcal{P}$, the matrix $\mathcal{I}_N - (PD)^k$ is invertible.

Theorem (One periodic [3])

 $(x(T_k))_{k\in\mathbb{N}}$ is a constant sequence and we have for all $k\in\mathbb{N}$

$$x(T_k) = (\mathcal{I}_N - PD)^{-1} Pv.$$

The result shows that every KT-periodic evolution will actually be T-periodic.

$$\max_{P \in \mathcal{P}} J(P) := \max_{P \in \mathcal{P}} \langle u, (\mathcal{I}_{N_z} - PD)^{-1} P v \rangle,$$
(12)

Remark

Since $\#\mathfrak{S} = N!$, this problem cannot be tackled in realistic cases where large values of N must be considered, e.g., to keep a good numerical accuracy.

Expand the functional (12) as follows

$$\langle u, (\mathcal{I}_{N_z} - PD)^{-1}Pv \rangle = \sum_{l=0}^{+\infty} \langle u, (PD)^l Pv \rangle = \langle u, Pv \rangle + \sum_{l=1}^{+\infty} \langle u, (PD)^l Pv \rangle,$$

Approximation problem

$$\max_{P \in \mathcal{P}} J^{\mathsf{approx}}(P) := \max_{P \in \mathcal{P}} \langle u, Pv \rangle.$$
(13)

Nina Aguillon, Liu-Di LU

Séminaire Modélisation, Analyse et Calcul

Lemma

Let σ_+ , $\sigma_- \in \mathfrak{S}$ such that $v_{\sigma_+(1)} \leq v_{\sigma_+(2)} \cdots \leq v_{\sigma_+(N)}$ and $v_{\sigma_-(N)} \leq v_{\sigma_-(N-1)} \leq \cdots \leq v_{\sigma_-(1)}$ and P_+ , $P_- \in \mathcal{P}$, the corresponding permutation matrices. Then

 $P_+ = \operatorname{argmax}_{P \in \mathcal{P}} J^{approx}(P), \quad P_- = \operatorname{argmin}_{P \in \mathcal{P}} J^{approx}(P).$

Remark (Optimal matrix)

- P₊: associates the largest coefficient of u with the largest coefficient of v, the second largest coefficient with the second largest, and so on.
- *P_:* associates the largest coefficient of *u* with the smallest coefficient of *v*, the second largest coefficient with the second smallest, and so on.

Theorem (Criterion [3])

Assume that u and v have positive entries and define

$$\phi(m_1) := \frac{1}{s_{\lceil \frac{m_1}{2} \rceil}} \Big(\sum_{l=1}^{+\infty} d'_{\max} F^+_{(l+1)m_1} - d'_{\min} F^-_{(l+1)m_1} \Big),$$
(14)

where $m_1 := \# \{ n = 1, ..., N \mid \sigma(n) \neq \sigma_+(n) \}$, $d_{\max} := \max_{n=1,...,N} (d_n)$ and $d_{\min} := \min_{n=1,...,N} (d_n)$. Assume that:

$$\max_{m_1 \ge 2} \phi(m_1) \le 1.$$
 (15)

Then the problem $\max_{P \in \mathcal{P}} \langle u, (\mathcal{I}_{N_z} - PD)^{-1}Pv \rangle$ (resp. $\min_{P \in \mathcal{P}} \langle u, (\mathcal{I}_{N_z} - PD)^{-1}Pv \rangle$) and the problem $\max_{P \in \mathcal{P}} \langle u, Pv \rangle$ (resp. $\min_{P \in \mathcal{P}} \langle u, Pv \rangle$) have the same solution.

Figure: Optimal matrix P_{max} for Problem (12) and N = 11 (Left) and P_+ for Problem (13) and N = 100 (Right) for the two parameters triplets. The blue points represent non-zero entries, i.e., entries equal to 1.

Figure: Average net specific growth rate $\bar{\mu}_N$ for T = 1 s (Top) and for T = 1000 s (Bottom). Left: N = 5. Right: N = 9. The red surface is obtained with P_{max} and the blue surface is obtained with P_+ . The purple stars represent the cases where $P_{max} = P_+$ or, in case of multiple solution, $\bar{\mu}_N(P_{max}) = \bar{\mu}_N(P_+)$. The green circle represent the cases where the criterion (15) is satisfied.

21/21

Olivier Bernard, Anne-Céline Boulanger, Marie-Odile Bristeau, and Jacques Sainte-Marie.

A 2d model for hydrodynamics and biology coupling applied to algae growth simulations.

ESAIM: Mathematical Modelling and Numerical Analysis, 47(5):1387–1412, September 2013.

- Olivier Bernard, Liu-Di Lu, Jacques Sainte-Marie, and Julien Salomon. Shape optimization of a microalgal raceway to enhance productivity. Submitted paper, November 2020.
- Olivier Bernard, Liu-Di Lu, and Julien Salomon. Optimization of mixing strategy in microalgal raceway ponds. Submitted paper, March 2021.

Victor Michel-Dansac, Christophe Berthon, Stéphane Clain, and Françoise Foucher.

A well-balanced scheme for the shallow-water equations with topography.

Computers and Mathematics with Applications, 72(3):586–593, August 2016.