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Abstract

This paper focuses on mixing strategies and designing shape of the
bottom topographies to enhance the growth of the microalgae in raceway
ponds. A physical-biological coupled model is used to describe the growth
of the algae. A simple model of a mixing device such as a paddle wheel
is also considered. The complete process model was then included in an
optimization problem associated with the maximization of the biomass
production. The results show that non-trivial topographies can be cou-
pled with some specific mixing strategies to improve the microalgal pro-
ductivity.

Keyword Industrial biotechnology, Parametric optimization, Discrete opti-
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1 Introduction

Microalgae are photosynthetic organisms whose potential has been proven in the
last decade for several biotechnological applications (e.g. [4]). They can be culti-
vated industrially for cosmetics, pharmaceuticals, food complements and green
energy applications [13]. These micro-organisms can be massively cultivated in
closed (e.g. [12]) or open photobioreactors. According to the applications, the
light can be artificial (for high added value products) or natural.

In this paper, we focus on the cultivation of the algae in a raceway pond.
The water is mixed and set in motion in this circular basin by means of a paddle
wheel [3]. Studies have shown that the topographies can have an impact on the
growth rate of the algae [1], whereas mixing the microalgae guarantees that each
cell have regularly access to light and necessary nutrients to growth [5]. In this
paper, we extend the study of [1] by investigating the optimal combinations be-
tween mixing strategies and bottom topographies to enhance algal productivity.
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We show that non trivial topographies can be obtained associated with some
specific mixing strategies.

The paper is organized as follows. In Section 2, we describe the hydrody-
namical, the biological and the mixing models and we define the coupled model.
Afterwards, we present the optimization problem together with numerical op-
timization procedure in two frameworks. Eventually, we show some numerical
tests to illustrate our approach and study the influence of the topography, depth
of the raceway and mixing strategy in the optimization process.

2 Raceway modeling

The raceway system can be described by a coupling between the hydrodynamics
and the dynamics of the photosystems in the algae. The raceway is set in motion
by a paddle wheel mixing the algae and modifying their depth and therefore the
light flux that they see.

2.1 Shallow water equations

We model the hydrodynamics of our system by the shallow water equations.
More precisely, we consider the smooth steady state solutions of the shallow
water equations in a laminar regime, which are governed by the following partial
differential equations:

∂x(hu) = 0, (1)

∂x(hu2 + g
h2

2
) = −gh∂xzb, (2)

where h stands for the water elevation, u represents the horizontal averaged
velocity of the water, the constant g is the gravitational acceleration, and zb
defines the topography. The free surface η is defined by η := h + zb and the
averaged discharge Q = hu. A schematic representation of this system is given
in Fig. 1.

The z axis represents the vertical direction and the x axis represents the
horizontal direction. Besides, Is represents the light intensity at the free surface
(assumed to be constant).

The Froude number for the steady state is defined by Fr = u/
√
gh. The

situation Fr < 1 corresponds to the subcritical case (i.e. the flow regime is flu-
vial) while Fr > 1 is to the supercritical case (i.e. the flow regime is torrential).
In the following studies, we limit ourselves to the subcritical case. Following the
procedure from [1], the shallow water equations (1)-(2) can be transformed to:

u =
Q0

h
, (3)

zb =
M0

g
− Q2

0

2gh2
− h, (4)

where Q0 and M0 are two positive constants.
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Figure 1: Representation of the hydrodynamic model with an example of mixing
device (P ). Here, P corresponds to the cyclic permutation σ = (1 2 3 4).

2.2 Lagrangian trajectories and light intensity

Incompressibility and a kinematic condition at bottom can then be used to ob-
tain the following equation of the Lagrangian trajectory of the algae [1, Equation
(12)-(15)].

z(x) = η(x) +
u(0)

u(x)
(z(0)− η(0)), (5)

where z(0) is the initial position of the algae.
To obtain the light intensity I at depth z, we use the Beer-Lambert law to

describe the light attenuation:

I(x, z) = Is exp
(
− ε(η(x)− z)

)
, (6)

where ε is the extinction coefficient. Using (5) in (6), we find the light intensity
captured by the algae following the trajectories z(x) in one lap of the raceway

I(x, z) = Is exp
(
− ε u(0)

u(x)
(η(0)− z(0))

)
.

Given initial conditions h(0), zb(0), then η(0) = h(0) + zb(0) and u(0) from (3),
we see that computing I on a trajectory only requires to know the initial position
z(0) and the velocity u(x), i.e., according to (3), h(x) which is obtained by
solving (4).

2.3 Han model

The dynamics of the light harvesting complexes in the chloroplasts is controlled
by the amount of light perceived by the algal cells. They can be described by the
Han model [8], in which the reaction centers are assumed to have three different
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states: open and ready to harvest a photon (A), closed while processing the
absorbed photon energy (B), or inhibited if several photons have been absorbed
simultaneously leading to an excess of energy (C). The evolution of the state
A,B,C satisfies the following dynamical system

Ȧ = −σIA+ B
τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB,

where A,B,C are the relative frequencies of the three possible states which
satisfy

A+B + C = 1,

the coefficients σ, τ , kr and kd represent the specific photon absorption, the
turnover rate, the photosystem repair rate and the damage rate, respectively.
As shown in [9], one can use a fast-slow approximation and singular perturbation
theory to reduce this system to a single evolution equation:

Ċ = −α(I)C + β(I), (7)

where

α(I) = kdτ
(σI)2

τσI + 1
+ kr and β(I) = α(I)− kr.

Then following [1], we obtain a time-free reformulation of (7), namely

C ′ =
−α(I)C + β(I)

u
, (8)

where all the functions on the right-hand side only depend on x. The net specific
growth rate is then obtained by balancing photosynthesis and respiration, which
gives

µ(C, I) =
−γ(I)C + ζ(I)

u
, (9)

where

ζ(I) =
kσI

τσI + 1
−R and γ(I) = ζ(I) +R.

Here k stands for a factor that links received energy and growth rate. The term
R represents the respiration rate. The average net specific growth rate over the
domain is then defined from (9) by

µ̄ :=
1

L

∫ L

0

1

h(x)

∫ η

zb

µ
(
C(x, z), I(x, z)

)
dzdx. (10)

This will be the principle function of our following studies.

Remark 1 The dynamic of the biomass concentration is derived from (9):

Ẋ = µ̄(C, I)X −DX,
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where D is the dilution rate. The extinction coefficient ε depends on X as
follows. The system is perfectly mixed, then the concentration is homogeneous
so ε is a constant independent of space. In general, the extinction coefficient ε
is an affine function of the biomass X (see [10])

ε(X) = α0X + α1, (11)

where α0 > 0 stands for the specific light extinction coefficient of the microal-
gae specie and α1 defines the background turbidity that summarizes the light
absorption and diffusion due to all non-microalgae components.

We assume that the algal biomass X in the raceway is controlled at a con-
centration which meets the so-called compensation condition (see [11, 7]). This
condition means that photosynthesis equilibrates respiration in the darkest layer
of the raceway. In other terms, at steady-state, the growth rate µ at the (aver-
age) bottom depth z̄b is 0, i.e.,

−γ(Iz̄b)
β(Iz̄b)

α(Iz̄b)
+ ζ(Iz̄b) = 0.

Solving the above equation provides a value of Iz̄b thus of the extinction coeffi-
cient ε(X), and finally of the biomass concentration X. In the sequel we assume
that an appropriate control strategy maintains the biomass around this value by
playing on the dilution rate D.

2.4 Vertical discretization of the system

In order to compute numerically (10), let us consider a uniform vertical dis-
cretization of the initial position z(0) for Nz cells:

zn(0) = η(0)−
n− 1

2

Nz
h(0), n = 1, . . . , Nz.

From (5), we obtain

zn(x)− zn+1(x) =
1

Nz
h(x), n = 1, . . . , Nz,

meaning that the cell distribution remains uniform along the trajectories. To
simplify notations, we write In(x) instead of I(x, zn) hereafter.

Let Cn(x) (resp. In(x)) the photo-inhibition state (resp. the light inten-
sity) associated with the trajectories zn(x). Then the semi-discrete average net
specific growth rate of (10) can be defined by

µ̄∆ : =
1

L

∫ L

0

1

h(x)

1

Nz
h(x)

Nz∑
n=1

µ(Cn(x), In(x))dx

=
1

L

1

Nz

Nz∑
n=1

∫ L

0

µ(Cn(x), In(x))dx.

(12)
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2.5 Paddle wheel modeling

Recent studies have shown that the paddle wheel played a key role in a raceway
ponds system [3, 5], where the paddle wheel set this hydrodynamic-biologic
coupling system in motion. At the same time, it modifies the elevation of the
algae passing through it, and thus giving successively access to light to all the
population. This mixing device has been studied in [2], where a flat topography
has been considered and the mixing procedure is assumed to be perfect, meaning
that at each new lap, the algae at depth zn(0) are entirely transferred into
the position zσ(n)(0) when passing through the mixing device. In the current
study, we still assume that we can design a mixing setup achieving an ideal
rearrangement of trajectories, and we consider the case when the topography is
no longer flat.

We denote by P the set of permutation matrices of size Nz × Nz and by
SNz

the associated set of permutations of Nz elements. This model is depicted
schematically on an example in Fig. 1.

2.6 Periodic regime

We assume that the state C is KL-periodic in the sense that after K times of
passing the device (P ), CK(0) = C(0). A natural choice for K is the order of
the permutation P .

Following arguments similar to that in [2, Proposition 1, Lemma 1], it can
be proved that if the system is KL-periodic, then it is L-periodic. Hence, the
average growth rate µ̄ for K laps equals to the average growth rate µ̄ for a
single lap. This will help us in simplifying the formulation of the optimization
problem considered in the next section. In addition, the computations to solve
the optimization problem will be reduced, since the CPU time required to assess
the productivity gain of a permutation will not depend on its order.

Remark 2 In the setting presented in [2], when the system is assumed to be
periodic C(0), hence C depends on the permutation matrix P . In the current
study, the state C will also depend on the permutation matrix P that we denote
CP hereafter.

3 Optimization

In this section, we define the optimization problem associated with our biological-
hydrodynamical-permutation model. As mentioned in Section 2.1, a given
smooth topography zb corresponds to a unique water elevation h under the
assumption that flow remains in a subcritical regime. On the other hand, since
we consider a 1D framework, the volume of our system is simply given by

V =

∫ L

0

h(x)dx.
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Since this quantity plays an important role in raceway design, and need to
be easily handled. Therefore, we choose to parameterize the water elevation
h. Given an optimal parameter a∗, the associated optimal topography can be
determined by means of (4). An example of parameterization consists in writing
h as a truncated Fourier series

h(x, a) = a0 +

M∑
m=1

am sin(2mπ
x

L
), (13)

Such parameterization allows us to control the volume since V = a0L.
For simplicity of notation, we omit x in the notation and rather denote

explicitly that the functions depend on a.

3.1 Optimization problem for constant reactor volume

In this section, we assume that the volume of the reactor is constant. Such
situation can be obtained, e.g., by using the parameterization (13) with a fixed
a0. Consider then a vector a := [a1, · · · , aM ] ∈ RM , which will be the variable
to be optimized. The objective function is then defined from (12) by

µ̄P∆(a) =
1

LNz

Nz∑
n=1

∫ L

0

−γ(In(a))CPn + ζ(In(a))

u(a)
dx, (14)

where CPn satisfies the following parameterized version of (8) with a periodic
condition {

CPn
′
+ α(In(a))

u(a) CPn = β(In(a))
u(a)

PCPn (L) = CPn (0).
(15)

Our optimization problem then reads:
Find a permutation matrix Pmax and a parameter vector a∗ solving the max-

imization problem:
max
P∈P

max
a∈RM

µ̄P∆(a).

3.2 Optimization procedure for constant reactor volume

For a given permutation matrix P ∈ P, the Lagrangian of (14) can then be
written by

LP (C, p, a) =
1

LNz

Nz∑
n=1

∫ L

0

−γ(In(a))CPn + ζ(In(a))

u(a)
dx

−
Nz∑
n=1

∫ L

0

pPn
(
CPn
′
+
α(In(a))CPn − β(In(a))

u(a)

)
dx

where pPn is the Lagrange multiplier associated with the constraint (15).
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The optimality system is obtained by cancelling all the partial derivatives of
LP . Differentiating LP with respect to pPn and equating the resulting expression

to zero gives (15). Integrating the terms
∫
pPnC

P
n
′
dx on the interval [0, L] by

parts enables to differentiate LP with respect to CPn and CPn (L). Equating the
result to zeros gives rise to{

pPn
′ − pPn

α(In(a))
u(a) − 1

LNz

γ(In(a))
u(a) = 0

pPn (L)− pPn (0)P = 0.
(16)

Given a vector a, let us still denote by CPn , p
P
n the corresponding solutions of (15)

and (16). The gradient ∇µ̄P∆(a) is obtained by

∇µ̄P∆(a) = ∂aLP ,

where

∂aLP =
1

LNz

Nz∑
n=1

∫ L

0

−γ′(In(a))CPn + ζ ′(In(a))

u(a)
∂aIn(a)dx

− 1

LNz

Nz∑
n=1

∫ L

0

−γ(In(a))CPn + ζ(In(a))

u2(a)
∂au(a)dx

+

Nz∑
n=1

∫ L

0

pPn
−α′(In(a))CPn + β′(In(a))

u(a)
∂aIn(a)dx

−
Nz∑
n=1

∫ L

0

pPn
−α(In(a))CPn + β(In(a))

u2(a)
∂au(a)dx.

3.3 Optimization problem for variable reactor volume

In this section, we focus on the case where the reactor volume can also vary. As
we have mentioned in Remark 1, we apply an extra assumption to determine X
as a function of the volume. Therefore, we apply the parameterization (13) and
follow the computations in [2] to determine X. Such parameterization allows
us to control the biomass X and the volume of the system V by using an extra
parameter a0. Note that the larger N , the less valid is our hydrodynamic model,
see Section 2.1, where a smooth topography is assumed to guarantee a laminar
regime. Hence, limit situations where N → +∞ are not considered in what
follows. Since the biomass X and V the volume of the system vary with the
parameter a0, maximizing areal productivity is a more relevant target. For a
given biomass concentration X, the productivity per unit of surface is given by:

Π = µ̄X
V

S
, (17)

where S presents the ground surface of the raceway pond. From [1, Appendix
C], we have

X
V

S
= α2 − α3a0 with α2 =

1

α0
ln(

Is
Iz̄b

) and α3 =
α1

α0
,
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where α0, α1 are given in (11).
Consider the extend parameter vector ã := [a0, a] ∈ RM+1. From (17), the

objective function is given by

ΠP
∆(ã) := µ̄P∆(ã)(α2 − α3a0), (18)

where µ̄P∆ is defined in (14).
The corresponding optimization problem reads:
Find a permutation matrix Pmax and a parameter vector ã∗ solving the max-

imization problem:
max
P∈P

max
ã∈RM+1

ΠP
∆(ã).

3.4 Optimization procedure for variable reactor volume

Let us denote by L̃P the Lagrangian associated to (18). We follow the same
optimization procedure presented in Section 3.2. Note that an extra element
appears in this gradient, which is the partial derivative of L̃P with respect to
the variable a0. More precisely, we have ∇ΠP

∆(ã) = [∂a0L̃P , ∂aL̃P ] where

∂a0L̃P =
α2 − α3a0

LNz

Nz∑
n=1

∫ L

0

−γ′(In(ã))CPn + ζ ′(In(ã))

u(ã)
∂a0In(ã)dx

−α2 − α3a0

LNz

Nz∑
n=1

∫ L

0

−γ(In(ã))CPn + ζ(In(ã))

u2(ã)
∂a0u(ã)dx

− α3

LNz

Nz∑
n=1

∫ L

0

−γ(In(ã))CPn + ζ(In(ã))

u(ã)
dx

+

Nz∑
n=1

∫ L

0

pPn
−α′(In(ã))CPn + β′(In(ã))

u(ã)
∂a0In(ã)dx

−
Nz∑
n=1

∫ L

0

pPn
−α(In(ã))CPn + β(In(ã))

u2(ã)
∂a0u(ã)dx,

and ∂aL̃P is very similar to ∂aLP , by adding an extra product of (α2−α3a0) with
the first-two integrals in ∂aLP and change a to ã in all the parameter-depend
functions.

4 Numerical results

In this section, we present some numerical results derived from the optimization
procedure presented in the previous section. Note that for a given vertical
discretization number Nz, we need to test all the permutation matrices in the
set P, which means Nz! possible cases. Since an optimization problem must
be solved for each permutation matrix the problem is highly computational
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demanding and we consider a small value of Nz for which the problem is solvable
in reasonable time. Regarding the parameterization of h, we use truncated
Fourier series presented in (13).

4.1 Numerical solver

We introduce a supplementary space discretization with respect to x to solve
numerically our optimization problem. Let us take a space increment ∆x,
set Nx = [L/∆x] and xnx = nx∆x for nx = 0, . . . , Nx. We choose to apply
the Heun’s scheme to compute CPn via (15). Following a first-discretize-then-
optimize strategy, we get that the Lagrange multiplier pPn is also computed by
a Heun’s type scheme via (16). We use the fmincon solver in MATLAB to solve
the optimization problem with the subcritical constraint.

4.2 Parameter for the models

The spatial increment is set to ∆x = 0.01 m such that the convergence of the
numerical scheme has been ensured, and we take the averaged discharge Q0 =
0.04 m2 · s−1, and zb(0) = −0.4 m to stay in standard ranges for a raceway
pond. The free-fall acceleration is set to be g = 9.81 m · s−2. All the numerical
parameters values for Han’s model are taken from [6] and given in table 1. For

Table 1: Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σ 0.047 m2 · (µ mol)−1

k 8.7 10−6 -
R 1.389 10−7 s−1

fixed volume, we assume that only 1% of light can be captured by the cells
at the bottom of the raceway, under our parameterization, the light extinction
coefficient ε can be computed by

ε = (1/a0) ln(1/1%).

For varying volume, the specific light extinction coefficient of the microalgae
specie α0 = 0.2 m2 · gC and the background turbidity coefficient α1 = 10 m−1,
these are taken from [10]. Besides, Is = 2000µmol ·m−2 s−1 which corresponds
to the order of magnitude of the maximum light intensity in summer in the
south of France.
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4.3 Numerical tests

We present some results for both constant and non constant volume. We will
show the optimal permutation matrices and the associated shape of the topogra-
phies for these two frameworks and compare the gain with a standard system.

4.3.1 Constant volume

The first test is dedicated to study the optimal permutation matrix and the as-
sociated shape of the topography for constant volume. To evaluate the efficiency
of the corresponding mixing strategy, define:

r1 :=
µ̄Pmax

∆ (a∗)− µ̄Pmax

∆ (0)

µ̄Pmax

∆ (0)
, r2 :=

µ̄Pmax

∆ (a∗)− µ̄INz

∆ (0)

µ̄
INz

∆ (0)
. (19)

Here r1 defines the gain of the optimal permutation strategy with the optimal
topography compare to the optimal permutation strategy with a flat topog-
raphy, and r2 defines the gain of the optimal permutation strategy with the
optimal topography compare to no permutation strategy with a flat topogra-
phy. We fix the volume related parameter a0(= h(0; a)) = 0.4 m to stay in a
standard raceway pond range. The initial guess of the vector a is set to be
0, which corresponds to a flat topography. Let us consider two raceway pond
length L = 100 m and L = 1 m respectively. The optimal matrices Pmax for
different L are denoted by PLmax and given in (20) with the associated opti-
mal topographies presented in Fig. 2. A non flat topography associated with a
non trivial permutation matrix has been observed. In particular, these optimal
matrices corresponds to the optimal matrices obtained with a flat topography
under the same parameter settings [2, Equation 11,Equation 13]. The two ratios
defined in (19) are r1 = 0.148%, r2 = 1.070% and r1 = 0.001% r2 = 3.453%
respectively.

P 100
max =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0


, P 1

max =



1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0


(20)

As we observed in the test above, the length of raceway has a potential
influence on the objective function and the gain, we then provide a test for
different values of the length L. Fig. (3) shows the objective function µ̄∆ and
the two ratios r1, r2 as a function of the length L. Note that the objective
function decreases when L increases except in the neighborhood of L = 12.5 m,
on the same time, we observe that the influence of topography is very limited
comparing to the influence of the permutation strategies.
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Figure 2: The optimal topographies and the associated trajectories for the per-
mutation matrices (20). Left: L = 100 m. Right: L = 1 m.

Figure 3: The optimal value of the objective function µ̄∆ (top) and the two
ratios r1, r2 (bottom) for L = 100/2{0,...,10}.
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4.3.2 Varying volume

We consider now that the volume can vary. Note that the volume related coef-
ficient a0 is also a parameter to be optimized. Let us define two ratios similar
as (19) to evaluate the efficiency of the permutation strategies,

r̃1 :=
ΠPmax

∆ (ã∗)−ΠPmax

∆ (ãf )

ΠPmax

∆ (ãf )
,

r̃2 :=
ΠPmax

∆ (ã∗)−Π
INz

∆ (ãf )

Π
INz

∆ (ãf )
,

(21)

where ãf := [ã∗0, 0, · · · , 0] and ã∗0 is the optimal volume related value. The initial
guess of ã is set to be a null vector except ã∗0 = 0.4 as initial value. We keep the
same length setting as in constant volume test, the optimal matrices PLmax are
given in (22) and the associated optimal topographies are presented in Fig. 4.
The two ratios defined in (21) are r̃1 = 0.918%, r̃2 = 9.284% and r̃1 = 0.00003%,
r̃2 = 12.714% respectively.

P 100
max =



0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


, P 1

max =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


(22)

Figure 4: The optimal topographies and the associated trajectories for the per-
mutation matrices (22). Left: L = 100 m. Right: L = 1 m.

As shown experimentally in the previous three tests, the influence of the to-
pographies remain limited, at the same time, non trivial permutation strategies
Pmax are obtained with different raceway length L, in particular these strategies
are also different from the case with a fixed volume. Moreover, these strategies
have a better improvement when the volume is also optimized. Fig. 5 shows the
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objective function Π∆ and the two ratios r̃1, r̃2 as a function of the length L.
Note that the average growth rate Π∆ increase monotonically when L goes to
0. This flashing effect corresponds to the fact that the algae exposed to high
frequency flashing have a better growth. This phenomenon has already been
reported in literature (e.g. [2, 9]).

Figure 5: The optimal value of the objective function Π∆ (top) and the two
ratios r̃1, r̃2 (bottom) for L = 100/2{0,...,10}.

5 Conclusion

Adapting the shape of the raceway to an original mixing system is an innovative
strategy to boost the algal process productivity. To realize in practice the ideal
mixing a system more elaborated than a paddle wheel is required.

However, with the Han parameter considered for this species the gain stays
limited and would not compensate a higher cost due to the more complicate
design of the bottom topography and of the mixing device. It is possible that
a higher gain is also obtained when leaving the laminar regime, but the energy
dissipation in a turbulent regime would lead to a strong enhancement of the
operating costs.
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Odile Bristeau, Jacques Sainte-Marie, Sophie Rabouille, Francis Mairet,
Antoine Sciandra, and Olivier Bernard. How do microalgae perceive light
in a high-rate pond? towards more realistic lagrangian experiments. The
Royal Society, May 2018.
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[13] René H. Wijffels and Maria J. Barbosa. An outlook on microalgal biofuels.
Science, 329(5993):796–799, August 2010.

15


