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Abstract

Light availability has a huge impact on the photosynthesis efficiency
of the microalgae. Low light in the reactors leads to limited growth of the
algae, whereas strong light may induce the damage to the photosynthetic
reaction center, hence reduce the growth. Finding the optimal light regime
is then a tricky problem, especially when the growth rate is inhibited by
being overexposed to the light. In this paper, we study the theoretical
microalgal growth rate using the Han model under the high/low flashing
light regime, i.e., when two different light intensities are applied. Two
approaches were considered depending on the period of the light pattern.
For a large light period we show that, under some conditions, we can
improve the average growth rate and get greater values than the ones that
the PI-curve can achieve in the Han model. Although, these conditions
change through the depth of a bioreactor. This theoretical improvement
is due to a recover of photodamaged cells during the high light intensity
phase. Considering flashing light, we give a minimal value of the duty cycle
for which the optimal light intensity is perceived by the algae culture, we
also give the value of the depth in which the algae perceives this optical
light intensity.
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1 Introduction
Algal biomass has shown a great potential for the production of biofuels and bio-
products, for instance food, pharmaceuticals and cosmetics [15]. The production
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of a range of biofuels, such as biodiesel, biohydrogen, bio-oils, and biomethane,
along with solid biochar and its application, has demonstrated the importance
of microalgal research [13]. Mathematical modelling has become an important
tool to make the leap from lab-scale observations towards the industrial-scale
reality. The mathematical models can be used for monitoring, controlling and
optimizing the production systems, meanwhile they could also drive the choice
of a particular microalgae species which is best suited in local environment [6].
The algal growth is influenced by different factors such as temperature, light,
pH, etc. Among all, light is a crucial factor for photosynthesis that will fuel the
CO2 uptake and further the growth of microalgae. Light is absorbed and scat-
tered by the algae culture and cannot penetrate deeply into the liquid medium,
especially for high-density microalgae culture systems [19].

For high light intensity, typically sunlight in summer afternoon, the reaction
center can be damaged which then leads to the decrease in the photosynthesis
efficiency [16], this is so-called photoinhibition. In this context, flashing light has
appeared as a method to reduce photoinhibition and to increase the productivity
in bioreactors. There has been a whelm of research on the benefit of supplying
light by flashes, e.g., [2, 9, 1, 18]. The flashing light, however, rarely produces an
enhancement on the algal production in comparison with the constant average
light intensity [3]. This light regime consists of a light and dark phase, otherwise,
in high/low-flashing light the dark period is replaced by a low light. This light
regime can be more representative of real conditions [8].

Researches have been carried out to the understanding and the modelling of
photosynthesis in response to light/dark cycles of various intensities, duration
and duty cycles. The objective of this paper is to go beyond this light pattern
to understand how alternating a low light (not necessarily zero) and a high light
can affect the growth rate of the microalgae. We consider the Han model [11]
that represents the dynamics of photon capture in the photosystems and takes
into account the phenomenon of photoinhibition. We then study the theoretical
growth rate under two different light regimes, namely the constant light regime
and the high/low flashing light regime. We choose the constant light as the
average of the high/low light intensities to guarantee the same amount of energy
in the photosystem. We consider the local optical depth concept defined in [5]
for our analysis to condense the concepts of depth and biomass concentration in
a bioreactor. We show that the growth under the high/low flashing light regime
can be enhanced compared with the growth under the constant light regime,
meanwhile we also prove that for high frequencies (or short period of the light
patron) the growth rate under the high/low flashing light regime is equal to the
growth rate under the constant light regime.

This paper is organized as follows. In Section 2, we present the growth
model and the light setting. In Section 3, we analyze what happened in the
large period approach which will call Large-T model and how this case can im-
prove the growth rate comparing to the continuous light regime. In Section 4,
we study the small period approach called Small-T model, and we give an in-
terval in which the algae culture perceives the optimal light if we consider the
flashing light configuration. Section 5 justifies the approximations made and
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confirms the obtained limits in the previous sections. Finally, in Section 6, we
test numerically the results.

2 Description of the model

2.1 Han model
Han [11] has proposed a mechanistic model for algal photoinhibition induced by
photodamage to photosystem-II (PSII). The reaction centers of PSII can take
three states: open or reactive state A, closed or activated state B and inhibited
state C. After absorbing photons, PSIIs move from state A to B at a rate
proportional to σI, where σ is the effective cross section of the PSII and I is
the light intensity. The minimal time required for an electron to transfer from
water on the donor side of PSII to terminal electron acceptors is called turnover
time and denoted by τ , so that τ−1 corresponds to the rate of state B passing to
state A. Excessive absorption leads to photoinhibition of the PSII (C state) at a
rate of kdσI and has a recovery rate kr. Figure 1 presents the relation between
these three states. The dynamics of PSIIs at the three states can be described

Figure 1: Illustration of the Han Model.

by the following differential equations describing the proportion of each state:
dA

dt
= −IσA+

B

τ
,

dB

dt
= IσA− B

τ
+ krC − kdσIB,

dC

dt
= −krC + kdσIB,

(1)

and these three states satisfy that

A+B + C = 1. (2)
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Using Equation (2), we can eliminate B to reduce the system (1) into two
equations:

d

dt

(
A
C

)
=

(
1 0
0 kd

)[
−
(
σI + 1

τ
1
τ

σI σI + kr
kd

)(
A
C

)
+

(
1
τ
σI

)]
. (3)

The algal growth rate µ is proportional to IσA, i.e,

µ := KσIA, (4)

where K corresponds to the growth rate coefficient.
At steady state of system (1), the growth rate for a constant light intensity

I can be computed explicitly as

µS(I) :=
KσI

1 + τσI + kd
kr
τ(σI)2

. (5)

Note that the maximum of this function is given by

µmax =
K

τ + 2
√

kd
kr
τ
, (6)

which is achieved with the light intensity Iopt given by

Iopt =
1

σ
√

kd
kr
τ
. (7)

System (3) has slow-fast time scales due to the presence of the factor kd.
For example, Table 1 present some values of the parameters in the literature,
in [10, 14] kd is on the order of 10−4 and the values of the entries of(

σI + 1
τ

1
τ

σI kr
kd

+ σI

)
and

(
1
τ
σI

)
are greater than 0.1 when we consider a light intensity I of the order of 1000.

2.2 Light configurations and the two simplified models
Let us consider two light regimes, namely the constant regime and the high/low
light regime. For the constant light regime, the reactor receives a constant light
intensity at the surface. For high/low-flashing light regime, a periodic piece-wise
constant light intensity is applied at the reactor surface. Let us denote by Imax

(resp. Imin) the maximum (resp. minimum) light intensity and by η ∈ (0, 1)
the duty cycle. We can then define the average light intensity by

Iη := ηImax + (1− η)Imin. (8)

We will analyze the mean growth rate over a period T for these two light regimes.
The reactor is assumed to be alimented continuously by the light Iη for the
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Figure 2: Illustration of the two light regime. The high/low regime (blue) in
which the function Is has a period T and switches from Imax to Imin for a
time ηT and (1 − η)T respectively. The constant light regime (red) which is
considered as the weighted average between Imax and Imin.

constant light regime, whereas in the high/low light regime, we assume that the
reactor is exposed regularly between a high light intensity Imax for ηT and a
low light intensity Imin for (1− η)T . See Figure 2.

Recall that I is a T -periodic function, and we have a slow/fast system (1).
Depending on the scale of T , we can reduce the equation into one to simplify the
calculations. We have two different cases. When T is small, compared to the
Han model parameters (T < τ), the order of magnitude is milliseconds, we will
call Small-T model or high frequency model, and when T is large, for instance
greater than 1/kr (the order of magnitude is hours), we will call Large-T model
or low frequency model. These reductions are given as follows:

Large-T model (or low frequency model) When light stays constant for
a large enough time, the dynamic of A reaches it steady state much faster
compared with that of C. One can then apply a fast-slow approximation by
using the perturbation theory [12]. More precisely, we consider the slow manifold
A = 1−C

1+τσI (i.e. the pseudo steady state of A) to reduce the dynamics into one
single equation on the photoinhibition state C:

dC

dt
= −(α(I) + kr)C + α(I), (9)

with α(I) = kdτ(σI)2

1+τσI .

Small-T model (or high frequency model) When light varies very rapidly
compared to the system dynamics, the dynamics of the photoinhibition state C
stays approximately constant. We can then apply the Averaging Method [17] to
simplify the system (3) into one equation on the open state A:

dA

dt
= −

(
σI +

1

τ

)
A+

kr − kdσIA
τ(kdσĪ + kr)

, (10)

with Ī = 1
T

∫ T
0
I(t)dt and IA = 1

T

∫ T
0
I(t)A(t)dt.

5



2.3 Gradient of light intensity
Photobioreactors are illuminated at the surface. Then, light is attenuated along
the depth z due to the light absorption and scattering. The Beer-Lambert law
is chosen for modelling this phenomenon:

I(y) := Ise
−y. (11)

where y := ε(X)z, is the so-called local optical depth [5]. The vertical position
is denoted by z. The light extinction coefficient ε(X) > 0 (m−1) depends on
the concentration of the microalgae X which, in our work, we will assume that
the concentration does not change through the time.

Local optical depth is a concept that includes two factors of the light at-
tenuation, the vertical position z (the depth) and the concentration. In our
analysis, we are interested in the light attenuation, and not in the concentration
of the medium or the size of the bioreactor, this leads us to use the concept of
local optical depth. We will see that some results holds for small values of local
optical depth (y < 1), yet this does not mean, necessarily, that the biomass
concentration is low, or the vertical position is near to the surface. It can be
true for a large value of the vertical position z with a low concentration or can
be true for a small value of z considering a high concentration, as long as they
share the same local optical depth which is smaller than 1. Nevertheless, when
we consider y = 0 it always refers to the surface of the bioreactor.

From the definition of the light attenuation (11), we denote by IH(y) =
Imaxe

−y (resp. IL(y) = Imine
−y) the high light intensity (resp. the low light

intensity) at local optical depth y.
Our objective is to compare the impact of the two light regimes on growth

rate. When enlightened by a constant light intensity Iη, the light intensity
perceived at local optical depth y is given by IM (y) = Iηe

−y. By choosing Iη
as (8), we guarantee that these two systems receive the same amount of energy.
Our objective is to compare the growth rate for these two systems.

2.4 Exact asymptotic solution of the Han model
For every starting point of the Han model states (A and C), we prove in
Lemma 2.1 that, for a periodic signal of light I, the solution of (3) converges
to the periodic solution. For this reason, in all our analysis, we consider the
periodic solution of this system and assume the periodic condition in the two
models. Based on this assumption, we define the asymptotic exact T -averaged
growth rate µ̄T by

µ̄T(y) =
1

T

∫ T

0

µ(y, t)dt (12)

where µ is defined in (4) and A is considered as the periodic solution of (1).

Lemma 2.1. All solutions of (3) under the periodic high/low light regime con-
verges to the periodic solution.
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Proof. Let us denote by

M(t) =

(
σI(t) + 1

τ
1
τ

kdσI(t) kdσI(t) + kr

)
, N(t) =

(
1
τ

kdσI(t)

)
.

The light regime is T -periodic, meaning that I(t+T ) = I(t) andN(t+T ) = N(t)
andM(t+T ) = M(t). Let us set x(t) = (A(t), C(t))T , then the periodic system
of (3) reads

dx

dt
= −M(t)x(t) +N(t). (13)

This is a linear inhomogeneous system with periodic coefficients. Let x(t) the
solution of (13) for a given initial condition x0 and xp(t) the periodic solution
of (13) (i.e. xp(0) = xp(T )). Then ξ(t) := x(t) − xp(t) is the solution of
the periodic system dξ

dt = −M(t)ξ(t). As M(t) has positive eigenvalues (see
Appendix A.4), then [7, Theorem 3, Section 10] asserts that ξ(t) converges to
zero as t approaches infinity. This concludes the proof.

We then assume (3) to be asymptotically T-periodic and only focus on the
periodic solutions of this system i.e., A(0) = A(T ) and C(0) = C(T ). Solving (3)
in periodic case and using the definition of the growth rate (4), it is possible to
analytically compute the exact T-average growth rate in the high/low-flashing
light as

µ̄T(y) = ηµS(IH(y)) + (1− η)µS(IL(y))− Kσ

T
δ(y, T ), (14)

where the function µS is defined in (5), δ is the first component of the vector

∆ =

[
IH(y)M−1

H (y)
(

Id−e−ηTMH(y)
)(

Id−e−(1−η)TML(y)e−ηTMH(y)
)−1 (

Id−e−(1−η)TML(y
)

−IL(y)M−1
L (y)

(
Id−e−(1−η)TML(y

)(
Id−e−ηTMH(y)e−(1−η)TML(y)

)−1 (
Id−e−ηTMH(y)

)]
·
(
M−1
H (y)NH(y)−M−1

L (y)NL(y)
)
,

(15)
with Id the identity matrix in R2×2 and

MH(y) =

(
σIH(y) + 1

τ
1
τ

kdσIH(y) kdσIH(y) + kr

)
, NH(y) =

(
1
τ

kdσIH(y)

)
, (16)

ML(y) =

(
σIL(y) + 1

τ
1
τ

kdσIL(y) kdσIL(y) + kr

)
, NL(y) =

(
1
τ

kdσIL(y)

)
. (17)

The details of the computations are given in A.3. And we can give an explicit
expression of the matrices:

M−1(I) =
1

kd(σI)2 + krσI + kr
τ

(
kdσI + kr − 1

τ
−kdσI σI + 1

τ

)
,

M−1(I)N(I) =
1

1 + τσI + kd
kr
τ(σI)2

(
1

τ kdkr (σI)2

)
.

Note that the first component of the vector M−1(I)N(I) multiplied by KσI
correspond to µS(I).
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3 Analysis of the Large-T model
As mentioned in Section 2.2, depending on the scale of T , we can reduce (1)
into one equation. In this section, we present an analysis based on the growth
rate calculated using the large-T model. We show in particular that the average
growth rate in this case can be greater than the values of the PI-curve of the
Han model. This improvement happened at the surface when y = 0, and is
due to the local convexity of the function µS . However, depending on the value
of the local optical depth y, the average growth rate can be slower than the
constant light regime.

3.1 Average growth rate and analysis
In large-T model, the growth rate can be derived from (4) as

µ = KσIA = (1− C)γ(I), (18)

with γ(I) = KσI
1+τσI and C the periodic solution of (9). Since the light intensity

I depends on the time t and the local optical depth y, the growth rate also
depends on these two variables, i.e., µ = µ(y, t). For a given local optical depth
y, the T-average growth rate for the high/low light regime can be computed
explicitly by

µ̄T(y) =
1

T

∫ T

0

µ(y, t)dt = ηµS(IH(y)) + (1− η)µS(IL(y)) +
ζ1(y, η, T )ζ2(y)

Tkr
,

(19)
with

ζ1(y, η, T ) =

(
1− e−(αL(y)+kr)T (1−η)

) (
1− e−(αH(y)+kr)Tη

)
1− e−(αL(y)+kr)T (1−η)−(αH(y)+kr)Tη)

,

ζ2(y) =
( αH(y)

αH(y) + kr
− αL(y)

αL(y) + kr

)(
µS(IH(y))− µS(IL(y))

)
,

αH(y) := α(IH(y)) and αL(y) := α(IL(y)). As for the constant light regime Iη,
the T-average growth rate is obtained by µS(IM (y)). The details of the compu-
tations are presented in A.1. Let us denote by µηS(y) the convex combination
in (19):

µηS(y) := ηµS(IH(y)) + (1− η)µS(IL(y)), (20)

When T is large enough, we can approximate the T-average growth rate by (20).
Indeed, it is straightforward to see that 0 ≤ ζ1(y, η, T ) ≤ 1 and 0 ≤ α(I)

α(I)+kr
≤ 1,

therefore, one has∣∣µ̄T(y)− µηS(y)
∣∣ =

∣∣∣∣ζ1(y, η, T )ζ2(y)

Tkr

∣∣∣∣ ≤ |µS(IH(y))− µS(IL(y))|
Tkr

≤ µmax

Tkr

where the last inequality is obtained by taking the maximum growth rate of the
Han model given by (6). This leads to the following result.
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Theorem 3.1. For large enough period T, for every local optical depth y ≥ 0
we have limT→+∞ µ̄T(y) = µηS(y). Furthermore, the convergence is uniformly
in y and

∣∣µ̄T(y)− µηS(y)
∣∣ = O(1/T ).

3.2 Enhancing of the growth rate
Growth rate in high/low light regime can be enhanced or reduced compared
to that of the constant light regime. More precisely, this relies on the local
convexity of the function µS with respect to the light intensity I. Depending on
the value of I, this can be either convex or concave. The next lemma clarifies
the critical value of the light intensity.

Lemma 3.1. There exists a light intensity Ic, for which µS is a strictly convex
function in (Ic,+∞) and strictly concave in (0, Ic). This value only depends on
the parameters (kd, kr, τ, σ), i.e.,

Ic =


2

σ
√
kd
kr
τ

cos

(
1
3 arccos

(
√
τ

2
√
kd
kr

))
if τ < 4kdkr

2

σ
√
kd
kr
τ

cosh

(
1
3 arccosh

(
√
τ

2
√
kd
kr

))
if τ > 4kdkr

(21)

The proof is given in B. This lemma enables us to state the next theorem,
which is our main result. In this theorem, we provide conditions to enhance the
growth rate, meaning that the average growth rate calculated in (19) is greater
than the growth rate obtained for the continuous light regime Iη.

Theorem 3.2. Let Ic defined by (21). For every couple (Imax, Imin), such that
Imax > Imin > Ic, there exists T > 0 and η ∈ (0, 1) such that

µ̄T(0) ≥ µS(Iη) (22)

where Iη = ηImax + (1− η)Imin.

Proof. Setting y = 0 in (19) gives

µ̄T(0) = ηµS(Imax) + (1− η)µS(Imin) +
ζ1(0, η, T )ζ2(0)

Tkr
.

Recall that

ζ2(0) =
( αH(0)

αH(0) + kr
− αL(0)

αL(0) + kr

)(
µS(IH(0))− µS(IL(0))

)
=
( α(Imax)

α(Imax) + kr
− α(Imin)

α(Imin) + kr

)(
µS(Imax)− µS(Imin)

)
.

In (Ic,+∞) the function µS is decreasing, then µS(Imax)−µS(Imin) < 0. More-
over, the function I 7→ α(I)

α(I)+kr
is increasing, hence ζ2(0) < 0. On the other
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hand, one has 0 ≤ ζ1(0, η, T ) ≤ 1 and 0 ≤ α(I)
α(I)+kr

≤ 1 for I ≥ 0. All together
implies that

µ̄T(0) ≥ ηµS(Imax) + (1− η)µS(Imin) +
1

Tkr
(µS(Imax)− µS(Imin)) . (23)

To conclude, we have to find T such that the right hand side of (23) is greater
than µS(Iη) which is equivalent to the condition

1

Tkr
≤ µS(Iη)− ηµS(Imax)− (1− η)µS(Imin)

µS(Imax)− µS(Imin)
. (24)

Since µS(I) is convex and decreasing on interval (Ic,+∞), the right hand side
of (24) is always positive. Therefore, a couple (T, η) verifying condition (24)
will ensure the inequality (22). This conclude the proof.

Biologically speaking, the previous theorem proves that for Imax, Imin ∈
(Ic,+∞) and y = 0 (i.e., at the surface), one can find a period T and a duty
cycle η such that the T-average growth rate under the high/low light regime is
greater than the constant average light regime. Based on the condition (24), if
η is near to 0 or 1 we need larger T , since the right hand side of the inequality
approaches to zero in this case. This improvement can be also valid for other
choices of light (see Figure 5).

On the other hand, one can see that a condition between T and η is needed
to give an interpretation of this improvement in the growth rate. Assume that
the condition (24) holds for some T and η. Since µS(Iη) ≥ µS(Imax), then one
has

1

Tkr
≤ µS(Iη)− ηµS(Imax)− (1− η)µS(Imin)

µS(Imax)− µS(Imin)

≤ µS(Imax)− ηµS(Imax)− (1− η)µS(Imin)

µS(Imax)− µS(Imin)

= 1− η,

or, in other words, (1 − η)T ≥ 1
kr
. Since kr corresponds to the recovery rate

of a photoinhibited PSU, then 1
kr

is the time needed for recovering a damaged
PSU. Moreover, (1− η)T represents the time that the system is exposed under
the low light. Therefore, by considering the exposed time under the low light
which is larger than recovering time 1

kr
, we could have an improvement on the

average growth rate at the surface in the high/low light regime. Naturally, the
best duty cycle η is investigated in this case. Assuming T large enough and we
have the approximation

µ̄T(y) = µηS(y). (25)

Then we can state the next theorem.

Theorem 3.3. For large T, choosing Imax > Imin > Ic, at the top of the
bioreactor, there exists η ∈ (0, 1) which maximize the difference between the
average growth rate in the high/low-flashing light regime, leading to a T-average
growth rate larger than the one in continuous light regime.
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Proof. Setting y = 0. In the limit case of the large-T model, we approximate
the average growth rate with (25). T he optimum ηopt is defined as

ηopt := argmax
η∈(0,1)

ηµS(Imax) + (1− η)µS(Imin)− µS(Iη)

which solution is such that

d

dI
µS(Iηopt) =

µS(Imax)− µS(Imin)

Imax − Imin
(26)

and the existence is ensured by the mean value theorem.

This optimal η is actually the one which is capable of achieving the maximal
difference between µ̄T(0) and µS(Iη). Moreover, (26) can be rewritten as

0 =

[
1 + τσIηopt +

kd
kr
τ(σIηopt)

2

]2
µS(Imax)− µS(Imin)

Kσ(Imax − Imin)
+
kd
kr
τ(σIηopt)

2 − 1.

Recall that Iηopt = ηoptImax + (1− ηopt)Imin where ηopt is the unknown optimal
duty cycle.

4 Analysis of the Small-T model
In this section we present the value of the T -average growth rate using the
Small-T model, meaning that T < τ . Recall that τ is the time during which
one photon is processed in the PSU, thus T is in the order of milliseconds. We
prove that the average growth rate, in the limit, corresponds to µS(Iη), i.e.,
the microalgae only perceives the average of the light in this case. We then
provide an analysis in the flashing light regime and define the optimal local
optical depth.

4.1 Average growth rate
Recall that, by definition (12), the T-average growth rate can be computed by
µ̄T = 1

T

∫ T
0
KσIAdt = KσIA. Then µ̄T is computed by

µ̄T(y) =
KσkrIM (y)

(
1 + ξ1(y)ξ2(y, T )

)
kr + krτσIM (y) + kdτ

(
σIM (y)

)2
+ kdσIM (y)ξ1(y)ξ2(y, T )

,

where

ξ1(y) =
σ
(
IH(y)− IL(y)

)2
η(1− η)

τβH(y)βL(y)
,

ξ2(y, T ) =
(1− e−βH(y)ηT )(1− e−βL(y)(1−η)T )

T (1− e−βH(y)ηT−βL(y)(1−η)T )

ηβH(y) + (1− η)βL(y)

η(1− η)βH(y)βL(y)
− 1,
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βH(y) := β(IH(y)) and βL(y) := β(IL(y)). The details of the computation are
given in A.2. Since

lim
T→0

(1− e−βH(y)ηT )(1− e−βL(y)(1−η)T )

T (1− e−βH(y)ηT−βL(y)(1−η)T )
=
η(1− η)βH(y)βL(y)

βH(y) + βL(y)
,

one has limT→0 ξ2(y, T ) = 0. This leads to the following result.

Theorem 4.1. For rapid light alternation, one has for every local optical depth
y > 0 limT→0 µ̄

T(y) = µS(IM (y)).

This theorem asserts that, in the limit, the growth rate of the high/low-
flashing light is the same as the growth rate at steady state of A by considering
the light intensity Iη. In this case, the algae perceives the average light intensity
for growing and there is no possible gain in growth rate compared to continuous
light.

4.2 Small-T flashing light
Flashing light corresponds to the particular case of the high/low-flashing light
when Imin = 0. Based on our previous analysis, we present the local opti-
cal depth at which the algae culture perceives the optimal light intensity for
growing.

Assume that the approximation µ̄T(y) ∼ µS(Iη(y)) holds. By Theorem 4.1,
the light perceived by the algae at local optical depth y is Iη(y) = ηImaxe

−y. I n
this case, we can give an expression for the local optical depth at which the algae
culture perceives the optimal light. This expression depends on the duty cycle
η which, in practice, can be settled and then, we can choose the local optical
depth in a certain range of values. We define optimal local optical depth as the
local optical depth in which the average growth rate achieves the maximum of
the growth rate.

Lemma 4.1. Considering flashing light, let Imax the maximum light intensity
provided at the top of the bioreactor, η the duty cycle and σ, kd, kr, τ the param-
eters of the Han model. The optimal local optical depth is given by

yopt = ln

(
Imaxσ

√
kd
kr
τη

)
(27)

Proof. The growth rate, considering flashing light and the limit case of the
small-T model correspond to

µ̄T(y) = µS(ηImaxe
−y) = µS(Imaxe

−(y−ln(η))).

Matching the value of the optimal light of the function µS given by (7) and the
growth rate calculated above, we obtain the equality

Imaxe
−(yopt−ln η) =

1

σ
√

kd
kr
τ

and isolating yopt we get the value (27).
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As η tends to zero, yopt can take negative values. If yopt take a negative
value, the algae culture does not perceive the optimal light, meaning that all
the culture is under a photo-limited condition. Hence, the election of the duty
cycle η affects the productivity. For including the optimal light into the culture,
we have to consider the inequality

η ≥ 1

Imaxσ
√

kd
kr
τ
.

Using the definition of Iopt, this is equivalent to the condition:

η ≥ Iopt

Imax
.

In conclusion, for every value of η in the range of [Iopt/Imax, 1) the optimal light
is perceived in the culture. By setting η = Iopt/Imax, the optimal light is then
perceived at the top of the culture.

5 Junction between simplified models and the ex-
act growth rate

We analyzed the large and the small-T model, then gave the limit of the T-
averaged growth rate in Theorem 3.1 and Theorem 4.1 when T → +∞ and
T → 0 respectively. Meanwhile, we evaluated the T-average growth rate without
considering the simplified models given in (14) named as the asymptotic exact
growth rate. In this section, we show that the limits of (14) are the same as the
results in Theorem 3.1 and Theorem 4.1.

Proposition 5.1. The limit of the asymptotic exact growth rate coincides with
the limit of Theorem 3.1 and Theorem 4.1 when T → +∞ and T → 0 respec-
tively.

Proof. Let us first prove that when T → +∞, then µ̄T given by (14) converges
to µηS . The eigenvalues of the matrices MH and ML defined in (16)-(17) are
positive (see Appendix A.4) and then, the exponential matrices

e−ηTMH(y) and e−(1−η)TML(y)

converges to the zero matrix as T → +∞ for every local optical depth y. Thus,

lim
T→+∞

∆ =
[
IH(y)M−1

H (y)− IL(y)M−1
L (y)

] (
M−1
H (y)NH(y)−M−1

L (y)NL(y)
)
,

where ∆ is defined in (15). From the exact growth rate given by (14), we can
also conclude that

lim
T→+∞

µ̄T(y) = ηµs(IH(y)) + (1− η)µS(IL(y)) = µηS(y),

13



which is the result of Theorem 3.1. Now, for the other case, we have that

lim
T→0

∆

T
= η(1− η)M−1

η (y)(IH(y)ML(y)− ILMH(y))

· [(M−1
H (y)NH(y)−M−1

L (y)NL(y)],

where Mη(y) = ηMH(y) + (1− η)ML(y). We can manipulate this term and get
that

lim
T→0

∆

T
=M−1

η

[
−IηNη + ηIHMηM

−1
H NH + (1− η)ILMηM

−1
L NL

]
(y)

=− Iη(y)M−1
η (y)Nη(y) + ηIH(y)M−1

H (y)NH(y)

+ (1− η)IL(y)M−1
L (y)NL(y).

Replacing this limit in (14), we conclude that

lim
T→0

µ̄T(y) = µS(Iη(y)).

This corroborates the behavior of the mean of the growth rate in the large-T
and small-T models.

6 Illustration with simulation studies

6.1 Parameter settings
The Han model parameters can be different depending on the authors and the
studied species. Here we consider the values taken from [10, 14, 4] and recalled
in Table 1. For these parameters, the critical value Ic defined in Lemma 3.1

[10] [14] [4] Unit
kr 6.8 · 10−3 4.8 · 10−4 2.6 · 10−4 s−1

kd 2.99 · 10−4 2.99 · 10−4 4.5 · 10−8 -
τ 0.25 6.8493 5.6 s
σ 0.047 0.0029 3.3127 m2 µmol−1

K 8.7 · 10−6 3.6467 · 10−4 -
Iopt 202.93 166.94 9.69 µmolm−2s−1

Ic 414.29 356.24 56.45 µmolm−2s−1

Table 1: Parameter values for Han Model.

is computed together with the optimal light intensity Iopt and indicated in the
table.

In this section, we provide some numerical tests to illustrate the two approx-
imations and the exact solution of the Han system.
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6.2 Quality of the approximated solution
First, we study the quality of the solutions given by the two approximations.
More precisely, we compare the solution of the approximation (9) and (10) with
the exact solutions of (3). In Figure 3 the dynamics of the states A and C are
plotted for T = 0.5 s and T = 3600 s. 0.5 s is considered for the small-T model,
in which the large-T model is not a good approximation. As for T = 3600 s we
need to drop the assumption of C constant. In this case, the small-T model is
far from the real solution. We observe that A and C change between two values,
these values correspond to the steady states considering Imax and Imin.

As expected, one can see that (10) provides a good approximation for small
period (in this case for T = 0.5 s) and (9) provides a good approximation for
large period (T = 3600 s). On the other hand, the quality of the approximation
depends on the time period T . We refer to hereafter a small period as T < τ
and a large period as T > 1/kr.

6.3 Connection between two approximations
Here we study the connection of the average growth rate between the one
obtained from the large-T model (9), the small-T model (10) and the exact
model (3). More precisely, we compute the T-average growth rate at surface
µ̄T(0) by varying the period T from T = 0.01 s to T = 36 000 s, and the results
are shown in Figure 4. As T → 0 the average growth rate converges to the value
µS(Iη(0), whereas µ̄T → µη(0) when T → +∞. Moreover, the inequality (22)
holds for T >= 174 s as shown in Figure 4 (Top), which is not the case in Fig-
ure 4 (Bottom). Note that the time needed to process a photon (τ) and the
time needed to recover a PSU (1/kr) are also given in Figure 4.

Small Period For T ∈ (0, τ ] Small-T model gives a good approximation. As
the light change in a time scale lower than the time of processing photons,
in this case, the algae perceives the average of the light (i.e, Iη at the top).

Transition Period For T ∈ (τ, 1
kr

) the small period started to fail, and con-
sider the large-T model is more accurate.

Large Period For T ∈ [ 1
kr
,∞) Large-T model fits. If a high light is combined

with a low light, then some damaged PSU can be recovered and we can get
an improvement of the T-average growth rate compared to the continuous
light regime.

6.4 Improvement of the growth rate
As shown in Theorem 3.2, that there exists an improvement the growth rate
for some configurations exists. Figure 5 (Top left) presents a case where Imin
and Imax are greater than Ic defined in (21). The improvement occurs when we
consider the local optical depth equal to zero, this corresponds to the surface
of the bioreactor. Moreover, we observe that for some values of y in Figure 5
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Figure 3: Comparison of the two modelling approximations with the exact so-
lution of the states of the Han model. Top: T = 0.5s. Bottom: T = 3600s The
state A and C of the exact solutions (3) (continuous yellow line), of the small-
T model (10) (segmented blue line) and of the large-T model (9) (segmented
red line) are provided for Imax = 2000µmol m−2 s−1, Imin = 300µmol m−2 s−1,
η = 0.4, y = 0 and four different values of T . The Han parameters is taken
from [10] in Table 1.
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Figure 4: Average growth rate at surface µ̄T for the two simplified models.
Top: Imax = 2000µmolm−2s−1 and Imin = 350µmolm−2s−1. Bottom: Imax =
2000µmolm−2s−1 and Imin = 10µmolm−2s−1. The period T is plotted in log
scale. The Han parameters of [10] are considered with and η = 0.5.
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(Bottom right), the T-average growth rate (black curve) has greater values than
the PI-curve of the Han model (blue curve). This means that the improvement
perceived at the surface can go further into the culture. Although, for greater
values of y the T-average growth rate is smaller than the PI-curve.

Note that Imax and Imin are assumed to be larger than Ic in Theorem 3.2.
Figure 5 (Top right) illustrates that this assumption can be relaxed especially
for Imin, meaning that Imin can be lower than Ic and the T -average growth rate
can still be greater than the growth rate in continuous light regime. Note that η
should be chosen wisely to guarantee the improvement in this case, for instance
here the value of µS(Iη) is lower than µS(Iη) for η1, whereas an improvement is
obtained for η2.

On the other hand, some selections for Imin can only give lower values of the
T-average growth rate comparing with the PI-curve as we can see in Figure 5
(Bottom left). In this case, every selection of η provides a T -average growth
rate lower than the PI-curve.

Figure 6 summarizes the behavior of the two simplified models. The exact
growth rate is plotted in form of polygon. We can see that, for greater values of
T , the exact growth rate coincides with the T-averaged growth rate of the large-
T model. In this case, the hypotheses of Theorem 3.2 holds. The red polygon
corresponds to the surface of the bioreactor (y = 0) where the curve of the T-
average growth rate of the large-T model is greater to the T-average growth rate
of the small-T model due to Theorem 3.2. Note that in the small-T model, the
average growth rate matches µS(Iη), which corresponds to the continuous light
regime with the same average light intensity. As y becomes larger, the growth
rate in large approach is lower than the continuous light regime, as shown in
the green and blue polygon.

7 Conclusions
We calculate the T-averaged growth rate in two simplified models: for large
period T and small period T . In the small-T model, we can simply approximate
the T-average growth rate by considering µS(ηIH + (1 − η)IL), and for the
large period T , we can approximate the T-average growth rate by considering
ηµS(IH)+(1−η)µS(IL). In terms of growth rate, there is no distinction between
the constant regime with light Iη and switching the light quickly between IH and
IL in the time ηT and (1− η)T respectively. In contrast, in the large-T model
we can improve the growth rate if we consider a low local optical depth (for
example, a very diluted environment). Although, for higher local optical depth,
the growth rate is lower than the constant light regime. Our assumptions were
simpler, and a mixing device was not considered, which can be a very interesting
extension.
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Figure 5: Different combinations of Imax, Imin and η. Top left: Diagram of the
Theorem 3.2 in which Imax and Imin are greater than Ic. In this configuration,
for each η ∈ (0.1) we can find T for which µ̄T(0) > µS(Iη). Top right: For
Imin < Ic, µ̄T(0) > µS(Iη) for η2 and µ̄T(0) < µS(Iη) for η1. Bottom left: For
some configurations, it is impossible to find a fraction η and a period T for
which µ̄T(0) > µS(Iη). Bottom right: The green area represents all the possible
values for µηS if we vary the local optical depth and η for a given Imax and Imin.
The black line correspond to the values of µηS for a fixed value of η. The growth
rate at steady state µS is plotted in blue using the parameters in [10].
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Figure 6: Average growth rate as a function of period T for four different local
optical depths. We set Imax = 2000µmol m−2 s−1, Imin = 500µmol m−2 s−1,
η = 0.5 and the Han parameters from [10]. The average growth rate in limit
case for small-T model (blue curve) and for large-T model (red curve). For
small values of the time we plotted in the continuous line the small-T model
and analogous for the larger values of T.
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A Analytical Computations

A.1 Large period T

For large period case, the evolution system (3) can be approximated by (9)
which can be solved explicitly for a constant light intensity I as

C(y, t) =
α(I(y))

α(I(y)) + kr
(1− e−(α(I(y))+kr)t) + e−(α(I(y))+kr)tC(y, 0), t ∈ (0, T ).

Moreover, the system is assumed to be periodic (i.e. C(y, 0) = C(y, T )).
For the constant light regime IM (y), one has C(y, t) = α(IM (y))

α(IM (y))+kr
, ∀t ∈

[0, T ]. Using (18), the T-average growth rate is given by (1 − C)γ(IM (y)) =
KσIM (y)

1+τσIM (y)+
kd
kr
τ(σIM (y))2

= µS(IM (y)). For the high/low light regime, one has

C(y, t) =

{
αH(y)

αH(y)+kr
(1− e−(αH(y)+kr)t) + e−(αH(y)+kr)tC(y, 0), t ∈ (0, ηT )

αL(y)
αL(y)+kr

(1− e−(αL(y)+kr)(t−ηT )) + e−(αL(y)+kr)(t−ηT )C(y, ηT ), t ∈ (ηT, T )
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Using the periodic border condition of C, one has

C(y, 0) =
αL(y)

αL(y)+kr

(
1−e−(αL(y)+kr)T (1−η)

)
+e−(αL(y)+kr)T (1−η) αH (y)

αH (y)+kr

(
1−e−(αH (y)+kr)Tη

)
1−e−(αL(y)+kr)T (1−η)−(αH (y)+kr)Tη .

For a given local optical depth y, the T-average growth rate is given by

µ̄T(y) =
1

T

( ∫ ηT

0

µ(y, t)dt+

∫ T

ηT

µ(y, t)dt
)

=η
γH(y)kr

αH(y) + kr
+ (1− η)

γL(y)kr
αL(y) + kr

+
γH(y)

T (αH(y) + kr)

(
αH(y)

αH(y) + kr
− C(y, 0)

)(
1− e−(αH(y)+kr)Tη

)
+

γL(y)

T (αL(y) + kr)

(
αL(y)

αL(y) + kr
− C(y, Tη)

)(
1− e−(αL(y)+kr)T (1−η)

)
=ηµS(IH(y)) + (1− η)µS(IL(y)) +

ζ1(y, η, T )ζ2(y)

Tkr
,

where γH(y) := γ(IH(y)) and γL(y) := γ(IL(y)).

A.2 Small period T

For small period case, the dynamics of C is negligible (i.e. C is a constant).
Integrating (3) from 0 to T gives

0 =

∫ T

0

Ċdt = −krTC − kdσC
∫ T

0

Idt+ kdσ

∫ T

0

Idt− kdσ
∫ T

0

IAdt.

Let us denote by Ī := 1
T

∫ T
0
Idt and by IA := 1

T

∫ T
0
IAdt, then one finds the

constant value for C as

C =
kdσ(Ī − IA)

kdσĪ + kr
. (28)

For high/low light regime, one has

A(y, t) =

{
e−βH(y)tA(0) + 1−C

τβH(y) (1− e−βH(y)t), t ∈ [0, ηT ],

e−βL(y)(t−ηT )A(ηT ) + 1−C
τβL(y) (1− e−βL(y)(t−ηT )), t ∈ [ηT, T ].

The periodicity on A gives

A(y, 0) =
e−βL(y)(1−η)T 1−C

τβH(y) (1− e−βH(y)ηT ) + 1−C
τβL(y) (1− e−βL(y)(1−η)T )

1− e−βL(y)(1−η)T−βH(y)ηT
.

(29)
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On the other hand, the average of IA can be computed by

TIA =

∫ ηT

0

IH(y)A(y, t)dt+

∫ T

ηT

IL(y)A(y, t)dt

=A(y, 0)IH(y)
1− e−βH(y)ηT

βH(y)
+ IH(y)

1− C
τβH(y)

(ηT − 1− e−βH(y)ηT

βH(y)
)

+A(y, ηT )IL(y)
1− e−βL(y)(1−η)T

βL(y)
+ IL(y)

1− C
τβL(y)

(
(1− η)T

− 1− e−βL(y)(1−η)T

βL(y)

)
.

Using (29) and simplifying the latter, one finds

TIA =
1− C

τβ2
L(y)β2

H(y)

(1− e−(σImax+ 1
τ )ηT )(1− e−(σImin+ 1

τ )(1−η)T )

1− e−(σImax+ 1
τ )ηT−(σImin+ 1

τ )(1−η)T
(IH(y)βL(y)

− IL(y)βH(y))(βH(y)− βL(y)) +
1− C

τβH(y)βL(y)
(IL(y)βL(y)ηT

+ IH(y)βH(y)(1− η)T ).

By using the definition of IH(y), IL(y), βH(y), βL(y) and replacing C by (28) in
the previous equation, one has

TIA=
kdσIA+kr

τβ2
H

(y)β2
L

(y)(kdσIη+kr)

(
∆(y,T )στ (Imax−Imin)2+(

Iη
τ +σImaxImin)βH(y)βL(y)T

)
,

where ∆(y, T ) = (1−e−(σImax+ 1
τ

)ηT )(1−e−(σImin+ 1
τ

)(1−η)T )

1−e−(σImax+ 1
τ

)ηT−(σImin+ 1
τ

)(1−η)T
. In other words

IA=

kr

(
∆(y,T )

TβH (y)βL(y)
σ
τ

(Imax−Imin)2+
Iη
τ

+σImaxImin

)
τβH (y)βL(y)(kdσIη+kr)−kdσ

(
∆(y,T )

TβH (y)βL(y)
σ
τ

(Imax−Imin)2+
Iη
τ

+σImaxImin

) .
Finally, the T−average growth rate is given by

µ̄T(y) =
KσkrIM (y)

(
1 + ξ1(y)ξ2(y, T )

)
kr + krτσIM (y) + kdτ

(
σIM (y)

)2
+ kdσIM (y)ξ1(y)ξ2(y, T )

, (30)

where

ξ1(y) =
σ
(
IH(y)− IL(y)

)2
η(1− η)

τβH(y)βL(y)
,

ξ2(y, T ) =
(1− e−βH(y)ηT )(1− e−βL(y)(1−η)T )

T (1− e−βH(y)ηT−βL(y)(1−η)T )

ηβH(y) + (1− η)βL(y)

η(1− η)βH(y)βL(y)
− 1.
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A.3 Exact growth rate
We split equation (3) in the high/low-flashing light configuration

d
dt

(
A(y, t)
C(y, t)

)
= −MH(y)

(
A(y, t)
C(y, t)

)
+NH(y), if t < ηT,

d
dt

(
A(y, t)
C(y, t)

)
= −ML(y)

(
A(y, t)
C(y, t)

)
+NL(y), if t > ηT.

Using the variation of parameters method, one can solve explicitly the previous
system for the case t < ηT

A(y, t)
C(y, t)

=(Id−e−tMH (y))M−1
H (y)NH(y)+e−tMH (y)

A(y, 0)
C(y, 0)

,
and for the case t > ηT

A(y, t)
C(y, t)

=(Id−e−(t−ηT )ML(y))M−1
L (y)NL(y)+e−(t−ηT )ML(y)

A(y, ηT )
C(y, ηT )

,
where Id denotes the identity matrix in R2×2. Imposing periodic conditions
(i.e., (A(y, 0), C(y, 0)) = (A(y, T ), C(y, T ))), one can then compute the values
of (A(y, 0), C(y, 0)) and the values of (A(y, ηT ), C(y, ηT ))(
A(y, ηT )
C(y, ηT )

)
=
(

Id−e−ηTMH(y)
)
M−1
H (y)NH(y) + e−ηTMH(y)

(
A(y, 0)
C(y, 0)

)
,(

A(y, 0)
C(y, 0)

)
=
(

Id−e−(1−η)TML(y)
)
M−1
L (y)NL(y) + e−(1−η)TML(y)

(
A(y, ηT )
C(y, ηT )

)
.

Replacing one in another, we then have(
A(y, ηT )
C(y, ηT )

)
=
(

Id−e−ηTMH(y)e−(1−η)TML(y)
)−1

·
[(

Id−e−ηTMH(y)
)
M−1
H (y)NH(y)

+ e−ηTMH(y)
(

Id−e−(1−η)TML(y)
)
M−1
L (y)NL(y)

]
,

(31)

(
A(y, 0)
C(y, 0)

)
=
(

Id−e−(1−η)TML(y)e−ηTMH(y)
)−1

·
[(

Id−e−(1−η)TML(y)
)
M−1
L (y)NL(y)

+e−(1−η)TML(y)
(

Id−e−ηTMH(y)
)
M−1
H (y)NH(y)

]
.

(32)
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On the other hand, the T-average of the growth rate is given by calculating the
following integral:∫ T

0

I(y, t)

(
A(y, t)
C(y, t)

)
dt = IH(y)

∫ ηT

0

(
A(y, t)
C(y, t)

)
dt+ IL(y)

∫ T

ηT

(
A(y, t)
C(y, t)

)
dt

= ηTIH(y)M−1
H (y)NH(y)

− IH(y)M−1
H (y)

(
Id−e−ηTMH(y)

)[
M−1
H (y)NH(y)−

(
A(y, 0)
C(y, 0)

)]
+ IL(y)(1− η)TM−1

L (y)NL(y)

− IL(y)M−1
L (y)

(
Id−e−(1−η)TML(y)

)[
M−1
L (y)NL(y)−

(
A(y, ηT )
C(y, ηT )

)]
.

Implementing then (31) and (32) into (33), one finds∫ T

0

I(y, t)

(
A(y, t)
C(y, t)

)
dt =ηTIH(y)M−1

H (y)NH(y)

+ (1− η)TIL(y)M−1
L (y)NL(y) + ∆,

where

∆ =
[
IH(y)M−1

H (y)
(

Id−e−ηTMH(y)
)(

Id−e−(1−η)TML(y)e−ηTMH(y)
)−1

·
(

Id−e−(1−η)TML(y
)
− IL(y)M−1

L (y)
(

Id−e−(1−η)TML(y
)

·
(

Id−e−ηTMH(y)e−(1−η)TML(y)
)−1 (

Id−e−ηTMH(y)
) ]

·
(
M−1
H (y)NH(y)−M−1

L (y)NL(y)
)
.

The average growth rate 1
T

∫ T
0
KσIAdt is proportional to the first coordinate

of (A.3) multiplied by Kσ
T . Denote by δ the first coordinate of ∆ and using the

following two identities

M−1
H (y)NH(y) =


kr

τkd(σIH(y))2 + τkrσIH(y) + kr
τkd(σIH(y))2

τkd(σIH(y))2 + τkrσIH(y) + kr

 , (33)

M−1
L (y)NL(y) =


kr

τkd(σIL(y))2 + τkrσIL(y) + kr
τkd(σIL(y))2

τkd(σIL(y))2 + τkrσIL(y) + kr

 . (34)

Then µS(IH(y)) (resp. µS(IL(y))) is the first coordinate of (33) (resp. of (34))
multiplied by Kσ. Hence, the T-average of the growth rate is

µ̄T(y) = ηµs(IH(y)) + (1− η)µS(IL(y))− Kσ

T
δ(y, T ).
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A.4 Eigenvalues of matrix M

We will condense the analysis of the eigenvalues of MH and ML in the matrix

M(I) =

(
σI + 1

τ
1
τ

kdσI kdσI + kr

)
.

Denoting λ1 and λ2 the eigenvalues, then we have

Tr(M(I)) = λ1 + λ2 = σI +
1

τ
+ kdσI + kr, (35)

Det(M(I)) = λ1λ2 = kd(σI)2 + krσI +
kr
τ
. (36)

From (36), λ1 and λ2 has the same sign, and since (35) holds, the two eigenvalues
are positive.

B Proof of Lemma 3.1
The second derivative of the function µS is

d2

dI2
µS(I) = −

2Kσ
[
τσ + kd

kr
τσ2I

(
3− kd

kr
τσ2I2

)]
(

1 + τσI + kd
kr
τ(σI)2

)3 ,

and it is zero in the point Ic which satisfies(
kd
kr
τ

)2

σ3I3
c − 3

kd
kr
τσ2 − τσ = 0.

This is a depressed cubic equation that can be solved explicitly and its solution
corresponds to (21).
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