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Abstract

We consider a coupled hydrodynamical-biological model describing
growth in a microalgal raceway pond cultivation. More precisely, our ap-
proach combines a biological model (based on the Han model) and Saint-
Venant systems that model the fluid into the raceway pond. Here we focus
on the laminar fraction of the fluid, far from the paddle wheel, considering
different topographies to enhance the microalgal growth rate. We present
an optimization problem derived from the Pontryagin Maximum Principle
dealing with the topography to maximize the biomass production over one
lap or multiple laps with a paddle wheel. On the contrary to a widespread
belief in the microalgae field, the results show that a flat topography is
optimal in a periodic regime. In other frameworks, non-trivial topogra-
phies can be obtained. We present some of them, e.g., when the mixing
device is also taken into account in the model.

Keyword: Optimal control, PMP, shape optimization, Han model, Saint-
Venant system, Microalgal raceway

1 Introduction
Numerical design of microalgae production technologies has been for decades
a source of many interesting challenges not only in engineering but also in the
area of scientific computing [14, 24, 35, 21]. The potential of these emerging
photosynthetic organisms finds interests for the cosmetics, pharmaceutical fields,
feed, food and - in the longer term - green chemistry and energy applications [34].
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Outdoor production is mainly carried out in open bioreactors with a raceway
shape. Algae grow while exposed to solar radiation in such circular basins, where
the water is set in motion by a paddle wheel. This mixing device homogenizes
the medium for ensuring an equidistribution of the nutrients and guarantees that
each cell will have regularly access to light [10, 13]. The algae are periodically
harvested, and their concentration is maintained around an optimal value [28,
31]. Light penetration is strongly reduced by the algal biomass, and less than
1% [6] of the incident light reaches the reactor bottom. For larger biomass, the
light extinction is so high that a large fraction of the population evolves in the
dark and does not grow anymore. At low biomass density, a fraction of the solar
light is not used by the algae and the productivity is suboptimal. Theoretical
works have determined the optimal biomass for maximizing productivity [23, 17].

Here, we consider another approach which consists in improving the pho-
toproduction process by controlling the cell trajectories in the light field. We
starts from the observation that algal raceway ponds are dynamical systems
conjugating a physical aspect - the hydrodynamical behaviour of the fluid trans-
porting the algae culture, and a biological aspect - the light harvesting by the
chlorophyll complexes in the cells [1, 29, 30]. We then study the effect of the
topography (or the bathymetry) on growth to optimize the light received by the
microalgae. Modelling the corresponding system is challenging since it involves
the free-surface incompressible Navier-Stokes system [8, 11, 33, 27]. The com-
plexity of this model generally prevents obtaining explicit formulas and large
computational resources are required to carry out simulations.

Several experimental campaigns [25, 32] have shown that in the raceway
straight sections, there are no features that disturb the flow (and this was further
confirmed by CFD modelling [19, 20]. Therefore, in these systems, despite
turbulent dispersion, mixing is relatively poor. The mixing is mainly induced
locally by the paddle wheel, and in a lesser extend by the bends. The more
recent study of [20] confirms this finding, showing that most of the turbulence
is generated in the neighborhood of the paddle wheel and close to the surface.

We therefore focus on the main part of the raceway, outside the paddle wheel
area, and we assume a laminar flux. We study how to enhance productivity in
this part by modifying the bottom topography. This enables us to discuss a
common belief that some specific topographies can bring more light to the algae
(at the lower part of the raceway), since cells get closer to the surface when
reaching the peak of these topographies.

Let us detail our approach. We first introduce a coupled model to represent
the growth of algae in a raceway pond, accounting for the light that they re-
ceive due to advection in the fluid field. This model is obtained by combining
the Han photosynthesis equations with a hydrodynamic law based on the Saint-
Venant system. This first step enables us to formulate an optimization problem
where the raceway topography is designed to maximize the productivity. Here,
we use an adjoint-based optimization scheme to includes the constraints asso-
ciated with the Saint-Venant regime. We then prove that the flat topography
is optimal for productivity in a periodic case, when focusing on the fraction of
the raceway with laminar regime. However, non-trivial topographies can be ob-

2



tained in other contexts, e.g., when the periodic assumption is removed or when
the mixing device is accounted for in conjunction with the bottom topography.
Final simulations considering a combination of turbulence induced mixing and
non flat topographies can slightly increase biomass production. However, en-
hancing turbulence by mixing will more significantly increase productivity and
will definitely be the most efficient approach [4, 5], even if more energy will be
dissipated by turbulence.

The outline of the paper is as follows. In Section 2, we present the biological
and hydrodynamical models underlying our coupled system. In Section 3, we
describe the optimization problem and a corresponding numerical optimization
procedure. Section 4 is devoted to the numerical results obtained with our
approach. We conclude then with some perspectives opened by this work.

2 Hydrodynamic and biological models
Our approach is based on a coupling between the hydrodynamic behavior of
the particles and the evolution of the photosystems driven by the light intensity
they receive when traveling across the raceway pond.

2.1 Hydrodynamical model and Lagrangian trajectories
The Saint-Venant equations are one of the most popular model for describing
geophysical flows, which is derived from the free surface incompressible Navier-
Stokes equations (see for instance [15]). In this paper, we focus on the smooth
steady state solutions of the Saint-Venant equations in a laminar regime. Such
steady states are governed by the following partial differential equations:

∂x(hu) = 0, ∂x(hu2 + g
h2

2
) = −gh∂xzb, (1)

where h is the water depth, u is the horizontal averaged velocity of the water,
the constant g stands for the gravitational acceleration and zb defines the to-
pography. The free surface η is given by η = h+ zb and the averaged discharge
Q = hu. This system is presented in Fig. 1. The z (resp. x) axis represents
the vertical (resp. horizontal) direction and Is is the light intensity at the free
surface (assumed to be constant).

Integrating equation on the left of (1), we get

hu = Q0, (2)

for a fixed positive constant Q0, which implies a constant discharge in space.
Then equation on the right of (1) can be rewritten by

hu∂xu+ h∂xgh+ h∂xgzb = 0. (3)

Let us assume that h is strictly positive. Dividing (3) by h and using (2) to
eliminate u, we get ∂x

(
Q2

0

2h2 + g(h+ zb)
)

= 0. Now consider two fixed constants
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Figure 1: Representation of the hydrodynamic model.

h(0), zb(0) ∈ R, for all x ∈ [0, L], we obtain Q2
0

2h2 + g(h+ zb) =
Q2

0

2h2(0) + g(h(0) +

zb(0)) =: M0, meaning that the topography zb satisfies

zb =
M0

g
− Q2

0

2gh2
− h. (4)

Remark 2.1. Define the Froude number for the steady state by Fr = u/
√
gh.

The situation Fr < 1 corresponds to the subcritical case (i.e. the flow regime
is fluvial) while Fr > 1 is to the supercritical case (i.e. the flow regime is
torrential). In particular, the threshold value of h for Fr = 1 is given by hc :=

(
Q2

0

g )
1
3 .

Because of (4), h is the solution of a third order polynomial equation. Given
a smooth topography zb, if hc + zb +

Q2
0

2gh2
c
− M0

g < 0. there exists a unique
positive smooth solution of (4) which satisfies the subcritical flow condition
(see [26, Lemma 1]). Let z(t) be the depth of a particle at time t in the raceway
pond. We first determine the Lagrangian trajectory of an algal cell that starts
at a given position z(0) at time 0. From the incompressibility of the flow, we
have ∇ · u = 0 with u = (u(x), w(x, z)). Here, w(x, z) is the vertical velocity.
The incompressibility implies that ∂xu + ∂zw = 0. Integrating the latter from
zb to z gives:

0 =

∫ z

zb

(
∂xu(x) + ∂zw(x, z)

)
dz

= ∂x
(
(z − zb)u(x)

)
+ w(x, z)− w(x, zb)

= (z − zb)∂xu(x)− u(x)∂xzb + w(x, z),

where we have used the kinematic condition at the bottom (i.e. w(x, zb) =
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u(x)∂xzb). It follows from (4) that

w(x, z) = (
M0

g
− 3u2(x)

2g
− z)u′(x). (5)

The Lagrangian trajectory is characterized by(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t))

)
. (6)

Remark 2.2. The geometry of the raceway pond with small dissipation and
shear effects (reduced wall friction and viscosity) justifies a laminar flow mod-
elled by a shallow water model, such as the Saint-Venant system. This regime
also minimizes the mixing energy, hence is favoured at industrial scale.

A higher mixing energy would lead to a turbulent regime. A possible way
to enrich the representation of the Lagrangian trajectories in this case would
consists in adding a Brownian motion to the definition (6). However, getting
time-free expressions of the trajectories (as in Equations (7) and (11)) in this
case is much more challenging so that such a strategy would require a large set
of simulations together with an averaging strategy.

The previous expression of the Lagrangian trajectory (6) is a general for-
mulation which still holds when we change the hydrodynamical model. Based
on the special form of the chosen Saint-Venant system, we can find a simpler
formulation of the Lagrangian trajectory. More precisely, we denote by z(x) the
depth of a particle at the position x. From (5) and (6), we get

z′ :=
ż

ẋ
= (

M0

g
− 3u2

2g
− z)u

′

u
. (7)

Note that from (2) and (4), we have η = h + zb = M0

g −
u2

2g , which implies
η′ = −uu′/g. Multiplying (7) both sides by u and using the formulation of η, η′

gives z′u + zu′ = (η − u2

g )u′ = ηu′ + η′u, which implies that
(
u(z − η)

)′
= 0.

Using (2), we then obtain

η(x)− z(x) =
h(x)

h(0)
(η(0)− z(0)). (8)

This equation shows that given the data h(0), η(0), z(0), the distance between
a point in a trajectory and the surface depends only on h(x). We exploit this
property of the model in section 3.

Remark 2.3. Since Q0 is chosen to be positive, h is necessarily positive. More-
over, if z(0) belongs to [zb(0), η(0)], then z(x) belongs to [zb(x), η(x)]. In par-
ticular, choosing z(0) = zb(0) in (8) and using (2) gives z(x) = zb(x). In the
same way, we find that z(x) = η(x) when z(0) = η(0).
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2.2 Modeling the photosystems dynamics
We consider the Han model [18] which describes the dynamics of the reaction
centers. These subunits of the photosynthetic process harvest photons and
transfer their energy to the cell to fix CO2. In this compartmental model, the
photosystems can be described by three different states: open and ready to
harvest a photon (A), closed while processing the absorbed photon energy (B),
or inhibited if several photons have been absorbed simultaneously (C). The
relation of these three states are schematically presented in Fig. 2.

A B CσI kdσI

τ−1 kr

Photon I Photon I

Figure 2: Scheme of the Han model, representing the probability of state tran-
sition, as a function of the photon flux density.

Their evolution satisfy the following dynamical system
Ȧ = −σIA+ B

τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

(9)

Here I is the photon flux density, a continuous time-varying signal. A,B and
C are the relative frequencies of the three possible states with A+B + C = 1,
so that (9) can be reduced to a system in dimension 2 by eliminating B. The
other parameters are σ, that stands for the specific photon absorption, τ which
is the turnover rate, kr which represents the photosystem repair rate and kd
which is the damage rate. The dynamics of the open state A can be shown to
be much faster than the dynamics of the photoinhibition state C. A slow-fast
approximation by using singular perturbation theory (as shown in [21]) leads to
the simplification of the dynamics driven by the slow dynamics of C:

Ċ = −α(I)C + β(I), (10)

where α(I) = β(I) + kr with β(I) = kdτ
(σI)2

τσI+1 . Repeating the reasoning done
to get (7) with (10) and (2), we find a time-free reformulation, namely

C ′ :=
Ċ

ẋ
=
−α(I)C + β(I)

Q0
h, (11)

where all the functions on the right-hand side only depend on the spatial variable
x. Finally, the net growth rate is defined by balancing photosynthesis and
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respiration, which gives

µ(C, I) := −γ(I)C + ζ(I), (12)

where ζ(I) = γ(I) − R with γ(I) = kσI
τσI+1 . Here, k is a factor that relates

received energy with growth rate and R represents the respiration rate.

2.3 Coupling of two systems
As shown in previous section, the light intensity I plays an important role in
algal growth, since it triggers photosynthesis. On the other hand, the position
of the algae z(t) influences the light perceived as well as the efficiency of the
photosynthesis process. Therefore, the light intensity is the main connection
which couples the hydrodynamic model and the physiological evolution of the
algae. To evaluate the light intensity observed on the trajectory z, we assume
that the growth process occurs at a much slower time scale than those of hydro-
dynamics and is, as such, negligible for one lap over the raceway. In the same
way uncertainties as rainfall and evaporation, can also be neglected at this time
scale. These can be taken into account for longer time scale using more de-
tailed models, see for instance [12, 9]. In this framework, the Beer-Lambert law
describes how light is attenuated with depth:

I(x, z) := Is exp
(
− ε(η(x)− z)

)
, (13)

with ε the light extinction coefficient. Combining (13) with (8), we get the
following expression for the captured light intensity along the trajectory z

I(x, z) = Is exp
(
− εh(x)

h(0)
(η(0)− z(0))

)
.

In order to evaluate the quality of this coupled system, we define the average
net growth rate by

µ̄ :=
1

V

∫ L

0

∫ η(x)

zb(x)

µ
(
C(x, z), I(x, z)

)
dzdx, (14)

where µ is defined by (12) and V :=
∫ L
0
h(x)dx is the volume of our 1D raceway.

3 Optimization problem
In this section, we define the optimization problem associated with our biological
- hydrodynamic model. We first introduce our procedure for a simple problem,
and then extend this to other variant cases.
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3.1 Objective function and vertical discretization
Note that our goal is to optimize the topography of the raceway system. We
choose (14) as the objective function. In order to tackle numerically this opti-
mization problem, let us consider a vertical discretization. Let Nz denotes the
number of trajectories, and consider a uniform vertical discretization of their
initial position: zi(0) = η(0) − i− 1

2

Nz
h(0), i = 1, . . . , Nz. From (8), we obtain

zi(x) − zi+1(x) = 1
Nz
h(x), i = 1, . . . , Nz, meaning that the distribution of tra-

jectories remains uniform along the trajectories. To simplify notations, we write
Ii(x) instead of I(x, zi) hereafter. Given i ∈ {1, · · · , Nz}, let Ci(x) (resp. Ii(x))
the photo-inhibition state (resp. the light intensity) associated with the trajec-
tories zi(x). The semi-discrete average net growth rate in the raceway pond can
be defined from (14) by

µ̄Nz :=
1

V Nz

Nz∑
i=1

∫ L

0

µ(Ci(x), Ii(x))h(x)dx. (15)

From now on, we focus on the subcritical case, i.e. Fr < 1, see Remark 2.1.
As mentioned in Subsection 2.1, in this regime, a given topography zb corre-
sponds to a unique water depth h which verifies this assumption.

Remark 3.1. In usual shallow water solver, equations of type (4) are usually
consider to compute h in the simulations. Here, we use this equation in the
opposite way, i.e., to recover the topography zb from h.

3.2 Periodic setting
We consider the case where the photoinhibition state C is periodic, with a
period corresponding to one lap of the raceway pond. This situation occurs,
e.g., when an appropriate harvest is performed after each lap. To describe
the corresponding model, let us first consider a variant of the usual Cauchy
problem (11): Given I ∈ C(0, L;R+), find (C0, C) ∈ [0, 1] × C(0, L; [0, 1]) such
that {

C ′(x) = −α(I(x))C(x)+β(I(x))
Q0

h(x), x ∈ [0, L]

C(L) = C(0) = C0.
(16)

Applying the Duhamel’s formula on the Cauchy problem associated with (11)
and the initial condition C(0) = C0 and using β(I) ≤ α(I), one gets successively

C(L)− C0 =−
(

1− e−
∫ L
0

α(I(s))h(s)
Q0

ds
)
C0

+

∫ L

0

e−
∫ L
s

α(I(y))h(y)
Q0

dy β(I(s))h(s)

Q0
ds

≤
(

1− e−
∫ L
0

α(I(s))h(s)
Q0

ds
)

(1− C0) ,
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where the equality shows that the (affine) mapping Φ : C0 7→ C(L)−C0 satisfies
Φ(0) ≥ 0, and the inequality implies that Φ(1) ≤ 0. It follows that there exists
a unique C0 ∈ [0, 1] satisfying C(L)− C0 = 0. This proves the next theorem.

Theorem 3.1. There exists a unique couple (C0, C) ∈ [0, 1] × C(0, L; [0, 1])
satisfying (16).

3.3 Constant Volume
For simplicity, we omit from now on x in the notation and consider h as the vari-
able of the intensities (Ii)i=1,...,Nz and µ̄Nz . Given a volume V , the optimization
problem then reads:

Find h∗ ∈ L∞(0, L;R) solving the maximization problem:

max
h∈L∞(0,L;R)

µ̄Nz (h)

with the constraints 
C ′i =

−α(Ii(h))Ci + β(Ii(h))

Q0
h,

Ci(0) = Ci(L), ∀i = 1, · · · , Nz,
v′ = h,

v(0) = 0, v(L) = V.

(17)

The Hamiltonian associated with this optimal control problem is defined by

H =

Nz∑
i=1

pCi

(
−α(Ii(h))Ci + β(Ii(h))

Q0
h

)
+ pvh− µ̄Nz (h),

where pCi and pv are the co-states of system (17). The Pontryagin Maximum
Principle [7] implies that at a maximum, pCi and pv satisfy

pCi
′ = − ∂H

∂Ci
= pCi

α(Ii(h))

Q0
h+

γ(Ii(h))

V Nz
h,

pCi (0) = pCi (L), ∀i = 1, · · · , Nz,

pv ′ = − ∂H

∂v
= 0.

(18)

The last optimality condition is obtained by canceling the derivative of H
with respect to h. More precisely, let h ∈ L∞(0, L;R), and assume that
((Ci)i=1,··· ,Nz , v) and ((pCi )i=1,··· ,Nz , p

v) are corresponding solutions of (17),(18)
respectively. Then

∇µ̄Nz (h) = −∂H
∂h

, (19)
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meaning that, in the case h is optimal and remains in (0, hc), then ∂H
∂h = 0, i.e.

Nz∑
i=1

−γ′ (Ii(h))Ci + ζ ′ (Ii(h))

V Nz
I ′i(h)h+ pCi

α′(Ii(h))Ci − β′(Ii(h))

Q0
I ′i(h)h

+

Nz∑
i=1

−γ (Ii(h))Ci + ζ (Ii(h))

V Nz
+ pCi

α(Ii(h))Ci − β(Ii(h))

Q0
+ pv = 0,

(20)

Theorem 3.2. There exists pv ∈ R such that the constant water depth hf := V
L

and the corresponding solutions (Ci)i=1,··· ,Nz , (p
C
i )i=1,··· ,Nz of (17), (18) respec-

tively, satisfy the optimality condition (20).

Proof 1. Given i ∈ {1, · · · , Nz}, from (8) and (13), we deduce that Ii(hf ) =

Is exp(−ε i−
1
2

Nz
hf ) and I ′i(hf ) = −ε i−

1
2

Nz
Ii(h

f ) are constant on [0, L]. Solving (17)
gives

Ci(x) =e−
α(Ii(h

f ))

Q0
hfxCi(0)

+
β(Ii(h

f ))

α(Ii(hf ))
(1− e−

α(Ii(h
f ))

Q0
hfx).

(21)

Since Ci is periodic (i.e. Ci(L) = Ci(0)), we get from the previous equation that
Ci(0) = β(Ii(h

f ))
α(Ii(hf ))

. Inserting this value in (21), we find Ci(x) = Cfi := β(Ii(h
f ))

α(Ii(hf ))

on [0, L]. A similar reasoning applied to (18) gives pi(x) = pfi = − Q0γ(Ii(h
f ))

V Nzα(Ii(hf ))

on [0, L]. It follows that all the terms in the sums in (20) are constant on [0, L].
Hence, there exists a pv ∈ R such that (20) is satisfied. The result follows.

Remark 3.2. The previous theorem shows that the flat topography satisfies nec-
essary conditions of optimality. Numerically, we observe that the flat topography
is actually optimal in the periodic case (see Subsection 4.3.4).

Remark 3.3. If C is defined by a Cauchy problem and not assumed to be
periodic, (21) implies that C may depends on x and the computations in the
proof above no longer hold. In other words, the flat topography is not necessarily
an optimum in a non periodic setting, which is confirmed by our numerical tests
(see Subsection 4.3.2).

3.4 Non-constant volume problem for maximizing areal
productivity

In general, the volume of the system can also change hence can be optimized.
In this way, we now assume that the water depth is of the form h + h0, where
h0 ∈ R+ and h ∈ L∞(0, L;R) with

∫ L
0
h = 0, so that V = h0L. On the other

hand, the biomass concentration X (defined by Ẋ = (µ̄−D)X with D dilution
rate) changes with the system volume V , meaning that the light extinction ε
in (13) can no longer be assumed to be constant. Hence, we consider that
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ε(X) := ε0X + ε1, where ε0 > 0 is the specific light extinction coefficient of
the microalgae species and ε1 the background turbidity that summarizes the
light absorption and diffusion caused by all non-microalgae components [22]. A
standard criterion to determine a relevant value of X (see [23, 17]) consists in
regulating it such that the steady state value of the net growth rate µ at the
average depth h0 is 0, i.e.,

µ0(I(h0)) = 0, (22)

where µ0 is defined by µ0(I) := −γ(I)β(I)α(I) + ζ(I). This condition is equivalent
to the fact that I(h0) is one of the two roots (I−, I+) of the second order polyno-
mial function I 7→ kdτR(σI)2+(krτσR−krkσ)I+krR = 0. In practice (I−, I+)
are real, I− ≤ I+ and X is adjusted to get I(h0) = I−. We refer to [2] for the
corresponding analysis. Note that µ0(I) ≥ 0 on (I−, I+). Assumption (22) is
usually called the compensation condition, and describes a situation where the
growth at the bottom compensates exactly the respiration. In this framework,
maximizing areal productivity is a relevant target. For a given biomass concen-
tration X, this one is given by Π := µ̄X V

S , where µ̄ is defined in (14) and S is
the ground surface of the raceway pond; in our 1D system S = L. The total
biomass X in a given volume is maintained constant to achieve the compensa-
tion conditions (22). Using (13) with I(x, z) = I−, we get X(h0) =

Yopt/h0−ε1
ε0

,
with Yopt := ln( IsI− ). We then consider the problem:

Find (h∗, h∗0) ∈ L∞(0, L;R)× R+ solving the maximization problem:

max
h∈L∞(0,L;R),h0∈R+

Π(h, h0)

where Π(h, h0) := µ̄Nz (h+ h0)X(h0)h0, with the constraints
C ′i =

−α(Ii(h+ h0))Ci + β(Ii(h+ h0))

Q0
(h+ h0),

Ci(0) = Ci(L), ∀i = 1, · · · , Nz,
v′ = h,

v(0) = 0, v(L) = 0.

(23)

The associated Hamiltonian reads

H̃ =

Nz∑
i=1

pCi

(
−α(Ii(h+ h0))Ci + β(Ii(h+ h0))

Q0
(h+ h0)

)
+ pvh− µ̄Nz (h+ h0)X(h0)h0.

Analysis similar to that in Subsection 3.1 gives

∇Π(h, h0) = (−∂H̃
∂h

,− ∂H̃
∂h0

), (24)

in which ((Ci)i=1,··· ,Nz , v) satisfies (23), ((pCi )i=1,··· ,Nz , p
v) satisfies (18) and

where h and γ(·) are replaced by h + h0 and X(h0)h0γ(·) respectively. Unlike
Theorem 3.2, the flat topography does not cancel ∇Π.
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Theorem 3.3. Let h0 > 0 and assume that µ(Is) > 0 (or, equivalently Is ∈
(I−, I+)). Then ∇Π(0, h0) 6= 0.

Proof 2. First, note that differentiating Ii(h+h0) = Is exp
(
− Yopt

h0

i− 1
2

Nz
(h+h0)

)
with respect to h0 and setting h = 0, we get ∂h0

Ii(h0+h)|h=0 = 0. Then, analysis
similar to that in the proof of Theorem 3.2 shows that Ci is constant as soon
as h = 0, so that −α(Ii(h0))Ci + β(Ii(h0)) = 0. Using these two properties, we
get ∂H̃

∂h0
= ε1

Nzε0

∑Nz
i=1 µ0(Ii(h0)). Since Ii(h0) ∈ [INz (h0), I1(h0)] ⊂ (I−, Is) ⊂

(I−, I+), we get µ0(Ii(h0)) > 0 for i ∈ {1, · · · , Nz}. The result follows.

Remark 3.4. Note that the coefficient h0 considered in Theorem 3.3 needs to
satisfy hc ≤ h0 to guarantee that the system remains in a subcritical regime (see
Remark 2.1).

4 Numerical Experiments
In this section, we show some optimal topographies obtained in the various
previous frameworks.

4.1 Numerical Methods
To solve our optimization problem numerically, we introduce a supplementary
space discretization with respect to x. In this way, let us take a space increment
∆x, set Nx = [L/∆x] and xnx = nx∆x for nx = 0, . . . , Nx. We choose to use
the Heun’s method for computing (Ci)

Nz
i=1 via (17). Following a first-discretize-

then-optimize strategy, we get that the costate (pCi )Nzi=1 are also computed by
a Heun’s type scheme. Note that this scheme is still explicit since it solves a
backward dynamics starting from pi(L) = 0. The optimization is then achieved
by a standard gradient method using (19) and (24), where the stopping criterion
involves both the magnitude of the gradient and the constraint h ≥ hc, see
Remark 2.1.

4.2 Parameter settings
We now detail the parameters used in our simulations.

4.2.1 Parameterization of h

We choose to parameterize h by a truncated Fourier series in our numerical
tests. More precisely, h reads:

h(x) = h0 +

N∑
i=1

ai sin(2nπ
x

L
).

This parameterization is motivated by three reasons.
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• The regularity of the topography is controlled by the order of truncation
N . As an example, limit situations where N → +∞ are not considered in
what follows. This framework is consistent with the hydrodynamic regime
under consideration, where the solutions of the Saint-Venant equations are
smooth.

• Using this parameterization, one has automatically h(0) = h(L), which
fits with the toric shape of the raceway pond.

• Using this parameterization, h depends in an affine way on h0, as assumed
in Section 3.4.

From (2) and (4), the velocity u and the topography zb read also as functions
of a. Once we find the vector a maximizing the functional µ̄Nz , we then find
the optimal topography of our system.

4.2.2 Parameter for the models

The spatial increment is set to ∆x = 0.01 m so that the convergence of the
numerical scheme has been ensured, and we set the raceway length L = 100 m,
the averaged discharge Q0 = 0.04 m2 s−1, the average depth (in constant volume
case) h0(= h(0; a)) = 0.4 m and zb(0) = −0.4 m to stay in standard ranges for a
raceway. The free-fall acceleration g = 9.81 m s−2. All the numerical parameters
values for Han’s model are taken from [16] and given in Table 1.

Table 1: Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σH 0.047 m2 µmol−1

kH 8.7 10−6 -
R 1.389 10−7 s−1

In order to determinate the light extinction ε, two cases must be considered,
namely:

• constant volume: we assume that only 1% of light can be captured by the
cells at the average depth of the raceway, meaning that I− = 0.01Is, we
choose Is = 2000µmol m−2 s−1 which approximates the maximum light
intensity, e.g., at summer in the south of France. Then ε can be computed
by ε = (1/h0) ln(Is/I−).

• non-constant volume: in the case, h0 is also a parameter to be optimized.
We take from [22] the specific light extinction coefficient of the microalgae
specie ε0 = 0.2 m2 · g and the background turbidity ε1 = 10 m−1.

13



4.3 Numerical results
We test the influence of various parameters on optimal topography. In all our ex-
periments, we always observe that the topographies satisfy minx∈[0,L] h(x; a) >
hc.

4.3.1 Influence of vertical discretization

The first test consists in studying the influence of the vertical discretization
parameter Nz. We choose N = 5, C0 = 0.1 and consider 100 random values
a. Note that the choice of a should respect the subcritical condition. Let Nz
varies from 1 to 80, and we compute the average value of µ̄Nz for each Nz. The
results are shown in Fig. 3. We observe numerical convergence when Nz grows,

Figure 3: The value of the functional µ̄Nz for Nz = [1, 80].

showing the convergence towards the model continuous in space. In view of
these results, we take hereafter Nz = 40.

4.3.2 Influence of the initial condition

Here we study the influence of the initial condition C0 on the optimal shape of
the raceway pond. We set the numerical tolerance to Tol= 10−10, and consider
the order of truncation N = 5. As for the initial guess, we consider the flat
topography, meaning that a is set to 0. We compare the optimal topographies
obtained with C0 = 0.1 and with C0 = 0.9. The result is shown in Fig. 4.
This test confirms Remark 3.3, since we obtain non-trivial topographies which
slightly enhance the algal average growth rate. Moreover, a slight difference
between the two optimal topographies is observed. We have observed that this
difference remains when the spatial increment ∆x goes to zero.
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Figure 4: The optimal topography for C0 = 0.1 (Top) and C0 = 0.9 (Bottom).
The red thick line represents the topography zb, the blue thick line represents
the free surface η, and all the other curves between represent the different tra-
jectories. µ̄Nz (0): flat topography, µ̄Nz (a∗): optimal topography.
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4.3.3 Influence of Fourier series truncation

The next test is dedicated to study the influence of the order of truncation N
used to parameterize the water depth h. Set N = [0, 5, 10, 15, 20], C0 = 0.1
and keep all the other parameters as in the previous section. Table 2 shows the
optimal value of the objective function µ̄Nz (a∗) for different orders of truncation
N . The result shows a slight increase in the optimal value of the objective

Table 2: The objective function for different orders of truncation N .

N Iter µ̄Nz (a
∗)(d−1) log10(‖∇µ̄Nz (a∗)‖)

0 0 1.098 −
5 16 1.1006 -10.208017
10 17 1.1013 -10.240885
15 17 1.1016 -10.258798
20 18 1.1018 -10.269413

function µ̄Nz (a
∗) when N becomes larger. However, the corresponding values

of µ̄Nz (a∗) remain close to the one associated with a flat topography.

4.3.4 Optimal topographies in periodic case

We study the optimal topographies in the case where the photoinhibition state
C is periodic. In the constant volume case, we observe that the optimization
procedure always converges to a flat topography (i.e. a∗ = af ) for random
admissible initial guesses a. This leads us to conjecture that the flat topography
corresponds to the global maximum for the average growth rate. As for the
variable volume case, let us set N = 5 (i.e. ã ∈ R6) and h0 = 0.4 as initial
guess of average depth. We observe that the optimization stops due to the
presence of the physical constraint hc. However, a smaller depth boosts the
areal productivity which in some cases can increase for more than twice with
respect to the initial areal productivity.

4.3.5 Simulation with paddle wheel

In this paragraph we consider the full raceway pond, where the mixing induced
by the paddle wheel is also considered. More precisely, we simulate several laps
with a paddle wheel that mixes up the algae after each lap. The turbulent mixing
of the paddle wheel is modelled by a permutation matrix P which rearranges
the trajectories at each lap. In our test, P is chosen as an anti-diagonal matrix
with the entries one. This choice actually corresponds to an optimum and as
shown in [5], where other choices are also investigated.

The permutation matrix P corresponds to the permutation π = (1Nz)(2Nz−
1)(3Nz − 2) . . ., where we use the standard notation of cycles in the symmetric
group. Note that π is of order two. The photoinhibition state C is then set

16



to be 2-periodic (i.e C1(0) = PC2(L), where C1 and C2 corresponds to the
photoinhibition state during the first and the second lap, respectively). The
details of the optimization procedure are given in Appendix A.

We choose a truncation of order N = 5 in the Fourier series. The initial guess
a set to be zero. Fig. 5 presents the shape of the optimal topography and the
evolution of the photoinhibition state C over two laps. The resulting optimal

Figure 5: The optimal topography (Top) and the evolution of the photo-
inhibition state C (Bottom) for two laps.

topography in this case is not flat. However, the increase in the optimal value
of the objective function µ̄Nz compares to a flat topography is around 0.217%,
and compares to a flat topography and non permutation case is around 0.265%,
in both cases, the increase remains small. On the other hand, we observe that
the state C is actually periodic for each lap. This result is actually proved
for arbitrary P in [5] in the case of a flat topography. This justifies that the
optimization strategy only need to focus on one lap of the raceway (whatever
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the permutation), and leaves the door open to the optimization of such mixing
strategies. We refer to [3, 4] for further details about optimal mixing strategies.

5 Conclusions and future works
A flat topography cancels the gradient of average algal growth rate when C is
assumed to be periodic along the laminar parts of the raceway. This is further
confirmed by our numerical tests where maximum productivity is obtained for
a flat topography. However, considering a more complete framework without
periodicity and including a mixing device gives rise to an optimal non flat to-
pography with a slight gain of the average growth rate. It is not clear if the
difficulty to design such a pattern could be compensated by the increase in the
process productivity.

These results may not hold anymore if the hydrodynamic regime is turbulent
along the entire raceway. In such a case, the increase in algal productivity may
compensate the higher energetic cost to mix the raceway. However, without the
laminar assumption, the problem becomes challenging, and much work remains
to be done in this direction.

References
[1] O. Bernard, A.-C. Boulanger, M.-O. Bristeau, and J. Sainte-Marie. A 2d

model for hydrodynamics and biology coupling applied to algae growth
simulations. ESAIM: Mathematical Modelling and Numerical Analysis,
47(5):1387–1412, September 2013.

[2] O. Bernard and L.-D. Lu. Optimal optical conditions for microalgal pro-
duction in photobioreactors, 2021. To appear in Journal of Process Control.

[3] O. Bernard, L.-D. Lu, and J. Salomon. Mixing strategies combined with
shape design to enhance productivity of a raceway pond. In 16th IFAC
Symposium on Advanced Control of Chemical Processes ADCHEM 2021,
volume 54, pages 281–286, 2021.

[4] O. Bernard, L.-D. Lu, and J. Salomon. Optimization of mixing strategy in
microalgal raceway ponds. Submitted, 2021.

[5] O. Bernard, L.-D. Lu, and J. Salomon. Optimizing microalgal productivity
in raceway ponds through a controlled mixing device. In 2021 American
Control Conference (ACC), pages 640–645. IEEE, 2021.

[6] O. Bernard, F. Mairet, and B. Chachuat. Modelling of microalgae culture
systems with applications to control and optimization. Microalgae Biotech-
nology, 153(59-87), 2015.

[7] V. G. Boltyanskiy, R. V. Gamkrelidze, Y. E. F. Mishchenko, and L. S.
Pontryagin. Mathematical theory of optimal processes. Routledge, 1962.

18



[8] A. Bouharguane and B. Mohammadi. Minimization principles for the evo-
lution of a soft sea bed interacting with a shallow. International Journal
of Computational Fluid Dynamics, 26(3):163–172, May 2012.

[9] F. Casagli, G. Zuccaro, O. Bernard, J.-P. Steyer, and E. Ficara. Alba: A
comprehensive growth model to optimize algae-bacteria wastewater treat-
ment in raceway ponds. Water Research, 190:116734, 2021.

[10] D. Chiaramonti, M. Prussi, D. Casini, M.R. Tredici, L. Rodolfi, N. Bassi,
G.C. Zittelli, and P. Bondioli. Review of energy balance in raceway ponds
for microalgae cultivation: Re-thinking a traditional system is possible.
Applied Energy, 102:101–111, Feburary 2013.

[11] P.-H. Cocquet, S. Riffo, and J. Salomon. Optimization of bathymetry for
long waves with small amplitude. SIAM Journal on Control and Optimiza-
tion, 59(6):4429–4456, 2021.

[12] R. De-Luca, F. Bezzo, Q. Béchet, and O. Bernard. Exploiting meteorolog-
ical forecasts for the optimal operation of algal ponds. Journal of Process
Control, 55:55–65, 2017.

[13] D. Demory, C. Combe, P. Hartmann, A. Talec, E. Pruvost, R. Hamouda,
F. Souillé, P.-O. Lamare, M.-O. Bristeau, J. Sainte-Marie, S. Rabouille,
F. Mairet, A. Sciandra, and O. Bernard. How do microalgae perceive light
in a high-rate pond? towards more realistic lagrangian experiments. The
Royal Society, May 2018.

[14] P.H.C. Eilers and J.C.H. Peeters. Dynamic behaviour of a model for photo-
synthesis and photoinhibition. Ecological Modelling, 69(1):113 – 133, 1993.

[15] J.-F. Gerbeau and B. Perthame. Derivation of viscous saint-venant system
for laminar shallow water; numerical validation. Discrete & Continuous
Dynamical Systems - B, 1(1):89–102, Feburary 2001.

[16] J. Grenier, F. Lopes, H. Bonnefond, and O. Bernard. Worldwide perspec-
tives of rotating algal biofilm up-scaling. Submitted, 2020.

[17] F. Grognard, A.R. Akhmetzhanov, and O. Bernard. Optimal strategies
for biomass productivity maximization in a photobioreactor using natural
light. Automatica, 50(2):359–368, 2014.

[18] B.-P. Han. A mechanistic model of algal photoinhibition induced by photo-
damage to photosystem-ii. Journal of theoretical biology, 214(4):519–527,
February 2002.

[19] R. Hreiz, B. Sialve, J. Morchain, R. Escudié, J.-P. Steyer, and P. Guiraud.
Experimental and numerical investigation of hydrodynamics in raceway
reactors used for algaculture. Chemical Engineering Journal, 250:230–239,
2014.

19



[20] C. Inostroza, A. Solimeno, J. García, J.M. Fernández-Sevilla, and F.G.
Acién. Improvement of real-scale raceway bioreactors for microalgae
production using computational fluid dynamics (cfd). Algal Research,
54:102207, 2021.

[21] P.-O. Lamare, N. Aguillon, J. Sainte-Marie, J. Grenier, H. Bonnefond, and
O. Bernard. Gradient-based optimization of a rotating algal biofilm process.
Automatica, 105:80–88, July 2019.

[22] C. Martínez, F. Mairet, and O. Bernard. Theory of turbid microalgae
cultures. Journal of Theoretical Biology, 456:190–200, November 2018.

[23] P. Masci, F. Grognard, and O. Bernard. Microalgal biomass surface produc-
tivity optimization based on a photobioreactor model. IFAC Proceedings
Volumes, 43(6):180–185, 2010.

[24] J. Masojídek, Š. Papáček, M. Sergejevová, V. Jirka, J. Červený, J. Kunc,
J. Korečko, O. Verbovikova, J. Kopecký, D. Štys, and G. Torzillo. A closed
solar photobioreactor for cultivation of microalgae under supra-high irradi-
ance: Basic design and performance. Journal of Applied Phycology, 15(2-
3):239–248, 2003.

[25] J.L. Mendoza, M.R. Granados, I. De Godos, F.G. Acién, E. Molina,
C. Banks, and S. Heaven. Fluid-dynamic characterization of real-scale race-
way reactors for microalgae production. Biomass and Bioenergy, 54:267–
275, 2013.

[26] V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A well-balanced
scheme for the shallow-water equations with topography. Computers and
Mathematics with Applications, 72(3):586–593, August 2016.

[27] B. Mohammadi and A. Bouharguane. Optimal dynamics of soft shapes in
shallow waters. Computers and Fluids, 40(1):291–298, January 2011.

[28] R. Muñoz-Tamayo, F. Mairet, and O. Bernard. Optimizing microalgal pro-
duction in raceway systems. Biotechnology progress, 29(2):543–552, 2013.

[29] G. Olivieri, L. Gargiulo, P. Lettieri, L. Mazzei, P. Salatino, and A. Mar-
zocchella. Photobioreactors for microalgal cultures: A lagrangian model
coupling hydrodynamics and kinetics. Biotechnology progress, 31(5):1259–
1272, 2015.

[30] S. Papacek, J. Jablonsky, and K. Petera. Advanced integration of fluid dy-
namics and photosynthetic reaction kinetics for microalgae culture systems.
BMC systems biology, 12(5):1–12, 2018.

[31] C. Posten and S.F. Chen, editors. Microalgae Biotechnology. 153. Springer,
1 edition, 2016.

20



[32] M. Prussi, M. Buffi, D. Casini, D. Chiaramonti, F. Martelli, M. Carnevale,
M.R. Tredici, and L. Rodolfi. Experimental and numerical investigations
of mixing in raceway ponds for algae cultivation. Biomass and bioenergy,
67:390–400, 2014.

[33] A. van Dongeren, N. Plant, A. Cohen, D. Roelvink, M.C. Haller, and
P. Catalán. Beach wizard: Nearshore bathymetry estimation through as-
similation of model computations and remote observations. Coastal Engi-
neering, 55(12):1016–1027, December 2008.

[34] R.H. Wijffels and M.J. Barbosa. An outlook on microalgal biofuels. Science,
329(5993):796–799, August 2010.

[35] S.J. Yoo, S.-K. Oh, and J.M. Lee. Design of experiments and sensitivity
analysis for microalgal bioreactor systems. In Ian David Lockhart Bogle
and Michael Fairweather, editors, 22nd European Symposium on Computer
Aided Process Engineering, volume 30 of Computer Aided Chemical Engi-
neering, pages 722 – 726. Elsevier, 2012.

A System with a paddle-wheel
Let us denote by P the permutation matrix associated with π, i.e., 1 as entries
on the anti-diagonal. Let us denote by C1 (resp. C2) the photoinhibition state
for the first (resp. second) lap of the raceway. We then assume that the state C
is 2-periodic, meaning that C1(0) = PC2(L). From (15), we define the objec-
tive function by 1

2

∑2
j=1 µ̄

j
Nz

(h) = 1
2V Nz

∑2
j=1

∑Nz
i=1

∫ L
0

−γ(Ii(h))Cji+ζ(Ii(h))
Q0

hdx.
Given a volume V , the optimization problem reads:

Find h∗ ∈ L∞(0, L;R) solving the maximization problem:

max
h∈L∞(0,L;R)

1

2

2∑
j=1

µ̄Nz (h)

with the constraints 

Cji
′

=
−α(Ii(h))Cji + β(Ii(h))

Q0
h,

C1(L) = PC2(0),

C1(0) = PC2(L),

v′ = h,

v(0) = 0, v(L) = V.

(25)

Let us still denote by H the Hamiltonian associated with this optimization
problem. It can then be written

H =

2∑
j=1

Nz∑
i=1

pC
j

i

(−α(Ii(h))Cji + β(Ii(h))

Q0
h
)

+ pvh− 1

2

2∑
j=1

µ̄jNz (h),
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where pC
j

i and pv are the co-states of system (25). Analysis similar to that

in Subsection 3.1 gives ∇
(

1
2

∑2
j=1 µ̄

j
Nz

(h)
)

= −∂H
∂h

, in which pC
j

i and pv sat-

isfy (18) with pC
1

(L) = PpC
2

(0) and pC
2

(L) = PpC
1

(0).
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