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1 Introduction

The classical Schwarzmethod, originally introduced byHermannAmandus Schwarz
to prove existence and uniqueness of solutions to Laplace’s equation [6], has since
then been extensively studied and applied to a wide range of problems. A historical
review can be found in [1]. It is well known that the method fails to converge
when applied to non-overlapping spatial subdomains due to the repeated passing
of identical "Dirichlet data" from one subdomain to the other. Several modified
methods have then been proposed to address this issue, notably by Lions [5]. More
recently, Schwarz methods in time have been proposed for the time-parallel solution
of parabolic optimal control problems, as discussed in [2], and it was noted:

Wepresent a rigorous convergence analysis for the case of two subdomains, which shows that
the classical Schwarz method converges, even without overlap! Reformulating the algorithm
reveals that this is because imposing initial conditions for H and final conditions on _ is
equivalent to using Robin transmission conditions between time subdomains for y.

To gain deeper insight into the convergence of the classical Schwarz method applied
to parabolic optimal control problems with a non-overlapping time domain decom-
position, we study the following model problem: for a given desired state ŷ(C) and
parameters W, a > 0, we want to solve the minimization problem

min
y,D

1
2

∫ )

0
‖y − ŷ‖2dC + W

2
‖y()) − ŷ())‖2 + a

2

∫ )

0
‖D‖2dC,

subject to ¤y + �y = u, y(0) = y0,

(1)
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Fig. 1 One dimensional illustration of decomposing in space (left) and decomposing in time (right).

where ¤y+�y = u represents the semi-discretization of a parabolic partial differential
equation (PDE) of the form mC H + LH = D. Here, u is the control variable, and y0
denotes the initial condition. By applying the Lagrange multiplier approach and
eliminating the control variable u, we derive from (1) the first-order optimality
system (see, e.g., [3, Section 2])

(
¤y
¤,

)
+

(
� −a−1�
−� −�)

) (
y
,

)
=

(
0
−ŷ

)
in (0, )),

y(0) = y0,

,()) + Wy()) = W ŷ()),

(2)

where , is the adjoint state. The system described by (2) is a forward-backward
system of ordinary differential equations (ODEs), in which the state y propagates
forward in time starting from an initial condition, while the adjoint state , propagates
backward in time with a final condition.

To investigate the application of a non-overlapping classical Schwarz method
in time to solve this system, we decompose the time interval (0, )) into two non-
overlapping subdomains: �1 := (0, U) and �2 := (U,)), where U represents the
interface. In Section 2, we first introduce four variants of the classical Schwarz
algorithm and analyze their convergence behavior. In Section 3, we replace the
Dirichlet transmission condition used in the classical Schwarz algorithm with a
Neumann transmission condition and study the resulting convergence properties.
Finally, we discuss our results in Section 4 and conclude with some comments.

2 Dirichlet transmission conditions

When decomposing in space, the standard way is to pass the values for the state H
and the adjoint state _ from one subdomain to its neighbor, as illustrated in Figure 1
on the left. However, this becomes much more tricky when decomposing in time as
shown in Figure 1 on the right. Since the system (2) is a forward-backward system,
it initially seems natural to preserve this property in the decomposed case, and to
transmit in �1 a final condition for the adjoint state _, while an initial condition for H
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Table 1 Four non-overlapping Schwarz variants in time. Left: Dirichlet transmission conditions.
Right: Neumann transmission conditions

name SD1 SD2 SD3 SD4 SN1 SN2 SN3 SN4
�1 = (0, U) , y y , ¤, ¤y ¤y ¤,
�2 = (U, ) ) y , y , ¤y ¤, ¤y ¤,

is already present. Similarly, in �2, where a final condition for _ is already present, it
is natural to transmit an initial condition for the state H. A natural Schwarz algorithm
in time hence solves for the iteration index : = 1, 2, . . .

(
¤y:1¤,:1

)
+

(
� −a−1�
−� −�)

) (
y:1
,:1

)
=

(
0
−ŷ

)
in (0, U),

y:1 (0) = y0,

,:1 (U) = ,:−1
2 (U),

(
¤y:2¤,:2

)
+

(
� −a−1�
−� −�)

) (
y:2
,:2

)
=

(
0
−ŷ

)
in (U,)),

y:2 (U) = y:1 (U),
,:2 ()) + Wy

:
2 ()) = W ŷ()).

(3)

Here, y:
9
and ,:

9
represent the restriction of y: and ,: to the time subdomain � 9 ,

9 = 1, 2. The parallel version of this natural Schwarz algorithm (3) coincides with
the optimized Schwarz algorithm (3a)-(3b) in [2], under the conditions ? = @ = 0
and U = V there.

Although algorithm (3) preserves the forward-backward structure of the original
system (2), studies in [3, 4] have shown that this structure is less important for the
convergence behavior of Dirichlet–Neumann and Neumann–Neumann algorithms
with time domain decomposition. Moreover, the forward-backward structure can
always be recovered by using the linear system in (2), that is

, = a( ¤y + �y), y = ¤, − �) , + ŷ. (4)

The two identities (4) also transform a Dirichlet transmission condition for one
state into a particular Robin type transmission condition for the other state. We can
therefore identify four variants of the classical Schwarz method applied to (2) with
time domain decomposition, as summarized in Table 1 (left). We call these variants
SD1 to SD4 (D for Dirichlet) in the first row. The second row (resp. third row) shows
the transmission condition at the interface of �1 (resp. �2). All four variants use
Dirichlet transmission conditions at the interface, but we can use (4) to recover the
forward-backward structure for SD2, SD3, and SD4 as explained above.

We now analyze the convergence of these four variants. For simplicity, we assume
that � is symmetric, i.e., � = �) ∈ R=×=. This allows us to apply a diagonalization,
which leads to = independent 2 × 2 reduced systems of ODEs. For the algorithm
SD1, this transforms (3) to,
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( ¤I:1,8
¤̀:1,8

)
+

(
38 −a−1

−1 −38

) (
I:1,8
`:1,8

)
=

(
0
−Î8

)
in (0, U),

I:1,8 (0) = I0,8 ,
`:1,8 (U) = `

:−1
2,8 (U),

( ¤I:2,8
¤̀:2,8

)
+

(
38 −a−1

−1 −38

) (
I:2,8
`:2,8

)
=

(
0
−Î8

)
in (U,)),

I:2,8 (U) = I
:
1,8 (U),

`:2,8 ()) + WI
:
2,8 ()) = WÎ8 ()),

(5)

where z:
9

:= %−1y:
9
, ẑ := %−1 ŷ, -:

9
:= %−1,:

9
and � = %�%−1 with � :=

diag(31, . . . , 3=) the eigenvalues of �. Furthermore, I:
9,8
, Î8 , and `:9,8 denote the

8th components of the vectors z:
9
, ẑ, and -:

9
. Note that the assumption of � being

symmetric is only a theoretical tool for the convergence analysis and is not required
to run these algorithms in practice.

To analyze the convergence behavior of the algorithm SD1, we solve analyti-
cally (5) by eliminating one variable to obtain a second-order ODE. If we choose to
eliminate the adjoint state `:

9,8
and use the first identity in (4), the Dirichlet trans-

mission condition: `:1,8 (U) = `
:−1
2,8 (U) will be transformed into a Robin transmission

condition: a( ¤I:1,8 + 38I
:
1,8) = a( ¤I

:−1
1,8 + 38I

:−1
1,8 ). Note that although the natural clas-

sical Schwarz algorithm (3) uses Dirichlet transmission conditions at the interface,
the convergence analysis actually evaluates a Robin–Dirichlet type algorithm. This
transformation has also been observed in [2]. Solving the resulting second-order
ODE allows us to determine the convergence factor for SD1 as

dSD1 := max
38 ∈�

��� 1 + W(f8 coth(18) − 38)
a(f8 coth(08) + 38) (f8 coth(18) + 38 + Wa−1)

���, (6)

where f8 :=
√
32
8
+ a−1, 08 = f8U and 18 = f8 () − U).

Remark 1 Alternatively, one can eliminate the state I:
9,8

using the second identity
in (4), which results in solving a second-order ODE for `:

9,8
. This approach leads to a

Dirichlet–Robin type algorithm instead, but with the same convergence factor (6), as
observed also forDirichlet–Neumann time decompositionmethods, see [3,Appendix
A].
To better understand the convergence of the algorithm SD1, we now study the
convergence factor (6) in detail. We can first remove the absolute value, since the
denominator is positive and f8 coth(18) > f8 > 38 . Next, for a given eigenvalue 38 ,
we have

1 + W(f8 coth(18) − 38) − a(f8 coth(08) + 38) (f8 coth(18) + 38 + Wa−1)
= − a32

8 (coth(08) coth(18) + 1) − (coth(08) coth(18) − 1) − 2W38
− af838 (coth(08) + coth(18)) + Wf8 (coth(18) − coth(08)).

(7)
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If 38 ≥ 0 and 08 ≤ 18 , then the latter expression is negative, which implies dSD1 < 1.
Hence, we obtain the following result.

Theorem 1 Assume that � is symmetric positive semi-definite (i.e., 38 ≥ 0). Then
the Schwarz algorithm (3) converges for all initial guesses if (i) U ≤ )

2 , or (ii) W = 0.

The assumption on the matrix � is natural, for instance, if � is the finite-difference
discretization of the Laplace operator −Δ. Additionally, setting W = 0 implies that
we are not considering the final target in (1). In this case, the convergence fac-
tor reads 1

a (f8 coth(08)+38) (f8 coth(18)+38) . Taking the derivative with respect to 38 ,
we find − f8 (coth(08)+coth(18))+238

a (f8 coth(08)+38)2 (f8 coth(18)+38)2
− 38 (cosh(08) sinh(08)−08)
af8 sinh2 (08) (f8 coth(08)+38)2 (f8 coth(18)+38)

− 38 (cosh(18) sinh(18)−18)
af8 sinh2 (18) (f8 coth(08)+38) (f8 coth(18)+38)2

. This derivative is negative if 38 ≥ 0, since
cosh(G) sinh(G) ≥ G, ∀G ∈ R. Therefore, we can bound the convergence factor and
find the following result.

Theorem 2 If � is symmetric positive semi-definite and W = 0, we obtain the estimate
dSD1 ≤ 1

a (fmin coth(fminU)+3min) (fmin coth(fmin () −U))+3min) <
1

a (fmin+3min)2
, where 3min

denotes the smallest eigenvalue of � and fmin =
√
32

min + a−1.

Studying the general form of (6), we observe that, for large eigenvalues 38 , the con-
vergence factor approximates 1+W (f8 coth(18)−38)

a (f8 coth(08)+38) (f8 coth(18)+38+Wa−1) ∼∞
1

4a32
8

, implying
that high-frequency components converge very fast. For 38 = 0, the convergence
factor becomes dSD1 |38=0 = tanh(

√
a−1U) W

√
a−1 coth(

√
a−1 () −U))+1

coth(
√
a−1 () −U))+W

√
a−1 , which is close to 1,

especially when the control penalization parameter a is small or W = 0. Hence, low-
frequency components converge very slowly. Based on themonotonicity of dSD1 with
respect to 38 when W = 0, we can improve the convergence by introducing a relaxation
parameter \ in the transmission condition to balance the convergence rates of low and
high frequencies. For instance, we can replace the transmission condition on �1 in (3)
by ,:1 (U) = 5 :−1

U with 5 :U := (1 − \) 5 :−1
U + \,:−1

2 (U), and \ ∈ (0, 1). The resulting
convergence factor is d\SD1

:= max38 ∈� |1−\ (1+
1+W (f8 coth(18)−38)

a (f8 coth(08)+38) (f8 coth(18)+38+Wa−1) ) |.
Equioscillating between small and large eigenvalues, we determine the optimal relax-
ation parameter \∗SD1

:= 2

2+tanh(
√
a−1U) W

√
a−1 coth(

√
a−1 ()−U) )+1

coth(
√
a−1 ()−U) )+W

√
a−1

. When W = 0, the optimal

relaxation parameter simplifies to 2
2+tanh(

√
a−1U) tanh(

√
a−1 () −U))

, which is approxi-

mately 2
3 .

For the algorithm SD2, we reverse the transmission conditions `:1,8 (U) = `
:−1
2,8 (U)

and I:2,8 (U) = I:1,8 (U) in (3), hence also in (5). We thus obtain for SD2 the con-

vergence factor dSD2 := max38 ∈� |
a (f8 coth(08)+38) (f8 coth(18)+38+Wa−1)

1+W (f8 coth(18)−38) |, which is the
inverse of dSD1 . Hence algorithm SD2 diverges under the assumption of Theo-
rem 1, and in particular, it diverges violently for high-frequency components, be-
cause a (f8 coth(08)+38) (f8 coth(18)+38+Wa−1)

1+W (f8 coth(18)−38) ∼∞ 4a32
8
. For low-frequency components,

the converge is poor, especially when a is small, or it can even diverge when W = 0, as
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dSD2 |38=0 = coth(
√
a−1U) coth(

√
a−1 () −U))+W

√
a−1

W
√
a−1 coth(

√
a−1 () −U))+1

. Based on these observations, algo-
rithm SD2 is not an efficient algorithm and can also not be improved with relaxation
techniques.

We now study Algorithms SD3 and SD4. Since they pass Dirichlet data at the
interface using only one state, they have similar behavior, and we just present the
analysis for SD3. We replace the transmission condition `:1, 9 (U) = `:−1

2, 9 (U) on �1
with I:1, 9 (U) = I

:−1
2, 9 (U) in (5). Using the second-order ODE for I:

9,8
, we find that

the transmission conditions still remain, i.e., I:1, 9 (U) = I
:−1
2, 9 (U) on �1 and I

:
2, 9 (U) =

I:1, 9 (U) on �2. This indicates that this is a Dirichlet–Dirichlet type algorithm in
the classical Schwarz sense, thus suffering from the same non-convergence as the
classical Schwarz algorithm without overlap. Indeed, its convergence factor dSD3

equals 1 for all eigenvalues 38 , and this cannot be improvedwith relaxation. Similarly,
using the second-order ODE for `:

9,8
, we obtain also dSD4 = 1. Hence, in contrast to

the Dirichlet–Neumann algorithms in time [3], among all four Schwarz variants with
Dirichlet transmission conditions, only algorithm SD1 (3), which naturally preserves
the forward-backward structure, exhibits good convergence behavior.

3 Neumann transmission condition

Schwarz methods with Neumann transmission conditions are not used for elliptic
problems, since they are not convergent in general, as one can see from a simple
1D example. We investigate now if Schwarz methods in time for parabolic optimal
control problems can be promising solvers. We identity once again four variants, see
Table 1 (right), called SN1 to SN4. Similar to SD1, algorithm SN1 naturally retains
the forward-backward structure. For the other three variants, this structure can be
recovered using identities in (4).

To analyze the convergence behavior of the four variants, we follow the same
approach as in Section 2. Algorithm SN1 is similar to (3), but with transmission
conditions replaced by ¤,:1,8 (U) = ¤,

:−1
2,8 (U) on �1 and ¤y:2,8 (U) = ¤y

:
1,8 (U) on �2. When

analyzing its convergence using the second-orderODE for I:
8, 9
, we are then examining

a Robin–Neumann type algorithm. We find for SN1 the convergence factor

dSN1 := max
38 ∈�

��� 1 + W(f8 tanh(18) − 38)
a(f8 tanh(08) + 38) (f8 tanh(18) + 38 + Wa−1)

���, (8)

similar to dSD1 , with hyperbolic cotangent functions in (6) replaced by hyperbolic
tangent functions. However, unlike Theorem 1, we cannot directly obtain a sim-
ilar result for SN1, since the sign of (7) is less clear when replacing hyperbolic
cotangent by hyperbolic tangent. Nevertheless, substituting W = 0 into (8) yields

1
a (f8 tanh(08)+38) (f8 tanh(18)+38) , which is a decreasing function of 38 , as f8 and the
hyperbolic tangent are both increasing functions of 38 when 38 ≥ 0. Therefore, we
obtain a similar result as Theorem 2.
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Theorem 3 If � is symmetric positive semi-definite and W = 0, we obtain the estimate
dSN1 ≤ 1

a (fmin tanh(fminU)+3min) (fmin tanh(fmin () −U))+3min) .

Moreover, for large eigenvalues, the convergence factor for SN1 is approxi-
mately 1+W (f8 tanh(18)−38)

a (f8 tanh(08)+38) (f8 tanh(18)+38+Wa−1) ∼∞
1

4a32
8

, meaning that SN1 is a very
good smoother for high-frequency components. For a zero eigenvalue 38 = 0,
dSN1 |38=0 = coth(

√
a−1U) W

√
a−1 tanh(

√
a−1 () −U))+1

tanh(
√
a−1 () −U))+W

√
a−1 . Thus, low-frequency components

converge very slowly, especially when a is small, or it can diverge when W = 0.
As with SD1, one can use the monotonicity of dSN1 in the case W = 0 and im-
prove the convergence with a relaxation parameter \. The convergence factor with
relaxation is d\SN1

:= max38 ∈� |1 − \ (
1+W (f8 tanh(18)−38)

a (f8 tanh(08)+38) (f8 tanh(18)+38+Wa−1) ) |. Using
the equioscillation principle, we determine the optimal relaxation parameter \∗SN1

:=
2

2+coth(
√
a−1U) W

√
a−1 tanh(

√
a−1 ()−U) )+1

tanh(
√
a−1 ()−U) )+W

√
a−1

. For W = 0, this becomes 2
2+coth(

√
a−1U) coth(

√
a−1 () −U))

and is also bounded by 2
3 .

For algorithm SN2, we reverse the transmission condition in SN1 and obtain again
the inverse of the convergence factor of SN1 in (8). As for SD2, SN2 is hence not
an efficient algorithm and cannot be improved using relaxation. For algorithms SN3
and SN4, they pass Neumann data at the interface using only one state. Similarly as
for SD3 and SD4, we find that dSN3 = dSN4 = 1 for all eigenvalues 38 , indicating
stagnation and no improvement with relaxation. Hence, among the four variants with
Neumann transmission conditions, only algorithm SN1, which naturally preserves
the forward-backward structure, has good convergence behavior, and this even though
it is a Schwarz method with Neumann transmission conditions, which do not work
in the elliptic case!

4 Numerical experiments and comments

We first plot the convergence factor d as a function of the eigenvalues 38 in Figure 4
(left).We set the parameters a = 0.1, W = 10,) = 1 andU = 0.4, and observe that both
SD2 and SN2 diverge for 38 ≥ 1. Algorithms SD1 and SN1 are two good smoothers
for high-frequency components, but they exhibit poor convergence for low-frequency
components. This is significantly improved when using relaxation techniques. We
find numerically \∗SD1

≈ 0.692 and \∗SN1
≈ 0.640, which are consistent with their

theoretical values. To evaluate the numerical performance of these variants, we
apply them to solve the one-dimensional heat control problem mC H − mGGH = D with
homogenous Dirichlet boundary conditions and a zero initial condition. We keep
the same parameter values and choose the target state Ĥ = sin(cG) (2C2 + C). We use
the Crank-Nicolson scheme with mesh size ℎC = ℎG = 1/32. The error decay as a
function of the number of iterations is shown in Figure 4 (right). As expected, SD2
diverge violently, and both SD3 and SD4 stagnate. The convergence of SD1 and SN1
is already efficient without relaxation, due to the smallest eigenvalue in this test case
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Fig. 2 Convergence factor as a function of eigenvalues (left) and error decay as a function of the
number of iterations (right).

being around 10. The convergence can be improved from 10 to 6 iterations with a
relaxation parameter \ = 0.975 for both algorithms.

Unlike our observation in [3, 4] for Dirichlet–Neumann and Neumann–Neumann
algorithms in time, classical Schwarz algorithms with only Dirichlet or Neumann
transmission conditions are much more sensitive to the forward-backward structure.
We observe that only SD1 and SN1, which naturally preserve this structure, have good
convergence behavior. All other variants preform poorly and cannot be improved
even with relaxation techniques. For SD1 and SN1, we also provided estimates and
closed-form expressions for the optimal relaxation parameters. In [2], the authors
used transmission conditions of the form , + ?y on �1 and y − @, on �2, with
two parameters ?, @ ≥ 0. It would be interesting to extend this approach using
transmission conditions of the form ¤, + ? ¤y and ¤y − @ ¤, to further improve the
convergence in the case of Neumann transmission conditions only.
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