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Abstract

This article focuses on the practical application of the Haldane model in studying microbial growth, a
critical aspect in various industrial and environmental contexts. We examined four existing descriptions of
the Haldane model in the literature, and introduced an additional description based on only two parameters.
We investigated the interrelations among these five descriptions in the context of photoinhibited microalgae
growth rate. Using state-of-the-art model identification technique, we carried out sensitivity analyses on
each parameter across all descriptions. Furthermore, we introduced a novel criterion to account for the
model accuracy in the selection of the most suitable description.

Using experimental data from literature on response to irradiance, we determined the parameter values
for each description and for each data set. The correlation between each parameter is discussed. When
parameters within a description exhibit strong correlations, they convey similar information, rendering the
description less efficient. The sensitivity analysis, combined with an upgrade of the Akaike information
criterion (AICc) and Bayesian information criterion (BIC), identified our two-parameter description as the
optimal choice for representing microalgae growth rate in response to irradiance variations. Importantly,
the novel information criterion, namely PEMAC, outperforms traditional criteria such as AICc and BIC in
distinguishing between equivalent descriptions. This work illustrates the hidden complexity in inhibition
models and end up with a wise recommendation for the modelling of inhibition: "Keep It Simple (KIS)".
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1. Introduction

Microorganisms, such as bacteria, cyanobacteria, microalgae or yeasts have tremendous potential for a
wide range of applications. Due to their small size and simple cellular structure, they can be grown quickly
and efficiently in bioreactors, requiring minimal resources. Depending on the species, these tiny organisms
can be grown for pollution removal, feed or food production thanks to their protein content, and for the
production of high value-added products in the chemical industry [1, 2, 3]. Additionally, microorganisms offer
avenues for biofuel production, using their potential to store lipids and carbohydrate that can be converted
into biodiesel and ethanol [4, 5]. The photosynthetic microorganisms (cyanobacteria and microalgae) can
even contribute to fix CO2 and to transform it into valuable products for green chemistry or for biofuel
production [6].

Modelling bioreactors is the cornerstone for their efficient supervision, control and optimization [7].
There exists a broad range of mathematical models which can represent the growth of microorganisms as
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a function of the main factors affecting their metabolism. The most famous kinetics model is probably the
Monod model [8], particularly for representing substrate-limited microorganism growth. Here, we focus on
a class of phenomena which appear when there is an excess in one of the factor inhibiting growth. For
instance, the Aiba growth inhibition model correlates reduced specific growth rate with elevated product
concentration [9], while the Edward model elucidates the protective effect of diffusional limitation at high
substrate concentrations [10]. We also refer to [11] for a brief review of some other widely used models. The
Haldane model [12] is one of the most used model in biology to represent enhancement at low dose and then
inhibition for high dose [13, 14, 15, 16]. It finds numerous applications for substrates which can become
inhibiting, such as phenol, ethanol or volatile fatty acids [17, 18]. In another class of applications, the
Haldane model is used to represent the excess of light on photosynthetic microorganisms [15, 19] triggering
photoinhibition. Nonetheless, practical application of the Haldane model often proves intricate due to
varying descriptions associated with different parameterization sets. In mathematical terms, it can be
defined as the ratio of a term proportional to the substrate concentration (or the light intensity) and a
second order polynomial. In other terms, the inverse of the yield (ratio of the factor to the growth rate) is
a polynomial of second order. There exists numerous parameterizations of this model, and the objective of
this paper is to assess their consequences in terms of the efficiency of the parameter identification process
and of the resulting model accuracy.

According to the context, different descriptions of the Haldane model exist in the literature. In 1965,
J.B.S. Haldane [12] uses three parameters which were (wrongly) defined as µ̄ the maximum specific growth
rate (h−1), Kx the half-velocity concentration (mg L−1), and Ki the inhibition coefficient(mg L−1). In
subsequent studies, J.F. Andrews [20] uses the same notation for another three parameters, µ̄ the maximum
specific growth rate in the absence of inhibition (s−1), Kx the lowest concentration of substrate at which
the specific growth rate is equal to one-half the maximum specific growth rate in the absence of inhibition
(mg L−1), and Ki the highest substrate concentration at which the specific growth rate is equal to one-half
the maximum specific growth rate in the absence of inhibition (mg L−1). J.C.H Peeters et al. [21] rather use
three arbitrary parameters a, b, and c, which are later determined through real measurements. Bernard et
al. [15] present a new description for the influence of light on phytoplankton growth rate. This description
also contains three parameters, with µmax the maximum growth rate for the optimal irradiance (s−1), α the
initial slope of the light response curve (µmol−1 photonsm2), and xopt the value of substrate or irradiance
for which the growth is maximal (µmol photonsm−2 s−1). The above four descriptions are summarized in
the following equations:

µ1(x) =
µmaxx

x+ µmax

α ( x
xopt

− 1)2
, (1)

µ2(x) =
µ̄x

x+Kx + x2

Ki

, (2)

µ3(x) =
x

ax2 + bx+ c
, (3)

µ4(x) = µ̄
x

x+Kx

Ki

x+Ki
. (4)

In this article, we introduce a new Haldane type description for characterizing the growth

µ5(x) = 4γmax
xx⋆

(x+ x⋆)2
, (5)

which requires only two parameters denoted by γmax and x⋆, and will be further discussed.
In this paper, the objective is to compare the performance of the existing descriptions (1)-(4) in the

idea to highlight the most accurate description. We also compare them with the new description (5). To
compare different descriptions, we evaluate their performance in data sets representing photoinhibition for
various microalgae growth experiments. These data sets are used to determine the optimal parameters by
fitting them to experimental data. We use standard identification methods to find the best description for the
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experimental data by minimizing a loss function representing the model error. Although the descriptions (1)-
(5) are all mathematically equivalent, some provide better performance than the others in specific situations,
meaning that the identification point of view will change the accuracy of the description. The results of
identification thus reveal fundamental differences between these descriptions.

There are several criteria for assessing the performance of a model for a given dataset, such as Akaike’s
information criterion (AIC) [22, 23, 24] and Bayesian information criterion (BIC) [25, 26]. They are used
for model selection in the analysis of empirical data accounting for the differences in the model degrees of
freedom. By comparing the values of AIC, BIC and the results of identification, we can determine the best
model. However, these criteria become less efficient when it comes to distinguish equivalent descriptions of
one model. For this reason, we introduce a new criterion based on the criteria AIC and BIC to improve the
sensitivity for evaluating various descriptions of one model.

The current study is organized as follows. After providing the relation between various descriptions in
Section 2, we introduce the data sources and methods for the analysis. Section 3 presents some numerical
results with detailed discussion. We conclude in Section 4 with some comments and remarks on the findings
of the study.

2. Materials and methods

2.1. Objectives
Our main objective is to fit the experimental data using the five descriptions (1)-(5) and to determine

the most appropriate parameter values for each description. We assess the uncertainty associated with the
description predictions and identify the optimal parameterization for the given experimental conditions. To
this end, we consider eight different microalgae species on the light response to test the five descriptions
under different conditions and evaluate the best formulations.

2.1.1. Growth response with Skeletonema costatum [27]
Anning et al. [27] study the growth of the diatom Skeletonema costatum strain CCMP 1332 (Plymouth

Culture Collection). The algae cells are cultured under the same conditions, except for the irradiance levels.
Here, we focus on the curve obtained for the pre-acclimation at 1200µmol photonsm−2 s−1, for which the
photoinhibition is more marked. Labelled NaH14CO3 was used to culture the algal cells simultaneously over
a gradient of irradiances to determine the photosynthetic carbon fixation.

2.1.2. Growth response via oxymetry for seven species of phytoplankton [28]
Yang et al. [28] investigate the photosynthetic response of seven strains of phytoplankton, comprising

three strains of marine phytoplankton (Isochrysis galbana, Dunaliella salina, and Platymonus subcordi-
formis) and four strains of freshwater phytoplankton (Chlorococcum sp. FACHB-1556, Microcystis aerug-
inosa FACHB-905, Microcystis wesenbergii FACHB-1112, and Scenedesmus obliquus FACHB-116.). The
cells are cultured at an irradiance of 60µmol photonsm−2 s−1 for 12 hours per day and at a temperature of
26 ± 1◦C for 7 to 10 days. The cells are then subjected to increasing levels of irradiance, ranging from 0
to 1200 (µmol photonsm−2 s−1), provided by a digital LED light source at a temperature of 25± 1◦C. The
oxygen-evolving rate is measured using dissolved oxygen measurements.

2.2. Analysis
The parameters in description (1) have a biological meaning. Indeed, µmax is the maximum growth rate

for the optimal irradiance xopt, and α is the initial slope of the response curve. The growth kinetics for
this description is represented in Figure 1 together with the three associated fundamental descriptors of the
curve.

In the other descriptions, the parameters do not have a direct interpretation, but can be related to the
three fundamental descriptors µmax, xopt, and α in the growth curve as follows:
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Figure 1: Representation of the Haldane model (description (1)), in red, parameterized with the three fundamental descriptors
µmax, the maximum growth rate for the optimal irradiance xopt and α, the initial slope. The simplified KIS model (descrip-
tion (5)) is also represented in blue.

1. Description (2):

µ̄ =
µmaxαxopt

αxopt − 2µmax
, Kx =

µmaxxopt

αxopt − 2µmax
, Ki =

xopt(xoptα− 2µmax)

µmax
, (6)

with the units of each parameter µ̄ (inverse of time), Kx and Ki (same as x). Note that the parameters
of this model are all complex combinations of the fundamental descriptors.

2. Description (3):

a =
1

αx2
opt

, b =
1

µmax
− 2

αxopt
, c =

1

α
, (7)

with units for b (time), a (time per unit of x) and c (time times unit of x). We observe that the
parameter c is directly connected with α, and the parameter a is deduced from α and xopt. Parameter
b results from the three fundamental descriptors.

3. Description (4):

µ̄ = αKx, KxKi = x2
opt, Kx +Ki =

(αxopt − 2µmax)xopt

µmax
, (8)

with the unit of µ̄ (inverse of time), Kx and Ki the same units as x. Note that here, there are two
(equivalent) possible values for the couple (Kx,Ki), which illustrates the dramatic identifiability issue
with this model [29].

4. Description (5):

γmax = µmax, x⋆ = xopt,
4γmax

x⋆
= α, (9)

with the units of γmax in time inverse, and x⋆ the same unit as x. Parameter x⋆ corresponds to
the value of x for which the growth rate is the maximum. Parameter γmax is the maximum growth
rate obtained for x⋆. Note that, even if these values are close, γmax

x⋆ ̸= α in Figure 1, which helps to
distinguish the two curves. Remark also that there are only two parameters in this description.

Let us denote by θk the parameter set corresponded to the description µk in (1)-(5). More precisely,
θ1 := (µmax, α, xopt) for (1), θ2 := (µ̄,Kx,Ki) for (2), θ3 := (a, b, c) for (3), θ4 := (µ̄,Kx,Ki) for (4),
θ5 := (γmax, x

⋆) for (5). Let us denote by m the number of parameters and by θkj , j = 1, . . . ,m each element
of the parameter set θk. For instance, in (1), θ11 = µmax, θ12 = α, and θ13 = xopt. In particular, m = 3 for
descriptions (1)-(4) and m = 2 for the description (5).
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2.2.1. Parameter identification
For experimental data from Section 2.1.1 and Section 2.1.2, we identify the appropriate parameter set θk

for each description µk. For each microalgae species, let us denote by (xi)
n
i=1 the irradiance samples (with n

the size of the samples) and µexp(xi) the associated experimental estimations of the growth rate. We denote
by µk(xi, θ

k) the growth rate evaluated at the light sample xi using the description µk. The sum of the
squared error (SSE) [24, 30] is given by:

SSE :=

n∑
i=1

(µexp(xi)− µk(xi, θ
k))2. (10)

For each description µk, the best parameter set θk is identified by minimizing the SSE value. We use the
Nelder–Mead simplex algorithm [31] implemented in the fminsearch function of Matlab.

2.2.2. Sensitivity analysis
Once the best parameter set θk has been identified, we compute the sensitivity equations to determine

the Fisher information matrix (FIM) for comparing different descriptions [32]. The FIM is defined by

F := (
∂µk

∂θk
(x))TQ

∂µk

∂θk
(x), (11)

where Q is a square matrix representing the inverse of the covariance matrix of the measurement error.
This information was not provided for µexp(xi) in the considered experimental data. We therefore assumed
a 10% standard variation for each measurement, except for the lowest values where this value is saturated
at a minimum level, following the strategy of [33]. More formally, we assume that the standard variation
vector is:

W := max
i=1,...,n

(
0.1µexp(xi), 0.02 max

i=1,...,n

(
µexp(xi)

))
. (12)

We then define Q as a diagonal matrix with entries Qii := 1/W 2
i .

For each parameter set θk, the standard deviation is defined by

σ := s
√

ndiag(V ), (13)

where V := F−1 is the covariance matrix of parameter estimation error, and s is the residual mean square
with:

s2 :=

∑n
i=1(µ

k(xi, θ
k)− µexp(xi))

TQi(µ(xi, θ
k)− µexp(xi))

n−m
. (14)

From the parameter standard deviation, we can compute the prediction interval (PI) by

PI := µk ± Ze, (15)

where Z is the value of Student’s t-distribution choosing a significance level 0.05, and e is the error propa-

gation with e :=

√∑m
j=1 (

∂µk

∂θk
j

)2σ2
j . The adequacy of the description µk to the experimental measurements

is the first criterion to assess its performance.
Additionally, the sensitivity of the parameter θkj is computed as the normalized sensitivity [34]

Sj := (
σj

e

∂µk

∂θkj
)2. (16)
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2.2.3. Description selection criteria
The Akaike’s information criterion (AIC) [22, 23, 24] and the Bayesian information criterion (BIC) [25, 26]

are often used to select and compare non-equivalent models. We recall here the definition of AIC

AIC := n log(
SSE
n

) + 2(m+ 1). (17)

For small-samples, when n
m+1 < 40, the AIC becomes the corrected Akaike information criterion (AICc),

given by :

AICc := AIC +
2(m+ 1)(m+ 2)

n−m− 2
. (18)

The Bayesian information criterion is given by:

BIC := n log(
SSE
n

) + (m+ 1) log(n). (19)

However, both criteria are less sensitive when comparing equivalent descriptions for a same model. Let
us denote by ē the average of the error propagation e, which is an important criterion for qualifying the
model accuracy

ē :=
1

n

n∑
i=1

√√√√ m∑
j=1

(
∂µk

∂θkj
(xi))2σ2

j . (20)

Based on AICc and BIC criteria, we introduce a new criterion, namely PEMAC (Propagated Error Modified
Akaike Criterion), to account for the model accuracy in the fit assessment. More precisely, this criterion is
defined by

PEMAC :=



2n log(ē) + n log(
SSE
n

)

+ (m+ 1) log n,
n

m+ 1
≥ 40,

2n log(ē) + n log(
SSE
n

)

+
2(m+ 1)(m+ 2)

n−m− 2
,

n

m+ 1
< 40.

We will then test and compare our criterion with AICc and BIC to select the best descriptions among (1)-(5).

3. Results and discussion

In this section, we present some numerical results related to the five descriptions (1)-(5). Our analyses
are based on the experimental data for the light response of microalgae, for eight different microalgae species.
For all of them, we identify the parameters, present the sensitivity and the performance of each description.

3.1. Parameter identification
For each description µk among (1)-(5), the optimal parameter set θk varies from different experimental

conditions and different microalgae species. Table 1 presents the optimal parameter sets and the SSE values
for each description and for eight microalgae species. The SSE values for the species Skeletonema costatum
is smaller not only due to the quality of the fit, but also because the measurement method is different,
and with different units. For the seven other species, the SSE values are in the scale of 10−5, except for
the descriptions (4) and (5) with the species Microcystis wesenbergii FACHB-1112, Scenedesmus obliquus
FACHB-116 and Chlorococcum sp. FACHB-1556, where the SSE values are in the scale of 10−4. This reveals
that the three descriptions (1)-(3) under their identified parameter set fit slightly better the experimental
data in [28] comparing with (4) and (5). Although the description (1) is designed to study the influence of
the irradiance on phytoplankton growth rate, we observe that there is no much difference on the SSE values
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1 2 3 4 5 6 7 8
µmax 3.8436×10−5 0.0339 0.0373 0.0335 0.0254 0.0877 0.0624 0.0805

(1) α 9.0614×10−8 1.0096×10−4 2.6351×10−4 7.4685×10−4 3.3149×10−4 4.9411×10−4 3.9217×10−4 3.5048×10−4

xopt 965.1726 697.4415 439.1005 253.0296 342.5652 339.4417 319.9471 484.9611
SSE 1.1164×10−10 1.2346×10−5 1.0841×10−5 4.6218×10−5 1.0985×10−5 6.0475×10−5 3.5333×10−5 3.1000×10−5

µ̄ 3.1756×10−4 0.9330 0.1050 0.0518 0.0458 -1.9147 11.9335 1.5156
(2) Kx 3504.5484 9240.9056 398.3028 69.4167 138.2674 -3875.0132 30429.2456 4324.3801

Ki 265.8140 52.6380 484.0769 922.3136 848.7246 -29.7342 3.3641 54.3864
SSE 1.1164×10−10 1.2346×10−5 1.0841×10−5 4.6218×10−5 1.0985×10−5 6.0475×10−5 3.5333×10−5 3.1000×10−5

a 11.8466 0.0204 0.0197 0.0209 0.0257 0.0176 0.0249 0.0121
(3) b 3148.9876 1.0718 9.5276 19.2887 21.8174 -0.5223 0.0838 0.6598

c 1.1036×107 9904.8464 3794.8752 1338.9598 3016.6396 2023.8331 2549.9064 2853.2691
SSE 1.1164×10−10 1.2346×10−5 1.0841×10−5 4.6218×10−5 1.0985×10−5 6.0475×10−5 3.5333×10−5 3.1000×10−5

µ̄ 1.5234×10−4 0.1318 0.1449 0.0565 0.0576 0.3138 0.2241 0.2989
(4) Kx 1273.9800 914.5639 458.7265 75.6161 173.8978 343.2328 323.1022 544.4024

Ki 1274.3248 914.5640 458.7265 846.6974 674.8267 343.2328 323.1022 544.4024
SSE 1.5685×10−10 4.3482×10−5 2.0970×10−5 4.6218×10−5 1.0985×10−5 6.0296×10−4 2.8402×10−4 3.0619×10−4

(5) γmax 3.8086 10−5 0.0329 0.0362 0.0351 0.0257 0.0784 0.0560 0.0747
x⋆ 1273.9800 914.5640 458.7265 248.7247 338.0766 343.2328 323.1022 544.4024

SSE 1.5685×10−10 4.3482×10−5 2.0970×10−5 6.8655×10−5 1.2139×10−5 6.0296×10−4 2.8402×10−4 3.0619×10−4

Table 1: Best estimates of five descriptions (1)-(5) for each microalgae species. (1: Skeletonema costatum, 2: Isochrysis galbana,
3: Dunaliella salina, 4: Platymonus subcordiformis, 5: Chlorococcum sp. FACHB-1556, 6: Microcystis aeruginosa FACHB-905,
7: Microcystis wesenbergii FACHB-1112, 8: Scenedesmus obliquus FACHB-116.)

between (1) and the other four descriptions (2)-(5). This is not surprising since the underlying mathematical
model is identical (except for (5)), and only the way the parameters are expressed is changing. Moreover,
we observe that, in general, the identified values of γmax (resp. x⋆) in description (5) are quite similar to
µmax (resp. xopt) description (1). This further confirms the physical meaning of the two parameters in the
proposed description (5). We will use the optimal parameter values in Table 1 for the tests.

3.2. Correlation matrix of parameter estimation error
Based on the covariance matrix of the parameter estimation error V , we compute the correlation matrix

of the parameter estimation error, and illustrate in Table 2 for all five descriptions and eight microalgae
species. We consider that two parameters θki and θkj are correlated if the absolute value of their correlation
exceeds 0.9. Under this consideration, we observe that the three parameters in the description (1) are
rather uncorrelated to each other, as well as the two parameters in the description (5). On the other
hand, all three parameters in the description (2) are strongly correlated. There are only two microalgae
species for which we are able to determine the correlation matrix for (4). This is due to the fact that the
related Fisher information matrix F is singular. For these two species, we observe once again a strong
correlation between the three parameters in the description (4). Regarding the description (3), there is a
strong correlation between the parameters a and b, and both are rather uncorrelated with the parameter c.
The correlation coefficient between parameters assesses whether the parameters are independent. If one of
the parameters is not independent, then the correlated parameters are likely to produce similar information,
and the description is thus less efficient. Based on our observations, the descriptions (1) and (5) are more
suitable for representing the growth rate with respect to the irradiance for the eight microalgae species.

3.3. Best description of the inhibition kinetics
In general, the minimum value of AICc or BIC reveals the best trade-off between the number of pa-

rameters m and the data fit ability among different models. However, this becomes less clear for selecting
equivalent descriptions of one model. Table 3.3 presents the AICc, BIC and PEMAC values of all five
descriptions (1)-(5) for each microalgae species. We observe that the values of AICc and BIC do not vary
significantly among the five descriptions, especially for the species Platymonus subcordiformis and Chloro-
coccum sp. FACHB-1556. Thus, based on the values of AICc and BIC, it is less clear which description
is better among (1)-(5). This ambiguity disappears when considering the criterion PEMAC. Indeed, there
is a clear difference of the PEMAC value between the five descriptions, even in the case of the species
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1 2 3 4 5 6 7 8
(1) µmax α xopt µmax α xopt µmax α xopt µmax α xopt µmax α xopt µmax α xopt µmax α xopt µmax α xopt
µmax 1.00 -0.30 0.05 1.00 -0.39 -0.07 1.00 -0.47 -0.32 1.00 -0.46 -0.38 1.00 -0.47 -0.39 1.00 -0.50 -0.19 1.00 -0.46 -0.24 1.00 -0.51 -0.30
α -0.30 1.00 0.53 -0.39 1.00 0.47 -0.47 1.00 0.18 -0.46 1.00 -0.09 -0.47 1.00 0.11 -0.50 1.00 -0.27 -0.46 1.00 -0.23 -0.51 1.00 0.18

xopt 0.05 0.53 1.00 -0.07 0.47 1.00 -0.32 0.18 1.00 -0.38 -0.09 1.00 -0.39 0.11 1.00 -0.19 -0.27 1.00 -0.24 -0.23 1.00 -0.30 0.18 1.00
(2) µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki

µ̄ 1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 0.99 -0.99 1.00 0.93 -0.95 1.00 0.96 -0.96 1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00
Kx 1.00 1.00 -1.00 1.00 1.00 -1.00 0.99 1.00 -0.97 0.93 1.00 -0.86 0.96 1.00 -0.91 1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00
Ki -1.00 -1.00 1.00 -1.00 -1.00 1.00 -0.99 -0.97 1.00 -0.95 -0.86 1.00 -0.96 -0.91 1.00 -1.00 -1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 1.00
(3) a b c a b c a b c a b c a b c a b c a b c a b c
a 1.00 -0.95 0.72 1.00 -0.94 0.72 1.00 -0.90 0.62 1.00 -0.87 0.55 1.00 -0.89 0.58 1.00 -0.91 0.69 1.00 -0.90 0.64 1.00 -0.92 0.70
b -0.95 1.00 -0.85 -0.94 1.00 -0.86 -0.90 1.00 -0.79 -0.87 1.00 -0.72 -0.89 1.00 -0.74 -0.91 1.00 -0.86 -0.90 1.00 -0.83 -0.92 1.00 -0.85
c 0.72 -0.85 1.00 0.72 -0.86 1.00 0.62 -0.79 1.00 0.55 -0.72 1.00 0.58 -0.74 1.00 0.69 -0.86 1.00 0.64 -0.83 1.00 0.70 -0.85 1.00

(4) µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki µ̄ Kx Ki

µ̄ - - - 1.00 0.96 -0.97 1.00 0.99 -0.99 - - -
Kx - - - 0.96 1.00 -0.91 0.99 1.00 -0.97 - - -
Ki - - - -0.97 -0.91 1.00 -0.99 -0.97 1.00 - - -
(5) γmax x⋆ γmax x⋆ γmax x⋆ γmax x⋆ γmax x⋆ γmax x⋆ γmax x⋆ γmax x⋆

γmax 1.00 -0.81 1.00 -0.78 1.00 -0.39 1.00 0.07 1.00 -0.18 1.00 -0.05 1.00 -0.14 1.00 -0.48
x⋆ -0.81 1.00 -0.78 1.00 -0.39 1.00 0.07 1.00 -0.18 1.00 -0.05 1.00 -0.14 1.00 -0.48 1.00

Table 2: Correlation matrix of parameter estimation error of five descriptions (1)-(5) for eight microalgae species (1: Skeletonema
costatum, 2: Isochrysis galbana, 3: Dunaliella salina, 4: Platymonus subcordiformis, 5: Chlorococcum sp. FACHB-1556, 6:
Microcystis aeruginosa FACHB-905, 7: Microcystis wesenbergii FACHB-1112, 8: Scenedesmus obliquus FACHB-116). Note
that "−" represents the case where the Fisher information matrix F is singular, and we cannot obtain an accurate result.

Platymonus subcordiformis and Chlorococcum sp. FACHB-1556, where AICc and BIC are not able to dis-
tinguish. Furthermore, we observe that the description (1) has the minimum value of PEMAC most of
the time, except for the species Platymonus subcordiformis and Chlorococcum sp. FACHB-1556, where the
description (5) has the minimum PEMAC value. Otherwise, our description (5) is often the second or the
third-best description, meaning that it also provides a good representation of the growth rate with respect
to the irradiance using only two parameters. Regarding the description (4), we are only able to provide the
PEMAC value for two species, as we need the Fisher information matrix F to compute the average error
propagation (20).

3.4. Prediction interval and parameter sensitivity
To further check the quality of using each description µk to characterize the growth rate with respect to

the irradiance, we show the prediction interval (PI) (15) of each description for all eight microalgae species
in Figure A.2-A.9. From the scale and shape of the PI, we observe that the descriptions (1) and (5) provide
a relatively good prediction compare with the other three descriptions (2)-(4). And once again, we are only
able to show the PI curve of the description (4) for the species Platymonus subcordiformis and Chlorococcum
sp. FACHB-1556, this is due to the singularity of the Fisher information matrix F for the other species.

We can also study the parameter sensitivity using the normalized sensitivity (16). Figures B.10-B.17
present the normalized sensitivity of each description µk with respect to the related parameter set θk for
the eight microalgae species.

For the description (1), we observe that the parameter α (red curve) has a strong sensitivity for small
irradiance values, since α represents the initial slope of the growth rate curve. Moreover, µmax (blue curve)
is the most sensitive parameter when the irradiance approaches to xopt, and the sensitivities of α and xopt

(yellow curve) go to zero. This is related to the partial derivatives ∂µ1

∂θ1
j
. Indeed, when x approaches to

xopt, the partial derivatives ∂µ1

∂α , ∂µ1

∂xopt
are both close to 0 and ∂µ1

∂µmax
is close to 1. Thus, µmax is the most

sensitive parameter around xopt. When moving to large values of irradiance, we observe that xopt becomes
more sensitive than the other two parameters.

Concerning the descriptions (2) and (4), we observe that the parameter µ̄ (blue curve) is relatively
sensitive along with the irradiance, the sensitivity of the parameter Kx (red curve) decreases as the irradiance
increases, and the sensitivity of the parameter Ki (yellow curve) increases as the irradiance decreases, which
is in line with the structure of this description, where Kx dominates the numerator at low light and x2/Ki

at high light.
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(1) (2) (3) (4) (5)
Skeletonema costatum

AICc -561.7971 -561.7971 -561.7971 -554.3161 -557.3357
BIC -559.7858 -559.7858 -559.7858 -552.3049 -555.3959

PEMAC -1082.4752 -928.9370 -1028.5730 - -1060.1172
Isochrysis galbana

AICc -167.2731 -167.2731 -167.2731 -150.9055 -155.2388
BIC -170.0133 -170.0133 -170.0133 -153.6457 -156.2106

PEMAC -333.9981 -211.7551 -302.2497 - -296.7996
Dunaliella salina

AICc -168.9626 -168.9626 -168.9626 -160.3860 -164.7193
BIC -171.7028 -171.7028 -171.7028 -163.1262 -165.6911

PEMAC -341.5794 -287.4636 -317.7917 - -329.9519
Platymonus subcordiformis

AICc -150.1121 -150.1121 -150.1121 -150.1121 -149.3011
BIC -152.8523 -152.8523 -152.8523 -152.8523 -150.2729

PEMAC -290.3377 -260.5042 -275.0006 -252.3863 -299.8248
Chlorococcum sp. FACHB-1556

AICc -168.7907 -168.7907 -168.7907 -168.7907 -171.8261
BIC -171.5309 -171.5309 -171.5309 -171.5309 -172.7979

PEMAC -333.2404 -295.6872 -314.1104 -275.4283 -348.9473
Microcystis aeruginosa FACHB-905

AICc -132.6640 -132.6640 -132.6640 -105.0685 -109.7828
BIC -136.4387 -136.4387 -136.4387 -108.8432 -111.3281

PEMAC -259.9892 -157.6629 -236.6074 - -219.0630
Microcystis wesenbergii FACHB-1112

AICc -153.6035 -153.6035 -153.6035 -126.5084 -130.8417
BIC -156.3437 -156.3437 -156.3437 -129.2486 -131.8136

PEMAC -302.4023 -137.3329 -279.3771 - -262.9083
Scenedesmus obliquus FACHB-116

AICc -140.6828 -140.6828 -140.6828 -113.2002 -117.9145
BIC -144.4574 -144.4574 -144.4574 -116.9749 -119.4598

PEMAC -278.5561 -177.7300 -252.0564 - -232.4748

Table 3: The AICc, BIC and PEMAC values of the descriptions (1)-(5) for each microalgae species in [27] and [28]
.

For the description (3), we observe that the parameter c (yellow curve) is relatively sensitive only for
small irradiance values, the sensitivity of the parameter a (blue curve) increases as the irradiance increases,
and the sensitivity curve of the parameter b (red curve) shares the same shape as the growth rate. Recall
that the parameter c is related to the initial slope of the growth rate, which explains its sensitivity for small
irradiance values.

Regarding our description (5), we observe that the sensitivity curves of the parameters γmax and x⋆ are
rather symmetric, with a horizontal symmetrical axis at 0.5. Parameter x⋆ represents the value for which
growth is maximum, and γmax is proportional to the maximum growth rate. The role of both parameters is
well-balanced, and they share equally the task of representing the growth rate with respect to the irradiance.
Moreover, we find that α in description (1) is only sensitive for small irradiance, µmax and xopt rather
dominate separately for the rest part. This actually confirms the behavior of our description (5), as γmax

and x⋆ are much related to µmax and xopt respectively. By well choosing these two parameters using (9),
our description (5) can very efficiently capture the growth rate.

4. Conclusion

In this study, we have examined four descriptions (1)-(4) of the Haldane model existing in the liter-
ature, and introduced an additional description (5) based on only two parameters. The description (4),
even if it has been used in the literature, has identifiability problems which lead to disastrous numerical
consequences. Descriptions (2) and (3) exhibit strong correlation between parameters and subsequent poor
prediction accuracy. The descrition (1), which uncorrelates efficiently the three parameters is the most ef-
ficient representation with three parameters. Surprisingly, the two-parameter description (5) out-competes
all the other models.
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This conclusion on the ability of the description (5) to accurately represent inhibition of photosynthetic
organisms by high light would need to be verified with other cases of growth inhibition (Volatile fatty
acids, ethanol, phenol, ...). It perfectly illustrates the "Keep It Simple (KIS)" principle, which should guide
modelling [29]. With fewer parameters, the identification procedure is more efficient and eventually the
modelling uncertainty are better contained than a more complex model, which pay the price of having more
parameters.
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Appendix A. Prediction intervals

We present the prediction intervals of the five descriptions (1)-(5) for each microalgae specie. For all
figures, the blue points represent the experimental data obtained from [27, 28], the red line is the fitted curve
using the optimal parameter values obtained in Table 1. The purple (resp. yellow) dashed line is the upper
(resp. lower) bound of the prediction interval computed using (15). Note that we can only find prediction
intervals for four description in some tested cases, as the Fisher information matrix for the description (4)
is singular. Hence, we cannot compute e in (15) in these cases. Recall also that Z is the value in the two-
tailed Student’s t-table. For the experimental data in [27, 28], when the size of samples n is 12, Z = 2.201,
Z = 2.179 when n = 13, and Z = 2.080 when n = 22.

Skeletonema costatum

Figure A.2: Prediction intervals of four descriptions (1)-(3) and (5) with respect to the irradiance x for the experimental data
of Skeletonema costatum [27]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).
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Isochrysis galbana

Figure A.3: Prediction intervals of four descriptions (1)-(3) and (5) with respect to the irradiance x for the experimental data
of Isochrysis galbana [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).

.

Dunaliella salina

Figure A.4: Prediction intervals of four descriptions (1)-(3) and (5) with respect to the irradiance x for the experimental data
of Dunaliella salina [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).
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Platymonus subcordiformis

Figure A.5: Prediction intervals of five descriptions (1)-(5) with respect to the irradiance x for the experimental data of
Platymonus subcordiformis [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom left: (4). Bottom right: (5).

Chlorococcum sp. FACHB-1556

Figure A.6: Prediction intervals of five descriptions (1)-(5) with respect to the irradiance for the experimental data of Chloro-
coccum sp. FACHB-1556 [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom left: (4). Bottom right: (5).
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Microcystis aeruginosa FACHB-905

Figure A.7: Prediction intervals of four descriptions (1)-(3) and (5) with respect to the irradiance x for the experimental data
of Microcystis aeruginosa FACHB-905 [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).

Microcystis wesenbergii FACHB-1112

Figure A.8: Prediction intervals of four descriptions (1)-(3) and (5) with respect to the irradiance x for the experimental data
of Microcystis wesenbergii FACHB-1112 [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).
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Scenedesmus obliquus FACHB-116

Figure A.9: Prediction intervals of four descriptions (1)-(3) and (5) with respect to the irradiance x for the experimental data
of Scenedesmus obliquus FACHB-116 [28], Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).

Appendix B. Normalized sensitivity

We present here the normalized sensitivity of all five descriptions (1)-(5) for each microalgae specie
using (16). Once again, we cannot present the results of the description (4) in some cases, as the Fisher
information matrix is singular.

Skeletonema costatum

Figure B.10: Normalized sensitivity for each parameter of four descriptions (1)-(3) and (5) with respect to the irradiance x for
the experimental data of Skeletonema costatum [27]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).
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Isochrysis galbana

Figure B.11: Normalized sensitivity for each parameter of four descriptions (1)-(3) and (5) with respect to the irradiance x for
the experimental data of Isochrysis galbana [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).

Dunaliella salina

Figure B.12: Normalized sensitivity for each parameter of four descriptions (1)-(3) and (5) with respect to the irradiance x for
the experimental data of Dunaliella salina [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).
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Platymonus subcordiformis

Figure B.13: Normalized sensitivity for each parameter of five descriptions (1)-(5) with respect to the irradiance x for the
experimental data of Platymonus subcordiformis [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom left: (4). Bottom
right: (5).

Chlorococcum sp. FACHB-1556

Figure B.14: Normalized sensitivity for each parameter of five descriptions (1)-(5) with respect to the irradiance x for the
experimental data of Chlorococcum sp. FACHB-1556 [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom left: (4).
Bottom right: (5).
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Microcystis aeruginosa FACHB-905

Figure B.15: Normalized sensitivity for each parameter of four descriptions (1)-(3) and (5) with respect to the irradiance x for
the experimental data of Microcystis aeruginosa FACHB-905 [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom:
(5).

Microcystis wesenbergii FACHB-1112

Figure B.16: Normalized sensitivity for each parameter of four descriptions (1)-(3) and (5) with respect to the irradiance x for
the experimental data of Microcystis wesenbergii FACHB-1112 [28].Top left: (1). Top middle: (2). Top right: (3). Bottom:
(5).
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Scenedesmus obliquus FACHB-116

Figure B.17: Normalized sensitivity for each parameter of four descriptions (1)-(3) and (5) with respect to the irradiance x for
the experimental data of Scenedesmus obliquus FACHB-116 [28]. Top left: (1). Top middle: (2). Top right: (3). Bottom: (5).
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