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Abstract. We present here nonoverlapping optimized Schwarz methods applied to heat transfer4
problems with heterogeneous diffusion coefficients. After a Laplace transform in time, we derive the5
error equation and obtain the convergence factor. The optimal transmission operators are nonlocal,6
and thus inconvenient to use in practice. We introduce three versions of local approximations for7
the transmission parameter, and provide a detailed analysis at the continuous level in each case to8
identify the best local transmission conditions. Numerical experiments are presented to illustrate9
the performance of each local transmission condition. As shown in our analysis, local transmission10
conditions, which are scaled appropriately with respect to the heterogeneous diffusion coefficients,11
are more efficient and robust especially when the discontinuity of the diffusion coefficient is large.12
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1. Introduction. Hypersonic vehicles often travel at speeds exceeding five times16

of the speed of sound, and due to this extreme speed, these vehicles are exposed to17

high aerodynamic and thermal loads [1]. To ensure the safety of the vehicle, thermal18

protection structures must be designed and applied on the outer surface of the vehicle19

such that the inner structural temperature can stay in a sustainable range [16]. Hence,20

it is vital to study the heat transfer problems in these critical areas to obtain the21

temperature of the vehicle. A typical illustration of thermal protection structures is22

shown in Figure 1. Depending on the thermal protection techniques, several layers23

of materials can be applied over the vehicle skin, see e.g. [21] for a review. Each24

layer of the thermal protection structures may consist of different materials, such as25

aluminum and ceramic [15], and the diffusion coefficients can be very different from26

one material to another.27

Numerical methods such as the finite element method and the boundary element28

method are often used to study such heat transfer problems, yielding reliable re-29

sults [22, 6]. However, simulating heat transfer across various materials for critical30

areas of the vehicle can be time consuming. In [12, 13], the Reduced Models method31

is used to solve a nonlinear heat conduction problem, which drastically reduces the32

computing time. Given the geometric structure presented in Figure 1, nonoverlapping33

domain decomposition methods are natural candidates to introduce parallelism and34

accelerate the numerical solution of heat transfer problems with heterogenous diffu-35

sion coefficients. In [4], the authors developed a domain decomposition, or artificial36

subsectioning technique, along with a boundary–element method, to solve such heat37

conduction problems, showing the potential of domain decomposition.38

The idea of domain decomposition was initially introduced by Hermann Amandus39

Schwarz in [20] to prove rigorously the existence of solution for Laplace problems. His40

method has then been developed as a computational tool with the arrival of parallel41

computing, see e.g. [7] for a historical review. Unlike dealing with homogeneous heat42
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Geneva, Switzerland (liudi.lu@unige.ch, martin.gander@unige.ch).
†State Key Laboratory of Mechanics and Control For Aerospace Structures, Nanjing Univer-

sity of Aeronautics and Astronautics, 210016, Nanjing, China, and School of Intelligent Equipment
Engineering, Wuxi Taihu University, 214064, Wuxi, China (wtting@nuaa.edu.cn).

1

This manuscript is for review purposes only.

mailto:liudi.lu@unige.ch
mailto:martin.gander@unige.ch
mailto:wtting@nuaa.edu.cn


2 M.J. GANDER, L.-D. LU, T. WU

metallic skin
strain isolation pad

thermal insulation material

hot air

Fig. 1. Illustration of thermal protection systems.

transfer problems where a continuous diffusion function is considered over the entire43

domain, the heterogeneity of the material between two subdomains require special at-44

tention for heterogeneous heat transfer problems. In [19, 5], optimized Schwarz meth-45

ods are analyzed for solving heterogeneous Laplace problems. A reaction–diffusion46

problem with heterogenous coefficients is studied in [10]. In [11], the authors con-47

sider using optimized Schwarz methods for solving unsymmetric advection–diffusion–48

reaction problems with strongly heterogenous and anisotropic diffusion coefficients.49

The balancing Neumann–Neumann method is applied in [14] to treat linear elastic-50

ity systems with discontinuous coefficients. In [8], the authors extend the study to51

parabolic heat transfer problems with a constant diffusion coefficient using Dirichlet–52

Neumann and Neumann–Neumann waveform relaxation methods. Optimized Schwarz53

waveform relaxation methods are considered in [17, 18] to solve heterogeneous heat54

transfer problems. More recently, the authors in [3] analyzed at the continuous level55

of the Dirichlet–Neumann waveform relaxation method applied to heterogeneous heat56

transfer problems.57

In the current study, we focus on the optimized Schwarz waveform relaxation58

methods to solve heat transfer problems with heterogeneous diffusion coefficients. It59

has already been observed in [17, 18] that the optimal transmission operators are60

nonlocal in time, and thus are inconvenient to use in practise. For this reason, we61

introduce here three local approximations of the transmission operators by taking62

into account the heterogenous diffusion coefficients. As these local approximations63

are scaled differently with respect to the diffusion coefficients, we analyze in detail the64

min-max problem associated with each approximation and find analytical formulas65

for the optimized local transmission parameters. In particular, we show that the66

equioscillation property does not always lead to the best transmission parameters,67

as reported also in [8]. Thus, one needs to be careful when addressing the min-max68

problems to characterize the best transmission parameters. In addition, we also show69

the importance of using a good scaling to be able to derive an efficient and robust70

solver in the case of a largely heterogeneous media.71

Our paper is organized as follows: in Section 2, we introduce the heterogeneous72

heat transfer problem and optimized Schwarz methods. A Laplace analysis is ap-73

plied to the error equations to determine the convergence factor. In Section 3, we74

introduce three local approximations of the optimal transmission operators and pro-75

vide a detailed analysis of each associated min-max problem. Numerical experiments76

are presented in Section 4 to illustrate the performance of these local transmission77

conditions.78
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Fig. 2. 2D illustration of the decomposition.

2. Model problem. To model the heat transfer between different materials as79

shown in Figure 1, we consider the heterogeneous heat equation80

(2.1)

∂tu = ∇ · (ν∇u) + f in Q := Ω× (0, T ),

u = u0 on Σ0 := Ω× {0},
u = g on Σ := ∂Ω× (0, T ),

81

where Ω ⊂ Rd, d = 1, 2, 3, with its boundary ∂Ω, T is the fixed final time, ν is82

the heat diffusion function, f is the source term, u0 is the initial condition, and g83

represents some Dirichlet boundary conditions. Furthermore, we consider a natural84

decomposition of two nonoverlapping subdomains Ω1 and Ω2 such that Ω1 ∩Ω2 = Γ,85

with Γ the interface between Ω1 and Ω2, as shown in Figure 2. The heat diffusion86

function ν is assumed to be a piecewise constant function in space, where ν(x) = νj87

for x ∈ Ωj with νj > 0, j = 1, 2. For the sake of brevity, we will omit the initial and88

boundary conditions in the following.89

The following physical coupling conditions are applied on the interface90

u1 = u2, ν1∂n1
u1 = −ν2∂n2

u2, on Σ := Γ× (0, T ),91

to ensure the continuity of the solution and its normal flux between the subdomains.92

Here, the unit outward normal vector is denoted by nj . According to these two93

physical coupling conditions, we can write the optimized Schwarz method as: for the94

iteration index k = 1, 2, . . ., one solves95

(2.2)

∂tu
k+1
1 = ν1∆uk+1

1 + f1 in Q1,(
ν1∂n1

+ S1

)
uk+1

1 =
(
ν2∂n1

+ S1

)
uk2 on Σ,

∂tu
k+1
2 = ν2∆uk+1

2 + f2 in Q2,(
ν2∂n2

− S2

)
uk+1

2 =
(
ν1∂n2

− S2

)
uk+1

1 on Σ,

96

with Qj := Ωj × (0, T ), j = 1, 2. The system (2.2) is then completed by the given97

initial and boundary conditions of the problem (2.1). Here, fj denotes the source term98

f restricted to the space-time domain Qj , and Sj is a linear space-time operator. As99

illustrated in Figure 2, the decomposition is only in the x-direction, we thus consider100

in the following the one dimensional case, i.e., Ω = R, to focus on the transmission101

condition at the interface x = 0. This will simplify the computations and allow us to102

obtain a more compact analytical form. In this case, the two space-time subdomains103

are Q1 = (−∞, 0) × (0, T ) and Q2 = (0,∞) × (0, T ), and the linear operator Sj104
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is only related to the time variable. Although the following convergence analyses105

are for the two-subdomain case only, our numerical experiments in Section 4 for106

multiple subdomains with different choices of the diffusion coefficient ν show that our107

theoretical results are also very useful in more general situations.108

2.1. Laplace Analysis. To understand the convergence behavior of the opti-109

mized Schwarz algorithm (2.2), we will study the associated error equations with110

solutions which go to zero when x goes to infinity. We denote the error by ekj (x, t) :=111

u(x, t)− ukj (x, t), j = 1, 2, which satisfies by linearity the equation112

∂te
k
j = ∂t

(
u− ukj

)
= νj∆

(
u− ukj

)
= νj∆e

k
j in Qj .113

To focus on the transmission condition in space at the interface Γ, we apply a Laplace114

transform in the time variable t,115

êkj (x, s) := L{ekj (x, t)} =

∫ ∞
0

ekj (x, t)e−st dt,116

where s ∈ C is a complex number. We study the associated error equation of (2.2)117

after the Laplace transform, that is,118

(2.3)

sêk+1
1 (x, s) = ν1∂xxê

k+1
1 (x, s) in Q1,(

ν1∂x + σ1(s)
)
êk+1

1 (0, s) =
(
ν2∂x + σ1(s)

)
êk2(0, s),

sêk+1
2 (x, s) = ν2∂xxê

k+1
2 (x, s) in Q2,(

ν2∂x − σ2(s)
)
êk+1

2 (0, s) =
(
ν1∂x − σ2(s)

)
êk+1

1 (0, s),

119

where σj(s) are the Laplace symbols of the operators Sj . The general solutions are120

given by121

êk+1
1 (x, s) = Ck+1

1 (s)ê
√
s√
ν1
x
, êk+1

2 (x, s) = Ck+1
2 (s)ê

−
√
s√
ν2
x
.122

Applying the transmission conditions in (2.3), we obtain the convergence factor for123

{êkj }k=1,2,...124

(2.4) ρ(s, σ1, σ2) :=

∣∣∣∣σ1(s)−√ν2
√
s

σ1(s) +
√
ν1
√
s
·
σ2(s)−√ν1

√
s

σ2(s) +
√
ν2
√
s

∣∣∣∣ .125

It is straightforward from (2.4) that we can get optimal convergence by choosing126

(2.5) σ1(s) =
√
ν2

√
s, σ2(s) =

√
ν1

√
s.127

This leads to convergence in two iterations, since the errors at iteration k = 2 vanish.128

However, the best choice is nonlocal in time due to the term
√
s, and it is expensive to129

compute and inconvenient for the implementation. Therefore, the goal of the current130

study is to find good local approximations of σj(s) that can still give fast convergence.131

3. Approximation of the optimal operators. The idea is to fix a class of132

possible transmission conditions C and uniformly optimize the convergence factor133

over a range of frequencies for our problem. This corresponds to solve the min-max134

problem135

(3.1) min
σj∈C

(
max
s
ρ(s, σ1, σ2)

)
.136
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To find local approximations of σj(s), we consider in the following σj ∈ R, independent137

of the time variable. In this way, the convergence factor (2.4) becomes138

(3.2) ρ(s, σ1, σ2) :=

∣∣∣∣σ1 −
√
ν2
√
s

σ1 +
√
ν1
√
s
·
σ2 −

√
ν1
√
s

σ2 +
√
ν2
√
s

∣∣∣∣ .139

For the Laplace transform, we have s = η + iω with η, ω ∈ R. This implies that140

√
s =

√
η + iω =

√
η +

√
η2 + ω2

2
± i

√
−η +

√
η2 + ω2

2
.141

Since
√
s is an even function of the imaginary part ω, the convergence factor ρ is142

also an even function of ω. Therefore, we only consider ω ≥ 0 in the analysis. Now143

the imaginary part ω = 0 corresponds to a constant function in time, and since the144

error function ekj (x, t) equals zero at t = 0, the constant function cannot be part of145

the error function in the iteration. From a numerical viewpoint, when solving the146

problem in the time interval [0, T ], we can heuristically state that ω ∈ [ωmin, ωmax],147

where the smallest frequency ωmin is π
2T , and the largest frequency is related to the148

time step ∆t, that is ωmax = π
∆t . We refer to [9, Figure 3.17] for more details about149

this statement. Thus, we can set η = 0 as we only solve the min-max problem (3.1)150

away from ω = 0. Denoting by ω̃ :=
√

ω
2 , we get151

√
s =

√
ω

2
± i
√
ω

2
= ω̃ ± iω̃.152

The new parameter ω̃ ∈ [ω̃1, ω̃2] with ω̃1 :=
√

ωmin

2 =
√

π
4T and ω̃2 :=

√
ωmax

2 =153 √
π

2∆t . The convergence factor (3.2) can then be simplified to154

(3.3) ρ(ω̃, σ1, σ2) =

√
(σ1 −

√
ν2ω̃)2 + ν2ω̃2

(σ1 +
√
ν1ω̃)2 + ν1ω̃2

·
(σ2 −

√
ν1ω̃)2 + ν1ω̃2

(σ2 +
√
ν2ω̃)2 + ν2ω̃2

.155

To find good local operators, we can restrict the range of σj . More precisely, suppose156

σ1 > 0 and substitute σ1 by −σ1 in (3.3), we have157

ρ(ω̃,−σ1, σ2) =

√
(σ1 +

√
ν2ω̃)2 + ν2ω̃2

(σ1 − ν1ω̃2) + ν1ω̃2
·

(σ2 −
√
ν1ω̃)2 + ν1ω̃2

(σ2 +
√
ν2ω̃)2 + ν2ω̃2

.158

This implies that ρ(ω̃,−σ1, σ2) > ρ(ω̃, σ1, σ2), when σ1 > 0. Therefore, for fast159

convergence, σ1 > 0 should be chosen. In a similar way, we can restrict the range of160

σ2 to σ2 > 0. The min-max problem (3.1) thus becomes161

(P) min
σj>0

(
max

ω̃1≤ω̃≤ω̃2

ρ(ω̃, σ1, σ2)

)
.162

Before analyzing the convergence of several choices for local transmission parameters163

σj , we give sufficient conditions on σj that will guarantee convergence of the optimized164

Schwarz algorithm (2.3).165

Theorem 3.1 (Sufficient condition). Under the conditions166

0 < σ2 ≤ σ1, if ν1 < ν2,

0 < σ1 ≤ σ2, if ν2 < ν1,
167
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the optimized Schwarz algorithm (2.3) converges for all ω̃ ∈ [ω̃1, ω̃2] and the conver-168

gence factor (3.3) satisfies169

ρ(ω̃, σ1, σ2) < 1.170

Proof. To guarantee convergence of the optimized Schwarz algorithm (2.3), we171

want from (3.3) that172

ρ(ω̃, σ1, σ2) =

√
(σ1 −

√
ν2ω̃)2 + ν2ω̃2

(σ1 +
√
ν1ω̃)2 + ν1ω̃2

·
(σ2 −

√
ν1ω̃)2 + ν1ω̃2

(σ2 +
√
ν2ω̃)2 + ν2ω̃2

< 1,173

which can be simplified to174

ω̃(
√
ν1 −

√
ν2)(σ1 − σ2)− σ1σ2 − 2

√
ν1
√
ν2ω̃

2 < 0.175

A simple sufficient condition for this inequality to hold is (
√
ν1 −

√
ν2)(σ1 − σ2) ≤ 0,176

which is clearly not a necessary condition. This concludes the proof.177

In the following subsections, we consider three choices for the transmission pa-178

rameters σj and their related min-max problems (P). In all cases, Theorem 3.1 will be179

satisfied to guarantee convergence of optimized Schwarz algorithm (2.3) when using180

these local transmission conditions. To treat the min-max problems (P) and find the181

best transmission parameters σj , we follow three steps similar as used in [5]:182

1. restrict the range of the transmission parameter σj with respect to the fre-183

quencies ω̃1 and ω̃2;184

2. identify possible local maximum points ω̃ for the min-max problem (P);185

3. analyze how these local maxima behave when the transmission parameters186

σj vary to find the minimizers.187

3.1. Local transmission parameter: Version I. We first consider the trans-188

mission parameters σj with one free variable p,189

(3.4) σ1 = σ2 =
√
ν2p, p > 0,190

where we scale both parameters with only one diffusion coefficient ν2. Note that191

one could also scale with respect to ν1 instead. Here, the parameter p is chosen to be192

positive such that the hypothesis in Theorem 3.1 is satisfied, and thus the convergence193

of (2.3) is guaranteed. Although this choice may not be the best one, as the optimal194

transmission operators (2.5) are scaled with respect to both diffusion coefficients ν1195

and ν2, we still analyze this very simple choice both for completeness and comparison196

purposes. The convergence factor (3.3) for this choice is given by197

(3.5) ρ(ω̃, p) =

√
(p− ω̃)2 + ω̃2

(p+ µω̃)2 + µ2ω̃2
· (p− µω̃)2 + µ2ω̃2

(p+ ω̃)2 + ω̃2
,198

where µ :=
√

ν1
ν2

such that µ2 is the ratio of the two diffusion coefficients. In the199

following, we only consider the case when µ > 1, since the case when µ < 1 can be200

converted to the case µ > 1 by interchanging ν1 and ν2. We now want to find the best201

value of the transmission parameter p such that the convergence factor (3.5) can be202

minimized uniformly over the range of frequencies [ω̃1, ω̃2]. In this way, the min-max203

problem (P) becomes204

(P1) min
p>0

(
max

ω̃1≤ω̃≤ω̃2

ρ(ω̃, p)

)
.205

We first show how to restrict the range for the transmission parameter p.206
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Lemma 3.2 (Restrict parameter p). The min-max problem (P1) is equivalent to207

the problem where we minimize the convergence factor when the transmission param-208

eter p is in the interval209

p ∈


[√

2µω̃1,
√

2µω̃2

]
, if µ ≤ 2 +

√
3,[

ω̃1

√
(µ− 1)2 − δ, ω̃2

√
(µ− 1)2 + δ

]
, if µ > 2 +

√
3,

210

with δ =
√

(µ2 − 4µ+ 1)(µ2 + 1).211

Proof. We first take the partial derivative of the convergence factor (3.5) with212

respect to the transmission parameter p,213

(3.6) sign
(∂ρ
∂p

)
= sign

(
(p2 − 2µω̃2)

(
p4 − 2p2(µ− 1)2ω̃2 + 4µ2ω̃4

))
.214

The discriminant of the second polynomial p4 − 2p2(µ− 1)2ω̃2 + 4µ2ω̃4 is215

(3.7) ∆ = 4ω̃4(µ2 − 4µ+ 1)(µ2 + 1).216

According to the value of the discriminant (3.7), we divide the analysis into two cases.217

Case 1 ∆ ≤ 0: In this case, we find from (3.7) that µ ≤ 2 +
√

3, and the218

polynomial p4 − 2p2(µ− 1)2ω̃2 + 4µ2ω̃4 is always nonnegative. Thus, we have219

sign
(∂ρ
∂p

)
= sign

(
p2 − 2µω2

)
=

{
positive, if p >

√
2µω̃,

negative, if p <
√

2µω̃.
220

We observe that increasing p will make the convergence factor (3.5) decrease when221

p <
√

2µω̃1, and decreasing p will make the convergence factor (3.5) decrease when222

p >
√

2µω̃2. Therefore, p should be in the range of [
√

2µω̃1,
√

2µω̃2] to minimize the223

convergence factor ρ.224

Case 2 ∆ > 0: In this case, we find from (3.7) that µ > 2 +
√

3. From (3.6), we225

then find226

sign
(∂ρ
∂p

)
=


negative, if 0 < p2 < ω̃2

(
(µ− 1)2 − δ

)
,

positive, if ω̃2
(
(µ− 1)2 − δ

)
< p2 < 2µω̃2,

negative, if 2µω̃2 < p2 < ω̃2
(
(µ− 1)2 + δ

)
,

positive, if p2 > ω̃2
(
(µ− 1)2 + δ

)
.

227

Similar to Case 1, p2 should be in the range of [ω̃2
1((µ − 1)2 − δ), ω̃2

2((µ − 1)2 + δ)]228

to minimize the convergence factor ρ. This completes the proof.229

We now study the behavior of the convergence factor (3.5) as a function of ω̃.230

Lemma 3.3 (Local maxima of ω̃). Denoting by ω̃c := p√
2µ

, we can write the231

maximum of the convergence factor (3.5) as232

if µ ≤ 2 +
√

3, max
ω̃1≤ω̃≤ω̃2

ρ(ω̃, p) = max {ρ(ω̃1, p), ρ(ω̃2, p)} ,

if µ > 2 +
√

3, max
ω̃1≤ω̃≤ω̃2

ρ(ω̃, p) =

{
max {ρ(ω̃1, p), ρ(ω̃2, p)} , ω̃c /∈ [ω̃1, ω̃2],

max {ρ(ω̃1, p), ρ(ω̃c, p), ρ(ω̃2, p)} , ω̃c ∈ [ω̃1, ω̃2].

233
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Proof. Taking the partial derivative of the convergence factor (3.5) with respect234

to the frequency ω̃, we find235

sign
( ∂ρ
∂ω̃

)
= sign

(
− (p2 − 2µω̃2)(p4 − 2p2(µ− 1)2ω̃2 + 4µ2ω̃4)

)
,236

which has the opposite sign of (3.6). Given this similarity between the two partial237

derivatives, we also consider two cases.238

Case 1 µ ≤ 2 +
√

3: In this case, the discriminant (3.7) is non-positive, and the239

polynomial p4 − 2p2(µ− 1)2ω̃2 + 4µ2ω̃4 is always nonnegative. Then, we have240

sign
( ∂ρ
∂ω̃

)
= sign

(
2µω2 − p2

)
=

{
negative, if ω̃1 < ω̃ < ω̃c,

positive, if ω̃c < ω̃ < ω̃2,
241

meaning that the maximum of the convergence factor ρ(ω̃, p) in the range [ω̃1, ω̃2] is242

max{ρ(ω̃1, p), ρ(ω̃2, p)}.243

Case 2 µ > 2 +
√

3: In this case, we observe that,244

sign
( ∂ρ
∂ω̃

)
=



negative, if 0 < ω̃2 <
ω̃2
c

2µ

(
(µ− 1)2 − δ

)
,

positive, if
ω̃2
c

2µ

(
(µ− 1)2 − δ

)
< ω̃2 < ω̃2

c ,

negative, if ω̃2
c < ω̃2 <

ω̃2
c

2µ

(
(µ− 1)2 + δ

)
,

positive, if ω̃2 >
ω̃2
c

2µ

(
(µ− 1)2 + δ

)
.

245

As the value of ω̃c = p√
2µ

might fall outside the interval [ω̃1, ω̃2], the maximum of246

the convergence factor ρ(ω̃, p) will then be taken according to the value of ω̃c. This247

concludes the proof.248

With the help of Lemma 3.2 and Lemma 3.3, we can now identify the possible249

choices of the optimized parameter p according to the ratio µ.250

Theorem 3.4 (Optimized transmission parameter: µ ≤ 2 +
√

3). The value p251

minimizing the convergence factor (3.5) is p∗ =
√

2µω̃1ω̃2.252

Proof. In this case, the maximum in the min-max problem (P1) is determined by253

Lemma 3.3 as max {ρ(ω̃1, p), ρ(ω̃2, p)}, and we need to find its minimum with respect254

to p. According to (3.6), it is easy to check that for the transmission parameter255

p ∈ [
√

2µω̃1,
√

2µω̃2], the convergence factor ρ(ω̃1, p) is increasing with respect to p,256

and ρ(ω̃2, p) is decreasing with respect to p. Using then the equioscillation principle,257

the convergence factor can be minimized when its value at ω1 and ω2 are equal, i.e.,258

ρ(ω̃1, p
∗) = ρ(ω̃2, p

∗), which leads to the unique optimized parameter p∗ =
√

2µω̃1ω̃2.259

Theorem 3.5 (Optimized transmission parameter: µ > 2 +
√

3). Let us denote260

by261

Rc := ρ(ω̃c, p) = ρ(
p√
2µ
, p) =

√
(
√

2µ− 1)2 + 1

(
√

2 +
√
µ)2 + µ

(
√

2−√µ)2 + µ

(
√

2µ+ 1)2 + 1
, kr :=

ω̃2

ω̃1
,262

and introduce two functions of µ,263

h1(µ) :=
µ2 + 1 +

√
(µ2 − 4µ+ 1)(µ2 + 4µ+ 1)

4µ
, h2(µ) :=

(µ− 1)2 + δ

2µ
.264
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ω̃

ρ

Rc

ω̃cω̃1 ω̃2

ω̃

ρ

ω̃2

Rext

ω̃1

Rc

ω̃c

Fig. 3. Illustration of the convergence factor ρ as a function of ω̃ with different values of the
parameter p. Left: p ∈ Ic. Right: p ∈ Ir.

Moreover, we divide the possible range of p into three intervals,265

Il := [ω̃1

√
(µ− 1)2 − δ,

√
2µω̃1], Ic := [

√
2µω̃1,

√
2µω̃2],

Ir := [
√

2µω̃2, ω̃2

√
(µ− 1)2 + δ].

266

According to the value of the ratio kr, we have the following three cases:267

(i) if kr > h2(µ), then one value of the parameter p minimizing the convergence268

factor is p∗ =
√

2µω̃1ω̃2 ∈ Ic. This optimized parameter p∗ is unique when269

ρ(ω̃1, p
∗) ≥ Rc. Otherwise, the minimum of the convergence factor is also270

attained for any p chosen in a closed interval around p∗;271

(ii) if h1(µ) < kr ≤ h2(µ), the minimum of the convergence factor is attained for272

any p chosen in a closed interval around p∗;273

(iii) if kr ≤ h1(µ), then the minimum is attained with two distinct values pl and274

pr, which can be obtained by solving ρ(ω̃1, p) = ρ(ω̃2, p) in two intervals Il275

and Ir respectively. Furthermore, these two distinct minimizers are the two276

positive roots of the fourth-order polynomial277

(3.8)
p4

2
+ (µω̃2 − ω̃1)(ω̃2 − µω̃1)p2 + 2µ2ω̃2

1ω̃
2
2 = 0.278

Proof. The main idea is to look at three intervals Il, Ic and Ir and find the best279

value of the transmission parameter p in each interval separately. Let us start with280

the case when p ∈ Ic, where we have the interior local maximizer ω̃c = p√
2µ

lying in281

the interval [ω̃1, ω̃2], as shown in Figure 3 on the left. Then using Lemma 3.3, the282

maximum in the min-max problem (P1) is given by283

max
ω̃1≤ω̃≤ω̃2

ρ(ω̃, p) = max {ρ(ω̃1, p), Rc, ρ(ω̃2, p)} .284

In this case, we can show that one of the minimal convergence factors can be obtained285

through the equioscillation property, i.e., ρ(ω̃1, p) = ρ(ω̃2, p), which leads to one of286

the optimized parameters p∗. We also observe that the interior local maximum Rc287

might be greater than the convergence value at the endpoints with p = p∗, i.e.,288

Rc > ρ(ω̃1, p
∗) = ρ(ω̃2, p

∗). In that case, the maximum in the min-max problem (P1)289

is always Rc, and from its definition, Rc is constant with respect to p. Thus, the290

minimum of the convergence factor is also attained when we move the parameter p in291

an interval around p∗.292
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Solving the equality ρ(ω̃1, p) = ρ(ω̃2, p), we obtain a product of two polynomials293

of p,294

(3.9)
(
p2 − 2µω̃1ω̃2

)(p4

2
+ (µω̃2 − ω̃1)(ω̃2 − µω̃1)p2 + 2µ2ω̃2

1ω̃
2
2

)
= 0.295

For the first polynomial p2 − 2µω̃1ω̃2 in (3.9), there is always one positive root296 √
2µω̃1ω̃2 lying in the interval Ic, as

√
ω̃1ω̃2 ∈ [ω̃1, ω̃2]. For the second polyno-297

mial in (3.9), it is exactly the fourth-order polynomial (3.8), and we will study in the298

following its roots according to the value of kr.299

Now, it remains to look at the optimized parameter p∗ in the intervals Il and Ir,300

and compare the results with those of Ic. The situations in these two intervals are301

very similar, and thus it is sufficient to consider only one case, for instance, p ∈ Ir.302

In this case, the local maximum point ω̃c = p√
2µ
≥ ω̃2, and thus lies on the right of303

the interval [ω̃1, ω̃2], as shown in Figure 3 on the right. In this case, we obtain once304

again from Lemma 3.3 that305

max
ω̃1≤ω̃≤ω̃2

ρ(ω̃, p) = max {ρ(ω̃1, p), ρ(ω̃2, p)} .306

When p =
√

2µω̃2, we have ω̃c = ω̃2, and when p takes other values in Ir, ω̃c moves307

away from ω̃2, as shown in Figure 3 on the right. Substituting p =
√

2µω̃2 into (3.5)308

and using the fact that kr = ω̃2

ω̃1
, we obtain for the convergence factor at the endpoints309

ω̃1 and ω̃2310

ρ(ω̃1,
√

2µω̃2) = Rext :=

√
(
√

2µkr − 1)2 + 1

(
√

2kr +
√
µ)2 + µ

(
√

2kr −
√
µ)2 + µ

(
√

2µkr + 1)2 + 1
,

ρ(ω̃2,
√

2µω̃2) = Rc.

311

In particular, when kr > h1(µ), we have Rext > Rc. To find the optimized parameter312

p∗, we need to compare Rext and Rc to determine the minimum of the convergence313

factor ρ. According to the value of kr, we have the following three cases:314

(i) if kr > h2(µ), then as h2(µ) > h1(µ), we have kr > h1(µ), which implies315

Rext > Rc. In this case, the value ρ(ω̃1, p) increases as p increases in the inter-316

val Ir, so the convergence factor cannot be improved for p ∈ Ir, and the mini-317

mal convergence factor can only be obtained when p ∈ Ic. Furthermore, when318

kr > h2(µ), there is no positive root for the fourth-order polynomial (3.8),319

thus, only one positive root exists for the sixth-order polynomial (3.9), that320

is p∗ =
√

2µω̃1ω̃2 ∈ Ic. Since the associated ω̃c = p∗√
2µ

=
√
ω̃1ω̃2, which falls321

in the interval [ω̃1, ω̃2]; then from Lemma 3.3, the maximum will be chosen322

either Rc or ρ(ω̃1, p
∗) = ρ(ω̃2, p

∗). If ρ(ω̃1, p
∗) = ρ(ω̃2, p

∗) ≥ Rc, then this323

minimizer p∗ is unique for the min-max problem (P1). Otherwise, the max-324

imum is Rc, and the minimum of the min-max problem (P1) is also Rc. As325

Rc is independent of p, it can be attained for any p chosen in a closed interval326

around p∗;327

(ii) if h1(µ) < kr ≤ h2(µ), we obtain once again Rext > Rc. As discussed above328

in (i), the convergence factor in this case cannot be improved for p ∈ Ir,329

and the minimal value of the convergence factor will only be obtained when330

p ∈ Ic. Furthermore, the fourth-order polynomial (3.8) has one positive root331

in Ic if kr = h2(µ), and has two positive roots in Ic if kr < h2(µ). This332

implies that the sixth-order polynomial (3.9) has at least two roots in Ic, and333
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we have ρ(ω̃1, p) = ρ(ω̃2, p) ≤ Rc. Therefore, Rc is the maximum value of ρ334

for ω̃ ∈ [ω̃1, ω̃2]. Then the minimum of the convergence factor is attained for335

any p chosen in a closed interval around p∗;336

(iii) if kr ≤ h1(µ), we have Rext ≤ Rc. Therefore, we can find a unique value337

pr ∈ Ir, pr 6=
√

2µω̃2 that satisfies ρ(ω̃1, pr) = ρ(ω̃2, pr). This then results338

in the fourth-order polynomial (3.8), and we have in particular that Rc >339

ρ(ω̃1, pr) = ρ(ω̃2, pr). Furthermore, for p ∈ Ir and p 6=
√

2µω̃2, ω̃c /∈ [ω̃1, ω̃2],340

then from Lemma 3.3, the maximum will only be chosen between ρ(ω̃1, p) and341

ρ(ω̃2, p), from which we find the minimizer of the min-max problem (P1). In342

particular, this minimum ρ(ω̃1, pr) beats the best convergence factor obtained343

for p ∈ Ic.344

Based on the similarity of the two intervals Ir and Il, we have respective results for345

p ∈ Il. As all possible scenarios have been considered, this completes the proof.346

3.2. Local transmission parameter: Version II. As discussed in Section 3.1,347

the choice (3.4) of the transmission parameter σj may not be optimal, as it only scales348

with respect to one diffusion coefficient. To improve it, we consider here a second349

choice of the local transmission parameters σj350

(3.10) σ1 =
√
ν2q, σ2 =

√
ν1q, q > 0.351

This choice now takes into account both diffusion coefficients νj but still with one free352

parameter q. Once again, the convergence of the optimized Schwarz algorithm (2.3)353

is guaranteed by Theorem 3.1 with q positive. For this choice of σj , the convergence354

factor (3.3) becomes355

(3.11) ρ(ω̃, q) =

√
(q − ω̃)2 + ω̃2

(q + µω̃)2 + µ2ω̃2
· (q − ω̃)2 + ω̃2

(q + 1
µ ω̃)2 + 1

µ2 ω̃2
,356

where µ =
√

ν1
ν2

as before. The related min-max problem (P) becomes357

(P2) min
q>0

(
max

ω̃1≤ω̃≤ω̃2

ρ(ω̃, q)

)
,358

which turns out to be much easier to analyze compared with the mix-max prob-359

lem (P1), and we can find a unique optimized transmission parameter p.360

Theorem 3.6 (Optimized transmission parameter: Version II). The unique op-361

timized transmission parameter q∗ by solving the min-max problem (P2) is given by362

q∗ =
√

2ω̃1ω̃2.363

Proof. The proof follows similar ideas in the proof of Lemma 3.2 and Lemma 3.3.364

More precisely, we first take the partial derivative of the convergence factor (3.11)365

with respect to the transmission parameter q and the frequency ω̃ respectively,366

sign

(
∂ρ

∂q

)
= sign(q2 − 2ω̃2), sign

(
∂ρ

∂ω̃

)
= sign(2ω̃2 − q2).367

From the partial derivative with respect to q and ω̃, we observe that:368

(i) increasing q will make the convergence factor (3.11) decrease when q <
√

2ω̃1,369

and decreasing q will make the convergence factor (3.11) decrease when q >370 √
2ω̃2. Therefore, we can restrict the range of q to the interval [

√
2ω̃1,

√
2ω̃2];371
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(ii) from the partial derivative with respect to the frequency ω̃, the convergence372

factor ρ(ω̃, q) is decreasing for ω̃ ∈ (ω̃1,
q√
2
) and is increasing for ω̃ ∈ ( q√

2
, ω̃2).373

This implies that the maximum of the convergence factor ρ(ω̃, q) in the range374

[ω̃1, ω̃2] is max{ρ(ω̃1, q), ρ(ω̃2, q)};375

(iii) as for determining the minimum in the min-max problem (P2), we find that376

ρ(ω̃1, q) is increasing, and ρ(ω̃2, q) is decreasing for q ∈ [
√

2ω̃1,
√

2ω̃2].377

We can thus conclude that the convergence factor is minimized uniformly by equioscil-378

lation, when its value at ω1 and ω2 are equal, i.e., ρ(ω̃1, q
∗) = ρ(ω̃2, q

∗). Solving this379

equation gives the unique optimized transmission parameter q∗ =
√

2ω̃1ω̃2.380

3.3. Local transmission parameter: Version III. In Section 3.2, we showed381

a choice (3.10) taking into account both two diffusion coefficients νj and funnd a382

unique optimized transmission parameter for the min-max problem (P2). However,383

we still have only one parameter to tune with this choice for both subdomains Q1 and384

Q2. More generally, we can consider two transmission parameters,385

(3.12) σ1 =
√
ν2p, σ2 =

√
ν1q, p, q > 0.386

with two free parameters each for subdomain. The convergence factor (3.3) for this387

choice becomes388

(3.13) ρ(ω̃, p, q) =

√
(p− ω̃)2 + ω̃2

(p+ µω̃)2 + µ2ω̃2
· (q − ω̃)2 + ω̃2

(q + 1
µ ω̃)2 + 1

µ2 ω̃2
.389

To guarantee convergence of the optimized Schwarz algorithm (2.3), we state next a390

sufficient condition for the parameters p and q based on Theorem 3.1.391

Corollary 3.7 (Sufficient condition). Suppose that the transmission parame-392

ters p, q > 0 satisfy393

0 < q ≤ p if ν1 < ν2, 0 < p ≤ q if ν2 < ν1.394

Then, we have ρ(ω̃, p, q) < 1 for all ω̃ ∈ [ω̃1, ω̃2].395

The related min-max problem is396

(P3) min
p,q>0

(
max

ω̃1≤ω̃≤ω̃2

ρ(ω̃, p, q)

)
.397

In the following, we consider parameters p and q that satisfy the conditions in Corol-398

lary 3.7 to make the optimized Schwarz algorithm (2.3) converge. To optimize these399

two parameters, we follow once again similar steps as in the previous two sections,400

that is, we first restrict the range for the parameters (p, q) and locate possible values401

of local maximum point ω̃. Then, we analyze how these local maximum points behave402

when the parameters (p, q) vary. The following result provides the order between p403

and q in terms of the diffusion coefficient ratio µ.404

Lemma 3.8 (Order of p and q). If µ > 1, the min-max problem (P3) is equivalent405

to406

min
0<p≤q

(
max

ω̃1≤ω̃≤ω̃2

ρ(ω̃, p, q)

)
.407

If µ < 1, the min-max problem (P3) is equivalent to408

min
0<q≤p

(
max

ω̃1≤ω̃≤ω̃2

ρ(ω̃, p, q)

)
.409
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Proof. Generally, we can consider to solve the min-max problem in the case µ > 1.410

The other case µ < 1 turns to the case µ > 1 by interchanging p and q and replacing411

µ by 1/µ in (3.13). Thus, we assume that µ > 1 and p > q. The convergence factor412

is given by (3.13). Interchanging the values of p and q in (3.13), this becomes413

ρ(ω̃, q, p) =

√
(q − ω̃)2 + ω̃2

(q + µω̃)2 + µ2ω̃2
· (p− ω̃)2 + ω̃2

(p+ 1
µ ω̃)2 + 1

µ2 ω̃2
.414

In particular, we have415

sign
(
ρ(ω̃, p, q)2 − ρ(ω̃, q, p)2

)
= sign

(
(µ− 1)(p− q)

)
.416

In the case µ > 1 and p > q, we have ρ(ω̃, p, q) > ρ(ω̃, q, p), meaning that the417

convergence factor ρ is uniformly improved by interchanging p and q. Therefore,418

when µ > 1, it is sufficient to consider the parameters p ≤ q.419

From now on, we assume that µ > 1 and hence 0 < p ≤ q. Then, the conditions420

in Corollary 3.7 are well satisfied. In this case, we find a similar result as Lemma 3.2.421

Lemma 3.9 (Restrict p and q). When µ > 1, we can restrict the range of the422

parameters p and q to the intervals423

p ∈
[
ω̃1(
√
µ2 + 1− (µ− 1)), ω̃2(

√
µ2 + 1− (µ− 1))

]
,

q ∈
[
ω̃1

√
µ2 + 1 + (µ− 1)

µ
, ω̃2

√
µ2 + 1 + (µ− 1)

µ

]
.

424

Proof. Taking a partial derivative of the convergence factor (3.13) with respect425

to the transmission parameters p and q, we find426

sign

(
∂ρ

∂p

)
= sign

(
p2 + 2p(µ− 1)ω̃ − 2µω̃2

)
=

{
positive, if p > ω̃

(√
µ2 + 1− (µ− 1)

)
,

negative, if p < ω̃
(√

µ2 + 1− (µ− 1)
)
.

sign

(
∂ρ

∂q

)
= sign

(
µq2 − 2q(µ− 1)ω̃ − 2ω̃2

)

=


positive, if q > ω̃

√
µ2 + 1 + (µ− 1)

µ
,

negative, if q < ω̃

√
µ2 + 1 + (µ− 1)

µ
.

427

Therefore, when p < ω̃1(
√
µ2 + 1 − (µ − 1)), increasing p improves uniformly the428

convergence factor ρ, while when p > ω̃2(
√
µ2 + 1−(µ−1)), decreasing p will improve429

uniformly the convergence factor ρ. Similar arguments hold for the transmission430

parameter q. Therefore, the two restriction intervals follow.431

From the range of p and q, we observe that pq
2 is actually in the range of [ω̃2

1 , ω̃
2
2 ].432

Furthermore, once we restrict the transmission parameters p and q, we can find the433

local maxima of ω̃ as in Lemma 3.3. Note also that in practice for common choices434

of ω̃j , where ω̃2 is much larger than ω̃1, we numerically find that the convergence435

factor ρ behaves as in Figure 4 when the optimized parameters are obtained. Thus,436

we consider in the following such convergence behavior and determine the associated437

optimized parameter pair (p, q).438
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ω̃

ρ

√
pq
2

ω̃1 ω̃2

Fig. 4. Illustration of the convergence factor with respect to ω̃, when the optimized p and q are
obtained.

Lemma 3.10 (Local maxima of ω̃). For ω̃ ∈ [ω̃1, ω̃2], the maximum of the con-439

vergence factor is440

(3.14) max
ω̃1≤ω̃≤ω̃2

ρ(ω̃, p, q) = max

{
ρ(ω̃1, p, q), ρ(

√
pq

2
, p, q), ρ(ω̃2, p, q)

}
.441

Proof. Taking a partial derivative of (3.13) with respect to ω̃, we get442

(3.15)

sign

(
∂ρ

∂ω̃

)
= sign

(
(2ω̃2 − pq)×

(
ω̃2 +

(µ− 1)(γµ− 1)−
√

(µ2 + 1)(γ2µ2 + 1)

2µ
pω̃ +

γp2

2

))
,

443

where we introduced the ratio γ := q
p . When the first polynomial of ω̃ in (3.15)444

equals zero, i.e., 2ω̃2− pq = 0, we obtain that ω̃ =
√

pq
2 . To study whether this value445

is a local maximum point for ω̃ ∈ [ω̃1, ω̃2], we need to know the sign of the second446

polynomial in (3.15) near the point ω̃ =
√

pq
2 . Using the ratio γ, we have ω̃2 = γp2

2 .447

Substituting this into the second polynomial of ω̃ in (3.15), we find448

(3.16) γp2 +

√
γ

2

(µ− 1)(γµ− 1)−
√

(µ2 + 1)(γ2µ2 + 1)

2µ
p2.449

Supposing that (3.16) is nonnegative, we get450

(µ− 1)(γµ− 1)−
√

(µ2 + 1)(γ2µ2 + 1)

2µ
≥ −

√
2γ.451

We can then bound the second polynomial in (3.15) by452

ω̃2 +
(µ− 1)(γµ− 1)−

√
(µ2 + 1)(γ2µ2 + 1)

2µ
pω̃ +

γp2

2
≥

ω̃2 −
√

2γpω̃ +
γp2

2
= (ω̃ −

√
2γp

2
)2 ≥ 0.

453

This implies that the second polynomial in (3.15) is nonnegative, and the sign of the454

partial derivative only depends on the first polynomial in (3.15), that is, ρ(ω̃, p, q) is455

decreasing for ω̃ ∈ [ω̃1,
√

pq
2 ] and is increasing for ω̃ ∈ [

√
pq
2 , ω̃2]. This contradicts the456
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fact that the convergence ρ behaves as in Figure 4. Therefore, the equation (3.16) is457

negative, and the second polynomial in (3.15) is also negative when ω̃2 = pq
2 . For this458

reason, the convergence factor ρ has a local maximum in ω̃ at
√

pq
2 . According to the459

range of the transmission parameters p and q, we have
√

pq
2 ∈ [ω̃1, ω̃2]. Therefore, the460

maximum value of the convergence factor ρ(ω̃, p, q) for ω̃ ∈ [ω̃1, ω̃2] is given by (3.14).461

With the help of Lemma 3.9 and Lemma 3.10, we obtain a similar result as462

Theorem 3.4 and Theorem 3.6 that the optimized transmission parameter pair (p∗, q∗)463

can be obtained by an equioscillation of these three local maxima.464

Theorem 3.11 (Optimized transmission parameters: Version III). When µ > 1,465

the unique minimizer pair (p∗, q∗) of Problem (P3) is the solution of the system of466

the two equations467

ρ(ω̃1, p
∗, q∗) = ρ(ω̃2, p

∗, q∗), ρ(ω̃1, p
∗, q∗) = ρ(

√
ω̃1ω̃2, p

∗, q∗).468

Proof. According to the equioscillation principle, we need to have at the end-469

points of the frequency ω̃ that ρ(ω̃1, p, q) = ρ(ω̃2, p, q) to acquire the minimum of the470

convergence factor ρ. After some algebraic simplification, we obtain pq = 2ω̃1ω̃2. This471

then enables us to reduce the range of the parameter to p ∈ Ip := [ω̃1(
√
µ2 + 1− (µ−472

1)),
√

2ω̃1ω̃2], and the min-max problem (P3) becomes473

min
p∈Ip

(
max{R1(p), Rc(p)}

)
, R1(p) := ρ(ω̃1, p,

2ω̃1ω̃2

p
), Rc(p) := ρ(

√
ω̃1ω̃2, p,

2ω̃1ω̃2

p
).474

Using once again the equioscillation principle, the optimized parameters p∗ can be475

found when R1(p) = Rc(p) for p ∈ Ip, which can be reduced to the equation476

(3.17)
(p− ω̃1)2 + ω̃2

1

(p+ µω̃1)2 + µ2ω̃2
1

· (p− ω̃2)2 + ω̃2
2

(p+ µω̃2)2 + µ2ω̃2
2

=
( (p−

√
ω̃1ω̃2)2 + ω̃1ω̃2

(p+ µ
√
ω̃1ω̃2)2 + µ2ω̃1ω̃2

)2

.477

Solving then this polynomial of p, we can identify the optimized transmission param-478

eters. Note that there exist closed forms for the roots of this polynomial. Among all,479

we can list three simple solutions, that are 0 and ±i
√

2µω̃1ω̃2, the other roots are480

much more complicated. In practice, when the time step ∆t is small, the frequency481

ω̃2 =
√

π
2∆t is much greater than ω̃1 =

√
π

4T . In this case, we can use asymptotic482

analysis and find an approximate solution p∗ ≈ 2µ
µ−1 ω̃1, which lies in the interval Ip.483

Overall, for all the roots, we find one unique real root p∗ ∈ Ip, and use once again the484

fact that pq = 2ω̃1ω̃2 to find q∗, and this completes the proof.485

Remark 3.12. To avoid complex and expensive calculation, we can show numer-486

ically the graph of (3.17) in Figure 5 where p ∈ Ip with a set of (ω̃1, ω̃2, µ). It can487

be seen that there exists a unique root in (3.17) for p ∈ Ip. Note that the behavior488

illustrated in Figure 5 remains similar for all our numerical experiments with different489

sets of (ω̃1, ω̃2, µ).490

4. Numerical Experiments. We now show some numerical experiments to491

compare the performance of the three local approximations of the optimal operator σj492

discussed in Section 3. For our numerical tests, we consider solving the problem (2.1)493

in a one-dimensional space domain Ω = (0, 1) and for a fixed final time T = 5.494

Furthermore, we take a source term f = 0, a constant initial condition u0 = 20 and a495

homogenous Dirichlet boundary condition g = 0. The space domain Ω is decomposed496

into two nonoverlapping subdomains Ω1 = (0, 1
2 ) and Ω2 = ( 1

2 , 1). In all numerical497
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Fig. 5. Illustration of the left and rights part in (3.17) for p ∈ Ip.

Fig. 6. Convergence behavior of the three local transmission conditions with a mesh size ∆x =
1
40

and a time step ∆t = 1
40

. Left: ν1
ν2

= 10. Right: ν1
ν2

= 102.

experiments, the heat diffusion coefficients are ν1 = 1 and ν2 = 1
µ2 , where the ratio498

µ2 = ν1
ν2

is always chosen to be greater than 1. We use a finite element discretization499

in space with a uniform mesh size ∆x, and a backward Euler discretization in time500

with a constant time step ∆t. In the Schwarz iteration, we use the L∞ error501

en := ‖U− un‖∞,502

where U is the discrete global solution of the problem (2.1) and un is the combined503

solution of the subdomains at iteration n.504

4.1. Impact of the ratio µ. We first test the impact of the heat diffusion505

coefficient ratio µ. For a given mesh size ∆x = 1/40 and a time step ∆t = 1/40, we506

show in Figure 6 the convergence behavior of the three local transmission conditions507

for the two different ratios ν1
ν2

= [10, 102]. We observe that the convergence behavior508

of Version II and III are slightly better than that of Version I in the case µ2 = 10, as509

shown in Figure 6 on the left. However, for the ratio µ2 = 102, we observe in Figure 6510

on the right that the performance of Version II and III become much better, while511

Version I becomes less efficient. As expected, the local transmission conditions Version512
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Fig. 7. Comparison of the convergence factor ρ with respect to the frequency ω̃ for all three
versions. Left: ν1

ν2
= 10. Right: ν1

ν2
= 102.

Table 1
Number of iterations to reach a tolerance of 10−8 for four ratios ν1

ν2
.

µ2 = ν1
ν2

Version I Version II Version III

101 15 14 13
102 21 11 8
103 39 9 6
104 169 9 6

II and Version III are appropriately scaled with respect to both diffusion coefficients513

ν1 and ν2, and thus perform better; but Version I is only scaled with respect to one514

diffusion coefficient ν2, thus is less robust when the ratio is changed. Overall, the515

performance of Version III is the best for the two cases tested.516

For this test case, we also show in Figure 7 the convergence factor ρ as function of517

the frequency ω̃ of these three versions. Similarly, we observe that Version III yields518

a much smaller convergence factor compared to the other two versions, which also519

confirms the convergence behavior observed in Figure 6.520

To get better insights into the impact of the ratio, we keep the mesh size ∆x =521

1/40 and the time step ∆t = 1/40 and vary the diffusion coefficients ratio µ2. Table 1522

shows the number of iterations needed to reach a tolerance of 10−8 for the three523

versions when the diffusion coefficient ratio increases. We observe once again that the524

convergence behavior of Version II and III is better than Version I. In particular, as525

Version I is only scaled with respect to ν2 for both local transmission parameters, that526

is, σ1 = σ2 =
√
ν2p, thus when the ratio µ increases, they cannot take into account527

this change accordingly in each subdomain, and become much worse for large ratios.528

On the contrary, both Version II and III are scaled with respect to two diffusion529

coefficients ν1 and ν2, thus able to handle much easier when changing the coefficient530

ratio. They become even much more efficient and robust for a large coefficient ratio531

µ. Among all, Version III outperforms the others for all tested cases in Table 1.532

4.2. Influence of the time step ∆t. Next, we test the impact of the time step533

∆t, which will influence the high frequency value ωmax = π/∆t, thus changes the534

range of the frequency ω. We keep the same mesh size ∆x = 1/40 and consider two535

different diffusion ratios ν1
ν2

= 10 and ν1
ν2

= 103. We investigate here the impact of536
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Fig. 8. Convergence behavior of the three local transmission conditions with a given mesh size
∆x = 1

40
and four different time steps ∆t = [ 1

20
, 1
40
, 1
80
, 1
160

]. Top: ν1
ν2

= 10. Bottom: ν1
ν2

= 103.

Left: Version I. Middle: Version II. Right: Version III.

the time step ∆t in both two cases. The convergence behavior for the four different537

time steps ∆t = [ 1
20 ,

1
40 ,

1
80 ,

1
160 ] is illustrated in Figure 8. Generally speaking, we538

observe that the convergence becomes less efficient when the time step ∆t decreases.539

In particular, the convergence of Version I and II deteriorates for small time step as540

shown in Figure 8 on the left and in the middle, whereas the performance of Version541

III varies very little when decreasing the time step especially for large diffusion ratio.542

Among all the tested cases, the convergence of Version III is more stable as shown in543

Figure 8 on the right.544

4.3. Influence of the mesh size ∆x. In a similar way, we test now the impact545

of the mesh size ∆x in the case of a relatively small ratio ν1
ν2

= 10 and a large ratio546
ν1
ν2

= 103. We keep the time step ∆t = 1/40 and show in Figure 9 the convergence547

behavior for the three different mesh sizes ∆x = [ 1
20 ,

1
40 ,

1
80 ]. Compared with the548

impact of the time steps, the impact of the mesh size for all three versions is relatively549

small, especially for the diffusion ratio ν1
ν2

= 10 as shown in Figure 9 on the top. As550

for the ratio ν1
ν2

= 103, we observe in Figure 9 at the bottom that the performance551

of all three versions is slightly improved for small mesh size in contrast to when ∆t552

becomes small; and once again, the convergence of Version III is more stable among553

all tested cases as shown in Figure 9 on the right.554

4.4. Application to thermal protection systems simulation. To generalize555

our studies to practical applications, we now provide a numerical investigation of the556

thermal protection structure presented in Figure 1 in a one-dimensional framework.557

Based on the three-layer structure of the materials, we consider a natural asymmetric558

decomposition with three subdomains,559

Ω1 = (0,
1

5
), Ω2 = (

1

5
,

2

5
), Ω3 = (

2

5
, 1),560

with Ω1 the metallic skin, Ω2 the strain isolation pad, and Ω3 the thermal insulation561

material. In order to imitate differences in the heat diffusion coefficient between562
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Fig. 9. Convergence behavior of the three local transmission conditions with a given time step
∆t = 1

40
and three different mesh size ∆x = [ 1

20
, 1
40
, 1
80

]. Top: ν1
ν2

= 10. Bottom: ν1
ν2

= 103. Left:

Version I. Middle: Version II. Right: Version III.

Fig. 10. Solution of the heat distribution within a thermal protection structure (Left) and
convergence behavior of the three local transmission conditions with three asymmetric subdomains
(Right).

different materials, the heat diffusion coefficients of these three subdomains are set to563

1, 10−2, and 10−3, respectively. In practice, the external temperature of the thermal564

insulation materials is high. Hence, to account for this, we take the Dirichlet boundary565

conditions g3 = 50 at x = 1 in Ω3 and g1 = 0 at x = 0 in Ω1. We set the mesh size566

∆x = 1/100, the time step ∆t = 1/40 and keep the same initial condition u0 = 20.567

The solution of the heat distribution is illustrated in Figure 10 on the left. Com-568

pared to the behavior in Ω2 and Ω3, we observe that the heat diffuses quite fast in569

Ω1 and goes rapidly to 0. However, since the heat diffusion coefficient is rather small570

in Ω3, it well prevents the high temperature at x = 1 from passing through the ther-571

mal insulation material. Furthermore, the convergence behavior of the three local572

transmission conditions is also presented in Figure 10 on the right. In this case with573

asymmetric subdomains, we observe that the convergence behavior of Versions II and574

III are much better than that of Version I, and Version III is the best among them.575
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This is consistent with our previous numerical experiments, and shows that our ana-576

lytical results for the two-subdomain case can provide appropriate local transmission577

conditions to accelerate the simulation of more general heat transfer problems within578

typical thermal protection structures.579

5. Conclusion. We analyzed at the continuous level the optimized Schwarz580

method applied to heat transfer problems with discontinuous diffusion coefficients. We581

considered two nonoverlapping subdomains and optimized the transmission conditions582

to accelerate the convergence of the iteration. To obtain good local approximations583

of the transmission parameters, three local transmission parameters were studied. By584

solving the min-max problem associated with each transmission condition, we ob-585

tained analytical formulas for the optimized transmission parameters. These analyses586

can also be extended to higher dimension by using Fourier techniques, following tech-587

niques for the constant coefficient case in [2]. Numerical examples demonstrated that588

the optimized transmission conditions with an appropriate scaling are very effective589

and stable, and provide better convergence when the diffusion coefficient has a large590

discontinuity. However, the performance of all three local transmission conditions591

becomes rather similar when the discontinuity becomes small. In addition, we also592

observe in our numerical experiments that both the mesh size and the time step can593

influence the convergence, especially when the transmission parameters are not well594

scaled with respect to the diffusion coefficients. To better understand the dependency595

of the convergence on the mesh size and the time step, one needs to analyze the596

optimized Schwarz method of the discrete level in the time and space directions for597

such heat transfer problems. From a practical viewpoint, we showed that Version598

III can be used to obtain effective and robust transmission conditions to solve heat599

transfer problems with heterogeneous diffusion coefficients. Moreover, the numerical600

experiment with asymmetric decomposition and multiple subdomains also reveals the601

potential of the present method for realistic thermal protection structures.602
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