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OPTIMIZED SCHWARZ METHODS FOR HETEROGENEOUS HEAT
TRANSFER PROBLEMS

MARTIN J. GANDER*, LIU-DI LU*, AND TINGTING WU

Abstract. We present here nonoverlapping optimized Schwarz methods applied to heat transfer
problems with heterogeneous diffusion coefficients. After a Laplace transform in time, we derive the
error equation and obtain the convergence factor. The optimal transmission operators are nonlocal,
and thus inconvenient to use in practice. We introduce three versions of local approximations for
the transmission parameter, and provide a detailed analysis at the continuous level in each case to
identify the best local transmission conditions. Numerical experiments are presented to illustrate
the performance of each local transmission condition. As shown in our analysis, local transmission
conditions, which are scaled appropriately with respect to the heterogeneous diffusion coefficients,
are more efficient and robust especially when the discontinuity of the diffusion coefficient is large.

Key words. domain decomposition, optimized Schwarz methods, heterogenous heat equation,
waveform relaxation, convergence analysis.

MSC codes. 65Mb5, 66M12, 65Y05,

1. Introduction. Hypersonic vehicles often travel at speeds exceeding five times
of the speed of sound, and due to this extreme speed, these vehicles are exposed to
high aerodynamic and thermal loads [1]. To ensure the safety of the vehicle, thermal
protection structures must be designed and applied on the outer surface of the vehicle
such that the inner structural temperature can stay in a sustainable range [16]. Hence,
it is vital to study the heat transfer problems in these critical areas to obtain the
temperature of the vehicle. A typical illustration of thermal protection structures is
shown in Figure 1. Depending on the thermal protection techniques, several layers
of materials can be applied over the vehicle skin, see e.g. [21] for a review. Each
layer of the thermal protection structures may consist of different materials, such as
aluminum and ceramic [15], and the diffusion coefficients can be very different from
one material to another.

Numerical methods such as the finite element method and the boundary element
method are often used to study such heat transfer problems, yielding reliable re-
sults [22, 6]. However, simulating heat transfer across various materials for critical
areas of the vehicle can be time consuming. In [12, 13], the Reduced Models method
is used to solve a nonlinear heat conduction problem, which drastically reduces the
computing time. Given the geometric structure presented in Figure 1, nonoverlapping
domain decomposition methods are natural candidates to introduce parallelism and
accelerate the numerical solution of heat transfer problems with heterogenous diffu-
sion coefficients. In [4], the authors developed a domain decomposition, or artificial
subsectioning technique, along with a boundary—element method, to solve such heat
conduction problems, showing the potential of domain decomposition.

The idea of domain decomposition was initially introduced by Hermann Amandus
Schwarz in [20] to prove rigorously the existence of solution for Laplace problems. His
method has then been developed as a computational tool with the arrival of parallel
computing, see e.g. [7] for a historical review. Unlike dealing with homogeneous heat
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Fic. 1. Illustration of thermal protection systems.

transfer problems where a continuous diffusion function is considered over the entire
domain, the heterogeneity of the material between two subdomains require special at-
tention for heterogeneous heat transfer problems. In [19, 5], optimized Schwarz meth-
ods are analyzed for solving heterogeneous Laplace problems. A reaction—diffusion
problem with heterogenous coefficients is studied in [10]. In [11], the authors con-
sider using optimized Schwarz methods for solving unsymmetric advection—diffusion—
reaction problems with strongly heterogenous and anisotropic diffusion coefficients.
The balancing Neumann-Neumann method is applied in [14] to treat linear elastic-
ity systems with discontinuous coefficients. In [8], the authors extend the study to
parabolic heat transfer problems with a constant diffusion coefficient using Dirichlet—
Neumann and Neumann—Neumann waveform relaxation methods. Optimized Schwarz
waveform relaxation methods are considered in [17, 18] to solve heterogeneous heat
transfer problems. More recently, the authors in [3] analyzed at the continuous level
of the Dirichlet—Neumann waveform relaxation method applied to heterogeneous heat
transfer problems.

In the current study, we focus on the optimized Schwarz waveform relaxation
methods to solve heat transfer problems with heterogeneous diffusion coefficients. It
has already been observed in [17, 18] that the optimal transmission operators are
nonlocal in time, and thus are inconvenient to use in practise. For this reason, we
introduce here three local approximations of the transmission operators by taking
into account the heterogenous diffusion coefficients. As these local approximations
are scaled differently with respect to the diffusion coefficients, we analyze in detail the
min-max problem associated with each approximation and find analytical formulas
for the optimized local transmission parameters. In particular, we show that the
equioscillation property does not always lead to the best transmission parameters,
as reported also in [8]. Thus, one needs to be careful when addressing the min-max
problems to characterize the best transmission parameters. In addition, we also show
the importance of using a good scaling to be able to derive an efficient and robust
solver in the case of a largely heterogeneous media.

Our paper is organized as follows: in Section 2, we introduce the heterogeneous
heat transfer problem and optimized Schwarz methods. A Laplace analysis is ap-
plied to the error equations to determine the convergence factor. In Section 3, we
introduce three local approximations of the optimal transmission operators and pro-
vide a detailed analysis of each associated min-max problem. Numerical experiments
are presented in Section 4 to illustrate the performance of these local transmission
conditions.
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F1G. 2. 2D dllustration of the decomposition.

2. Model problem. To model the heat transfer between different materials as
shown in Figure 1, we consider the heterogeneous heat equation

Ou=V-wVu)+f inQ:=0Qx(0,7T),
(2.1) u = ug on g := Q x {0},
u=g on ¥ :=900Q x (0,T),

where Q C R?, d = 1,2,3, with its boundary 9Q, T is the fixed final time, v is
the heat diffusion function, f is the source term, wg is the initial condition, and g
represents some Dirichlet boundary conditions. Furthermore, we consider a natural
decomposition of two nonoverlapping subdomains 2; and €y such that Q1 N Qs =T,
with T the interface between €27 and s, as shown in Figure 2. The heat diffusion
function v is assumed to be a piecewise constant function in space, where v(x) = v;
for x € Q; with v; > 0, j = 1,2. For the sake of brevity, we will omit the initial and
boundary conditions in the following.
The following physical coupling conditions are applied on the interface

U] = U, V10n, U1 = —Valn,uz, on 3 :=T x (0,7),

to ensure the continuity of the solution and its normal flux between the subdomains.
Here, the unit outward normal vector is denoted by n;. According to these two
physical coupling conditions, we can write the optimized Schwarz method as: for the
iteration index k =1, 2,..., one solves

du ™ = v Auft 4+ fo in Qq,
22) (100, + S1)ul ™! = (v20a, + S1)uf  on %,
. Opus™ = vaAustt + fo in Qo

(1200, — S2)ub ™! = (1100, — So)uf Tt on %,

with Q; := Q; x (0,T), 5 = 1,2. The system (2.2) is then completed by the given
initial and boundary conditions of the problem (2.1). Here, f; denotes the source term
f restricted to the space-time domain @);, and S; is a linear space-time operator. As
illustrated in Figure 2, the decomposition is only in the z-direction, we thus consider
in the following the one dimensional case, i.e., 2 = R, to focus on the transmission
condition at the interface = 0. This will simplify the computations and allow us to
obtain a more compact analytical form. In this case, the two space-time subdomains
are Q1 = (—00,0) x (0,7) and Q2 = (0,00) x (0,T"), and the linear operator S;
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4 M.J. GANDER, L.-D. LU, T. WU

is only related to the time variable. Although the following convergence analyses
are for the two-subdomain case only, our numerical experiments in Section 4 for
multiple subdomains with different choices of the diffusion coefficient v show that our
theoretical results are also very useful in more general situations.

2.1. Laplace Analysis. To understand the convergence behavior of the opti-
mized Schwarz algorithm (2.2), we will study the associated error equations with
solutions which go to zero when x goes to infinity. We denote the error by e?(m, t) :=
u(e,t) — uf(m, t), 7 = 1,2, which satisfies by linearity the equation

8te§ =0 (u —uk

J):VjA(u—uj)—VjAe in Q.

To focus on the transmission condition in space at the interface I', we apply a Laplace
transform in the time variable t,

é?(m,s) = E{ef(a},t)} :/0 e?(:c,t)eﬂt dt,

where s € C is a complex number. We study the associated error equation of (2.2)
after the Laplace transform, that is,

(1:,3) = ulamel N, s) in Qq,
(110, + o1 (s )) 0,s) = (v20, + o1 (s )62(0,5),
23 seb T (x,5) = 120,085 (2, 5) in Qa,
(1/28:,3 — oa(s )) k+1(0,s) = (1/13 — 0'2(8)) k+1(0 s),

where o(s) are the Laplace symbols of the operators S;. The general solutions are
given by

Vs JVER
e s) = CIF ()67, b (a,5) = O (s)e™ 5.
Applying the transmission conditions in (2.3), we obtain the convergence factor for
{éf}k:1,2,...
o1(8) — /V2\/5 o3(s) — NZVE
o1(8) +ViVs  0a(s) +r2y/s |

It is straightforward from (2.4) that we can get optimal convergence by choosing

(2.5) o1(s) = Vinvs,  0a(s) = V1Vs.

This leads to convergence in two iterations, since the errors at iteration k = 2 vanish.
However, the best choice is nonlocal in time due to the term /s, and it is expensive to
compute and inconvenient for the implementation. Therefore, the goal of the current
study is to find good local approximations of ¢;(s) that can still give fast convergence.

(2.4) p(s,01,09) :=

3. Approximation of the optimal operators. The idea is to fix a class of
possible transmission conditions C and uniformly optimize the convergence factor
over a range of frequencies for our problem. This corresponds to solve the min-max
problem

(3.1) min (maxp(s,ohag)) .
ojeC s
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OSM FOR HETEROGENOUS HEAT TRANSFER PROBLEMS 5

To find local approximations of o;(s), we consider in the following o; € R, independent
of the time variable. In this way, the convergence factor (2.4) becomes

Ul—ﬁ\/g.UQ—\/Z\/g
O'1+\/Z\/§ (72+\/£\/§

For the Laplace transform, we have s = n + iw with n,w € R. This implies that

2 2 _ 2 2
Vs = F—H‘w:\/n—h/g +w j:i\/ n+\/217 +w.

(3.2) p(s,01,092) =

Since /s is an even function of the imaginary part w, the convergence factor p is
also an even function of w. Therefore, we only consider w > 0 in the analysis. Now
the imaginary part w = 0 corresponds to a constant function in time, and since the
error function eé? (z,t) equals zero at t = 0, the constant function cannot be part of
the error function in the iteration. From a numerical viewpoint, when solving the
problem in the time interval [0, 7], we can heuristically state that w € [Wmin, Wmax]s
where the smallest frequency wmin is 5%, and the largest frequency is related to the
time step At, that is wmax = A3. We refer to [9, Figure 3.17] for more details about
this statement. Thus, we can set 7 = 0 as we only solve the min-max problem (3.1)
away from w = 0. Denoting by w := \/%, we get

ﬁ:,/%ii,/%:wim.

The new parameter w € [W1,ws] with Wy = (/=8e = /7= and Wy = /== =
\/5a7- The convergence factor (3.2) can then be simplified to

(3.3) p(W,01,09) = (01 — \/12W0)? + 1pWw? . (02 — V11W)? + 11?2
| o (01 +Vi@)2 +11@? (02 + /1W0)? + 1pw?’

To find good local operators, we can restrict the range of o;. More precisely, suppose
o1 > 0 and substitute o1 by —oy in (3.3), we have

~ (01 + /12W)?2 + 1vw? (09 — /V1W)? + 11?2
p(w7_01702) = ~5 ~5 ~\2 ~5-
(0'1 — W ) + 1w (0'2 + ng) —+ vow

This implies that p(@w, —01,02) > p(@0,01,02), when o1 > 0. Therefore, for fast
convergence, o1 > 0 should be chosen. In a similar way, we can restrict the range of
09 to o3 > 0. The min-max problem (3.1) thus becomes

p i w :
) iy (o 2, oG 01

Before analyzing the convergence of several choices for local transmission parameters
oj, we give sufficient conditions on o; that will guarantee convergence of the optimized
Schwarz algorithm (2.3).

THEOREM 3.1 (Sufficient condition). Under the conditions

0<oy <oy, ifvr <um,
0<o1 < o9, Zfl/g <,
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6 M.J. GANDER, L.-D. LU, T. WU

the optimized Schwarz algorithm (2.3) converges for all @ € [Wy,ws] and the conver-
gence factor (3.3) satisfies
p(@,ohog) < 1.

Proof. To guarantee convergence of the optimized Schwarz algorithm (2.3), we
want from (3.3) that

~)2 ~2 ~)2 ~2
- 01 — \/VoW)* + Vow 09 — \/V1W)* + 1w
P(MUl,Uz)\/( ) : ( )

= — — — < 1,
(01 + V1w)? + 1102 (02 + /12W0)?% + vow?

which can be simplified to

UNJ(\/E— \/E)(Ul — 0'2) — 0102 — 2@@&2 < 0.

A simple sufficient condition for this inequality to hold is (\/71 — \/72)(01 — 02) <0,
which is clearly not a necessary condition. This concludes the proof. 0

In the following subsections, we consider three choices for the transmission pa-
rameters o; and their related min-max problems (P). In all cases, Theorem 3.1 will be
satisfied to guarantee convergence of optimized Schwarz algorithm (2.3) when using
these local transmission conditions. To treat the min-max problems (P) and find the
best transmission parameters o;, we follow three steps similar as used in [5]:

1. restrict the range of the transmission parameter o; with respect to the fre-
quencies wq and wo;

2. identify possible local maximum points & for the min-max problem (P);

3. analyze how these local maxima behave when the transmission parameters
o; vary to find the minimizers.

3.1. Local transmission parameter: Version I. We first consider the trans-
mission parameters o; with one free variable p,

(34) 01202:\/5 ) p>07

where we scale both parameters with only one diffusion coefficient v5. Note that
one could also scale with respect to vy instead. Here, the parameter p is chosen to be
positive such that the hypothesis in Theorem 3.1 is satisfied, and thus the convergence
of (2.3) is guaranteed. Although this choice may not be the best one, as the optimal
transmission operators (2.5) are scaled with respect to both diffusion coefficients 14
and vy, we still analyze this very simple choice both for completeness and comparison
purposes. The convergence factor (3.3) for this choice is given by

. p—w)P+w?  (p—pw)? + prw?
(3-5) p(w, p) = ( V2 4+ 2052 2 o2 0
(p+pw)?* + p2w?  (p+w)*+w
where p = Z—; such that p? is the ratio of the two diffusion coefficients. In the

following, we only consider the case when p > 1, since the case when p < 1 can be
converted to the case p > 1 by interchanging v, and v5. We now want to find the best
value of the transmission parameter p such that the convergence factor (3.5) can be
minimized uniformly over the range of frequencies [01,Ws]. In this way, the min-max
problem (P) becomes

(P1) min( max p(w,p)).

p>0 \ @ <w<as

We first show how to restrict the range for the transmission parameter p.

This manuscript is for review purposes only.
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LEMMA 3.2 (Restrict parameter p). The min-mazx problem (P1) is equivalent to
the problem where we minimize the convergence factor when the transmission param-
eter p is in the interval

[\/ﬂ&l, \/ﬂ@ﬂ, ifﬂ <2+ \/37
PV EVE 17 8 17 73] 24 VA,

with § = /(12 — 4+ 1) (2 + 1).

Proof. We first take the partial derivative of the convergence factor (3.5) with
respect to the transmission parameter p,

(3.6) sign(%’z) = sign((p2 —2u”) (p* — 2p* (n — 1)°@% + 4/12&4)).

The discriminant of the second polynomial p* — 2p?(u — 1)20? + 4p?w* is
(3.7) A =4 — dp+ 1) (p? + 1).

According to the value of the discriminant (3.7), we divide the analysis into two cases.
Case 1 A < 0: In this case, we find from (3.7) that g < 2 + /3, and the
polynomial p* — 2p?(u — 1)20? + 4p@* is always nonnegative. Thus, we have

positive, if p > \/2uw,
negative, if p < \/2uw@.

sign(g—g) = Sign(p2 — 2,uw2) = {

We observe that increasing p will make the convergence factor (3.5) decrease when
p < +/2ul1, and decreasing p will make the convergence factor (3.5) decrease when
p > \/2uwsy. Therefore, p should be in the range of [\/2uw1, v/211W2] to minimize the
convergence factor p.

Case 2 A > 0: In this case, we find from (3.7) that u > 2 + /3. From (3.6), we
then find

negative, if 0 < p? < @2((;1 —1)%2 - 5),
) p positive, if Gz((u - 5) < p? < 2u?,
s1gn<—> = : o ~2 _ 2 _ ~2 2
dp negative, if 2uw* < p? <@ ((p—1)* +9),
positive, if p* > &*((u—1)* +6).
Similar to Case 1, p? should be in the range of [@?((u — 1)% — ), @3((u — 1)? + 6)]
to minimize the convergence factor p. This completes the proof. 0

We now study the behavior of the convergence factor (3.5) as a function of @.

LEMMA 3.3 (Local maxima of @). Denoting by @, := \/LzTu we can write the
mazimum of the convergence factor (3.5) as

ifu<2++3, max_ p(w,p) = max {p(w1,p), p(@2,p)},

w1 <w<ws
{ma’x{p(whp)a p(a}27p)} 7&}0 ¢ [al7a2]7

if > 2+ 3, w,p) = ~ _ - IO
Yo 5,225, PO:P) max {p(@1,p), p(@ec,p), p(@2,p)}, e € [W1,Wa).

w1 <w<wa

This manuscript is for review purposes only.
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Proof. Taking the partial derivative of the convergence factor (3.5) with respect
to the frequency w, we find

. (0 . ~ - -
Slgn(a%) = Slgn( — (p* = 2u@”) (p* — 2p* (1 — 1)°@% + 4u2w4))7

which has the opposite sign of (3.6). Given this similarity between the two partial
derivatives, we also consider two cases.

Case 1 1 < 2+ v/3: In this case, the discriminant (3.7) is non-positive, and the
polynomial p* — 2p?(u — 1)20? + 4p2@* is always nonnegative. Then, we have

sign(%) = sign(2uw2 —p2) = {

meaning that the maximum of the convergence factor p(w,p) in the range [Wy, ws] is

max{p(&1,p), p(@2,p)}.
Case 2 ;1 > 2+ +/3: In this case, we observe that,

negative, if W) <w < we,

positive, if w0, < W < Wa,

~2
negative, if 0 <@? < ;}—C((u — 1) - 5),
I
positive, if a—g((,u —1)?—6) <@’ <&}
(52 " )
SiIgn | —< | = ~
dw . o 2 W 2
negative, if W <w* < 2—((u —1)*+9),
I
o o Wh 2
positive, if &° > 2—((# —1)*+4).
I

As the value of &, = % might fall outside the interval [Wy, W], the maximum of
the convergence factor p(w,p) will then be taken according to the value of W.. This

concludes the proof. 0

With the help of Lemma 3.2 and Lemma 3.3, we can now identify the possible
choices of the optimized parameter p according to the ratio pu.

THEOREM 3.4 (Optimized transmission parameter: u < 2 + \/§) The value p
minimizing the convergence factor (3.5) is p* = \/2uw1@s.

Proof. In this case, the maximum in the min-max problem (P1) is determined by
Lemma 3.3 as max {p(&1,p), p(@s,p)}, and we need to find its minimum with respect
to p. According to (3.6), it is easy to check that for the transmission parameter
p € [V2ul1, v/21w], the convergence factor p(wy,p) is increasing with respect to p,
and p(Wsq, p) is decreasing with respect to p. Using then the equioscillation principle,
the convergence factor can be minimized when its value at w; and wy are equal, i.e.,
p(w1,p*) = p(Wa, p*), which leads to the unique optimized parameter p* = \/2uw;w».0

THEOREM 3.5 (Optimized transmission parameter: p > 2+ 1/3). Let us denote
by

oo (V21241 (V2 )P @
R, ._p(wc’p)_p(\/ﬂvp)_\/(\54‘\/[7)24‘# (\/ﬂ+1)2+17 ky = &17

and introduce two functions of p,

1+ (2 —Ap+ (A + 1)

ha(p) ™

This manuscript is for review purposes only.
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Fia. 3. Illustration of the convergence factor p as a function of w with different values of the
parameter p. Left: p € I.. Right: p € I,.

Moreover, we divide the possible range of p into three intervals,

I = [(‘N‘}l \Y% (/1' - 1)2 -0, \/ﬂa}l]v I = [\/ﬂ&)\i \/ﬂ@ZL
I = /202, Ga /(1 — 1)2 + 6.

According to the value of the ratio k., we have the following three cases:

(i) if ky > hao(p), then one value of the parameter p minimizing the convergence
factor is p* = \/2uwiwo € I.. This optimized parameter p* is unique when
p(@1,p*) > R.. Otherwise, the minimum of the convergence factor is also
attained for any p chosen in a closed interval around p*;

(i) if ha(p) < kr < ho(p), the minimum of the convergence factor is attained for
any p chosen in a closed interval around p*;

(iii) if kr < hi(u), then the minimum is attained with two distinct values p; and
pr, which can be obtained by solving p(w1,p) = p(Wa,p) in two intervals I
and I, respectively. Furthermore, these two distinct minimizers are the two
positive Toots of the fourth-order polynomial

2~2~2 0

4
% + (e — @) (@We — pin)p® + 2p°Ww w5 =

(3.8)
Proof. The main idea is to look at three intervals I;, I. and I, and find the best
value of the transmission parameter p in each interval separately. Let us start with

the case when p € I, where we have the interior local maximizer w. = ﬁ lying in

the interval [Wy,ws], as shown in Figure 3 on the left. Then using Lemma 3.3, the
maximum in the min-max problem (P1) is given by

_max  p(w,p) = max{p(w1,p), Re, p(w2,p)}-

w1 <w<ws
In this case, we can show that one of the minimal convergence factors can be obtained
through the equioscillation property, i.e., p(@w1,p) = p(Ws,p), which leads to one of
the optimized parameters p*. We also observe that the interior local maximum R,
might be greater than the convergence value at the endpoints with p = p*, i.e.,
R. > p(@1,p*) = p(@2,p*). In that case, the maximum in the min-max problem (P1)
is always R., and from its definition, R, is constant with respect to p. Thus, the
minimum of the convergence factor is also attained when we move the parameter p in
an interval around p*.

This manuscript is for review purposes only.
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Solving the equality p(@1,p) = p(Ws, ), we obtain a product of two polynomials
of p,

4
(39) (p2 — 2/1(:}1(:12) (% + (‘LLZDQ - (:]1)((:}2 - u&l)pz + 2/12(:1%&%) = 0.

For the first polynomial p? — 2u@@, in (3.9), there is always one positive root
V/2uihwy lying in the interval I., as /Wiwy € [W1,ws]. For the second polyno-
mial in (3.9), it is exactly the fourth-order polynomial (3.8), and we will study in the
following its roots according to the value of k.

Now, it remains to look at the optimized parameter p* in the intervals I; and I,.,
and compare the results with those of I.. The situations in these two intervals are
very similar, and thus it is sufficient to consider only one case, for instance, p € I,..
In this case, the local maximum point w, = ﬁ > Wy, and thus lies on the right of
the interval [y, @s], as shown in Figure 3 on the right. In this case, we obtain once
again from Lemma 3.3 that

_max_ p(w,p) = max {p(w1,p), p(w2,p)} -

w1 <w<ws2
When p = +/2uws, we have @, = Wy, and when p takes other values in I,., @, moves
away from wa, as shown in Figure 3 on the right. Substituting p = +/2uws into (3.5)
and using the fact that &, = %, we obtain for the convergence factor at the endpoints
(,Nul and C~L12

5 o (V2pke =12 41 (V2ke — )2 +
p(wh\/ﬂwQ)_Rezt = \/(\/ikr+\/ﬁ)2+u (mkr+1)2+17

p(LNLJ27 \/ 2#@2) == Rc-

In particular, when k, > hq(p), we have Ryt > R.. To find the optimized parameter
p*, we need to compare R.;; and R, to determine the minimum of the convergence
factor p. According to the value of k,., we have the following three cases:

(i) if kr > ho(p), then as ha(p) > hi(p), we have k. > hy(u), which implies
Rzt > R.. In this case, the value p(wq, p) increases as p increases in the inter-
val I, so the convergence factor cannot be improved for p € I,., and the mini-
mal convergence factor can only be obtained when p € I.. Furthermore, when
k. > ha(u), there is no positive root for the fourth-order polynomial (3.8),
thus, only one positive root exists for the sixth-order polynomial (3.9), that
is p* = \/2uwiwy € I.. Since the associated w, = \5—2*7 = v/Ww1wsy, which falls
in the interval [Wy,@s]; then from Lemma 3.3, the maximum will be chosen
either R. or p(w1,p*) = p(We,p*). If p(w1,p*) = p(@Ws2,p*) > R, then this
minimizer p* is unique for the min-max problem (P1). Otherwise, the max-
imum is R, and the minimum of the min-max problem (P1) is also R.. As
R, is independent of p, it can be attained for any p chosen in a closed interval
around p*;

(ii) if h1(p) < k. < ho(p), we obtain once again R,; > R.. As discussed above
in (i), the convergence factor in this case cannot be improved for p € I,
and the minimal value of the convergence factor will only be obtained when
p € I.. Furthermore, the fourth-order polynomial (3.8) has one positive root
in I. if k. = ho(p), and has two positive roots in I, if k. < ho(p). This
implies that the sixth-order polynomial (3.9) has at least two roots in I.., and
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we have p(@y,p) = p(@2,p) < R.. Therefore, R, is the maximum value of p
for @ € [Wy,ws]. Then the minimum of the convergence factor is attained for
any p chosen in a closed interval around p*;

(iii) if k. < hy(p), we have Rept < R.. Therefore, we can find a unique value
pr € I, pr # /2uws that satisfies p(wy, pr) = p(Wa, pr). This then results
in the fourth-order polynomial (3.8), and we have in particular that R. >
p(@W1, pr) = p(Ws, p,). Furthermore, for p € I,. and p # 2uws, @, ¢ [01,Ws],
then from Lemma 3.3, the maximum will only be chosen between p(w;, p) and
p(Wa, p), from which we find the minimizer of the min-max problem (P1). In
particular, this minimum p(&1, p,) beats the best convergence factor obtained

for p € I..
Based on the similarity of the two intervals I, and I;, we have respective results for
p € I;. As all possible scenarios have been considered, this completes the proof. 0

3.2. Local transmission parameter: Version II. As discussed in Section 3.1,
the choice (3.4) of the transmission parameter ¢; may not be optimal, as it only scales
with respect to one diffusion coefficient. To improve it, we consider here a second
choice of the local transmission parameters o;

(3.10) o1 = /g, 02 =\/11q, ¢>0.

This choice now takes into account both diffusion coeflicients v; but still with one free
parameter g. Once again, the convergence of the optimized Schwarz algorithm (2.3)
is guaranteed by Theorem 3.1 with ¢ positive. For this choice of o;, the convergence
factor (3.3) becomes

~ q—w)?+w? q—w)?+w?
(311) p(wv(J) = ( ~)2 2~9 ' ( 1~)2 1 ~2°
(q+ p@)? + 1267 (g + L0)2 + 50
where =, /71 as before. The related min-max problem (P) becomes

P2 min (  max w, ,

(°2) iy (oG )

which turns out to be much easier to analyze compared with the mix-max prob-
lem (P1), and we can find a unique optimized transmission parameter p.

THEOREM 3.6 (Optimized transmission parameter: Version II). The unique op-
timized transmission parameter q* by solving the min-maz problem (P2) is given by
q* =V 2&71@2.

Proof. The proof follows similar ideas in the proof of Lemma 3.2 and Lemma 3.3.
More precisely, we first take the partial derivative of the convergence factor (3.11)
with respect to the transmission parameter ¢ and the frequency @ respectively,

. dp . 2 ~2 . Ip . ~2 2
sign | =— | =sign(q” — 2w”), sign| == | = sign(2w” — .
g ( 8(1) gn(q ), sign| o= gn( )
From the partial derivative with respect to ¢ and w, we observe that:
(i) increasing ¢ will make the convergence factor (3.11) decrease when ¢ < v/2@,

and decreasing ¢ will make the convergence factor (3.11) decrease when ¢ >
V/25. Therefore, we can restrict the range of ¢ to the interval [v/2w1, v/2@s];
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(ii) from the partial derivative with respect to the frequency w, the convergence
factor p(@, q) is decreasing for w € (wy, %) and is increasing for @ € (%, Wa).
This implies that the maximum of the convergence factor p(w, ¢) in the range
W1, @s] is max{p(w1,q), p(@2,q)};
(iii) as for determining the minimum in the min-max problem (P2), we find that
p(@1,q) is increasing, and p(@s, q) is decreasing for ¢ € [v/2w1, v/2Ws].
We can thus conclude that the convergence factor is minimized uniformly by equioscil-
lation, when its value at wy and wq are equal, i.e., p(@1,¢*) = p(@2,¢*). Solving this
equation gives the unique optimized transmission parameter ¢* = /2w ws. ]

3.3. Local transmission parameter: Version III. In Section 3.2, we showed
a choice (3.10) taking into account both two diffusion coefficients v; and funnd a
unique optimized transmission parameter for the min-max problem (P2). However,
we still have only one parameter to tune with this choice for both subdomains @), and
Q2. More generally, we can consider two transmission parameters,

(3.12) o1 = \/tep, 02 = \/v1iq, P, q>0.

with two free parameters each for subdomain. The convergence factor (3.3) for this
choice becomes

- (p—w)? + w? (¢ —w)? +w?
3.13 D, q) = ~ ~3 ~ ~2°
( ) p(@,p,q) \/(p+uw)2 +u2? (g + iw)z + %wz

To guarantee convergence of the optimized Schwarz algorithm (2.3), we state next a
sufficient condition for the parameters p and ¢ based on Theorem 3.1.

COROLLARY 3.7 (Sufficient condition). Suppose that the transmission parame-
ters p, ¢ > 0 satisfy

0<qg<p ifri<ve, 0<p<gq ifvs <uy.

Then, we have p(@,p,q) <1 for all @ € [y, Ws).

The related min-max problem is

2,¢>0 \ @01 <w<ws>

(P3) min( max p(a,p,q)>.

In the following, we consider parameters p and g that satisfy the conditions in Corol-
lary 3.7 to make the optimized Schwarz algorithm (2.3) converge. To optimize these
two parameters, we follow once again similar steps as in the previous two sections,
that is, we first restrict the range for the parameters (p, ¢) and locate possible values
of local maximum point w. Then, we analyze how these local maximum points behave
when the parameters (p,q) vary. The following result provides the order between p
and ¢ in terms of the diffusion coefficient ratio p.

LEMMA 3.8 (Order of p and q). If p > 1, the min-maz problem (P3) is equivalent
to

min ( max p(&,p,q)).

0<p<qg \ @1 <w<ws

If u < 1, the min-mazx problem (P3) is equivalent to

0<q<p \01<0<w2

min ( max p(@,p,q)).
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Proof. Generally, we can consider to solve the min-max problem in the case p > 1.
The other case p < 1 turns to the case u > 1 by interchanging p and ¢ and replacing
w by 1/p in (3.13). Thus, we assume that g > 1 and p > ¢g. The convergence factor
is given by (3.13). Interchanging the values of p and ¢ in (3.13), this becomes

(~ ) (q_a)2+w2 (p_a})2+a2
w’ 5 = — = . — P .
p\w,q,p (C]+MUJ)2 + u2a? (p-l— iw)Q + ﬁwz

In particular, we have

sign (p(@,p,q)* — p(@,q,p)*) = sign((n — 1)(p — q))-

In the case p > 1 and p > ¢, we have p(@,p,q) > p(w,q,p), meaning that the
convergence factor p is uniformly improved by interchanging p and . Therefore,
when p > 1, it is sufficient to consider the parameters p < q. ]

From now on, we assume that p > 1 and hence 0 < p < g. Then, the conditions
in Corollary 3.7 are well satisfied. In this case, we find a similar result as Lemma 3.2.

LEMMA 3.9 (Restrict p and ¢q). When u > 1, we can restrict the range of the
parameters p and q to the intervals

pe [V +1—(u—1), G(vVp?+1—(n-1)],

VR T+ (=) 41+ (-1
ge oYt M(u )’w2 0 u(u )]_

Proof. Taking a partial derivative of the convergence factor (3.13) with respect
to the transmission parameters p and ¢, we find

0 - -
sign ((,;) = sign (p® + 2p(p — 1w — 2uw2)
positive, if p > & ( pw—1)

— 1)

Vi +1—(
negative, if p <@(y/p?+1— (p
sign <p> = sign (pg® — 2q(p — 1)@ — 2@2)

VAT -1
positive, if ¢ > w AL (e ),
1

2+l -1
negative, if ¢ <w el )
I

);
).

Therefore, when p < @1(y/p?+1 — (u — 1)), increasing p improves uniformly the
convergence factor p, while when p > o (y/p? + 1—(u—1)), decreasing p will improve
uniformly the convergence factor p. Similar arguments hold for the transmission
parameter gq. Therefore, the two restriction intervals follow. O
2
]

From the range of p and g, we observe that £l is actually in the range of (@7, @
Furthermore, once we restrict the transmission parameters p and ¢, we can find the
local maxima of @ as in Lemma 3.3. Note also that in practice for common choices
of Wj, where Wy is much larger than w;, we numerically find that the convergence
factor p behaves as in Figure 4 when the optimized parameters are obtained. Thus,
we consider in the following such convergence behavior and determine the associated
optimized parameter pair (p, q).
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R 4
&

w1 Pg Wa

Fi1G. 4. Illustration of the convergence factor with respect to w, when the optimized p and q are
obtained.

LEMMA 3.10 (Local maxima of @). For @ € [Wy,Ws], the mazimum of the con-
vergence factor is

(3.14) max_ p(w,p,q) —maX{p(cTJl,p,q), p(\/%,p,q), p@z,p,q)}~

w1 <w<ws
Proof. Taking a partial derivative of (3.13) with respect to @, we get
dp ~2
ign ( == | = sign((2@* — pqg)x
sign (8w> sngn(( W —pq)

(3:15) (k=D —=1) = /(> + (%> +1) §
@ + o+ 2 )),

2 Wty

where we introduced the ratio v := %. When the first polynomial of @ in (3.15)

equals zero, i.e., 20? — pg = 0, we obtain that @ = \/%TZ. To study whether this value
is a local maximum point for W € [w1,ws], we need to know the sign of the second
polynomial in (3.15) near the point @ = \/pzj. Using the ratio 7, we have &? = 'YT”Z
Substituting this into the second polynomial of @ in (3.15), we find

(3.16) wu-gW—WW—U—XW+nwm+nﬁ

Supposing that (3.16) is nonnegative, we get

(h=D(yp—1) - 2\;{(#2 OGP /5

We can then bound the second polynomial in (3.15) by

71 71 _ 2 1 2,,2 1 2
gy =Dom-1) V(2 + 122 + )pmrw .
21 2
2
/2
&Qﬂ/2fypa+%:@f%)220.

This implies that the second polynomial in (3.15) is nonnegative, and the sign of the
partial derivative only depends on the first polynomial in (3.15), that is, p(@,p, q) is
decreasing for W € [w1, /%] and is increasing for @ € [/ %], w2]. This contradicts the
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fact that the convergence p behaves as in Figure 4. Therefore, the equation (3.16) is
negative, and the second polynomial in (3.15) is also negative when &2 = EL. For this
reason, the convergence factor p has a local maximum in w at \/pgq . According to the
range of the transmission parameters p and ¢, we have /& € [0y, &s]. Therefore, the
maximum value of the convergence factor p(@, p, q) for @ € [y, ws] is given by (3.14).0

With the help of Lemma 3.9 and Lemma 3.10, we obtain a similar result as
Theorem 3.4 and Theorem 3.6 that the optimized transmission parameter pair (p*, ¢*)
can be obtained by an equioscillation of these three local maxima.

THEOREM 3.11 (Optimized transmission parameters: Version IIT). When p > 1,
the unique minimizer pair (p*,q*) of Problem (P3) is the solution of the system of
the two equations

p(whp*v q*) :p(627p*5 q*)v p(alvp*a q*) :p( w1&23p*7 q*)

Proof. According to the equioscillation principle, we need to have at the end-
points of the frequency w that p(@1,p, q) = p(@2,p, ¢) to acquire the minimum of the
convergence factor p. After some algebraic simplification, we obtain pqg = 2wiw,. This
then enables us to reduce the range of the parameter to p € I, := [w1(\/p? + 1 — (u—
1)), V2w ws], and the min-max problem (P3) becomes
ZA0) Relp) 1= p(v/Eron,p, 2

min (maX{Rl(p)7 RC(p)})’ Rl(p) = p(ahp’ )

pelp

Using once again the equioscillation principle, the optimized parameters p* can be
found when Ry (p) = R.(p) for p € I,, which can be reduced to the equation

(p—&jl)Q +L’D% (p—b~02)2 +(:)§ (p— &1&2)2 +C~01L’52 2
(3.17) : - <( v )

(p+ pen)? + p20f  (p+ pw2)? + p2@3  \(p+ p/@109)? + 201 @y

Solving then this polynomial of p, we can identify the optimized transmission param-
eters. Note that there exist closed forms for the roots of this polynomial. Among all,
we can list three simple solutions, that are 0 and 4i1/2uw;iws,, the other roots are
much more complicated. In practice, when the time step At is small, the frequency
Wy = \/5a; is much greater than w; = \/g. In this case, we can use asymptotic
analysis and find an approximate solution p* = %Ql, which lies in the interval I,.
Overall, for all the roots, we find one unique real root p* € I,,, and use once again the
fact that pg = 2w1w» to find ¢*, and this completes the proof. ]

Remark 3.12. To avoid complex and expensive calculation, we can show numer-
ically the graph of (3.17) in Figure 5 where p € I, with a set of (W1,&2, p). It can
be seen that there exists a unique root in (3.17) for p € I,. Note that the behavior
illustrated in Figure 5 remains similar for all our numerical experiments with different
sets of (W1, W, ).

4. Numerical Experiments. We now show some numerical experiments to
compare the performance of the three local approximations of the optimal operator o;
discussed in Section 3. For our numerical tests, we consider solving the problem (2.1)
in a one-dimensional space domain = (0,1) and for a fixed final time T = 5.
Furthermore, we take a source term f = 0, a constant initial condition ug = 20 and a
homogenous Dirichlet boundary condition g = 0. The space domain 2 is decomposed

into two nonoverlapping subdomains ©; = (0, %) and Qo = (%, 1). In all numerical
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F1G. 5. Illustration of the left and rights part in (3.17) for p € I,,.
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F1a. 6. Convergence behavior of the three local transmission conditions with a mesh size Ax =

4—10 and a time step At = %. Left: Z—; = 10. Right: Z—; =102.

experiments, the heat diffusion coefficients are vy = 1 and vy = %, where the ratio
pu? = Z—; is always chosen to be greater than 1. We use a finite element discretization

in space with a uniform mesh size Ax, and a backward Euler discretization in time
with a constant time step At. In the Schwarz iteration, we use the L error

e” = ||U — u"| oo,

where U is the discrete global solution of the problem (2.1) and u™ is the combined
solution of the subdomains at iteration n.

4.1. Impact of the ratio . We first test the impact of the heat diffusion
coefficient ratio p. For a given mesh size Az = 1/40 and a time step At = 1/40, we
show in Figure 6 the convergence behavior of the three local transmission conditions
for the two different ratios 2! = [10, 102]. We observe that the convergence behavior
of Version II and III are slightly better than that of Version I in the case u? = 10, as
shown in Figure 6 on the left. However, for the ratio u? = 102, we observe in Figure 6
on the right that the performance of Version II and III become much better, while
Version I becomes less efficient. As expected, the local transmission conditions Version
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Fic. 7. Comparison of the convergence factor p with respect to the frequency @ for all three
versions. Left: YL = 10. Right: Z—; =102.

v2

Number of iterations to reach a tolerance of 108 for four ratios Z—z

TABLE 1

1

u? = % Version I | Version II | Version III
10! 15 14 13
102 21 11 8
103 39 9 6
104 169 9 6

IT and Version III are appropriately scaled with respect to both diffusion coefficients
11 and vy, and thus perform better; but Version I is only scaled with respect to one
diffusion coefficient 5, thus is less robust when the ratio is changed. Overall, the
performance of Version III is the best for the two cases tested.

For this test case, we also show in Figure 7 the convergence factor p as function of
the frequency @ of these three versions. Similarly, we observe that Version III yields
a much smaller convergence factor compared to the other two versions, which also
confirms the convergence behavior observed in Figure 6.

To get better insights into the impact of the ratio, we keep the mesh size Ax =
1/40 and the time step At = 1/40 and vary the diffusion coefficients ratio 2. Table 1
shows the number of iterations needed to reach a tolerance of 1078 for the three
versions when the diffusion coefficient ratio increases. We observe once again that the
convergence behavior of Version II and III is better than Version I. In particular, as
Version I is only scaled with respect to vs for both local transmission parameters, that
is, 01 = 09 = /v2p, thus when the ratio p increases, they cannot take into account
this change accordingly in each subdomain, and become much worse for large ratios.
On the contrary, both Version II and III are scaled with respect to two diffusion
coefficients 1 and vs, thus able to handle much easier when changing the coefficient
ratio. They become even much more efficient and robust for a large coefficient ratio
1. Among all, Version III outperforms the others for all tested cases in Table 1.

4.2. Influence of the time step At. Next, we test the impact of the time step
At, which will influence the high frequency value wpax = m/At, thus changes the
range of the frequency w. We keep the same mesh size Az = 1/40 and consider two
different diffusion ratios l’j—; = 10 and Z—; = 10%. We investigate here the impact of
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Fic. 8. Convergence behavior of the three local transmission conditions with a given mesh size
Az = ﬁ and four different time steps At = [%, %, %, ﬁ]. Top: ,% = 10. Bottom: 1% = 105.
Left: Version I. Middle: Version II. Right: Version III.

the time step At in both two cases. The convergence behavior for the four different
time steps At = [%, 4—10, %, ﬁ] is illustrated in Figure 8. Generally speaking, we
observe that the convergence becomes less efficient when the time step At decreases.
In particular, the convergence of Version I and II deteriorates for small time step as
shown in Figure 8 on the left and in the middle, whereas the performance of Version
III varies very little when decreasing the time step especially for large diffusion ratio.
Among all the tested cases, the convergence of Version III is more stable as shown in

Figure 8 on the right.

4.3. Influence of the mesh size Az. In a similar way, we test now the impact
of the mesh size Ax in the case of a relatively small ratio Z—; = 10 and a large ratio

a = 103. We keep the time step At = 1/40 and show in Figure 9 the convergence

behavior for the three different mesh sizes Az = [%7 4—10, %]. Compared with the
impact of the time steps, the impact of the mesh size for all three versions is relatively
small, especially for the diffusion ratio Z—; = 10 as shown in Figure 9 on the top. As
for the ratio Z—; = 102, we observe in Figure 9 at the bottom that the performance
of all three versions is slightly improved for small mesh size in contrast to when At
becomes small; and once again, the convergence of Version III is more stable among

all tested cases as shown in Figure 9 on the right.

4.4. Application to thermal protection systems simulation. To generalize
our studies to practical applications, we now provide a numerical investigation of the
thermal protection structure presented in Figure 1 in a one-dimensional framework.
Based on the three-layer structure of the materials, we consider a natural asymmetric
decomposition with three subdomains,

1 12 2

g)a 92:(535), 93:(

with €1 the metallic skin, 25 the strain isolation pad, and 23 the thermal insulation
material. In order to imitate differences in the heat diffusion coefficient between

0 = (0,
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F1c. 9. Convergence behavior of the three local transmission conditions with a given time step
At = % and three different mesh size Az = [2—10, %, %]. Top: Z—; = 10. Bottom: Z—; =103, Left:
Version I. Middle: Version II. Right: Version III.
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Fic. 10. Solution of the heat distribution within a thermal protection structure (Left) and
convergence behavior of the three local transmission conditions with three asymmetric subdomains
(Right).

different materials, the heat diffusion coefficients of these three subdomains are set to
1, 1072, and 1073, respectively. In practice, the external temperature of the thermal
insulation materials is high. Hence, to account for this, we take the Dirichlet boundary
conditions g3 = 50 at = 1 in 23 and g1 = 0 at x = 0 in Q;. We set the mesh size
Az =1/100, the time step At = 1/40 and keep the same initial condition ug = 20.
The solution of the heat distribution is illustrated in Figure 10 on the left. Com-
pared to the behavior in 25 and €13, we observe that the heat diffuses quite fast in
Q; and goes rapidly to 0. However, since the heat diffusion coefficient is rather small
in Qg, it well prevents the high temperature at z = 1 from passing through the ther-
mal insulation material. Furthermore, the convergence behavior of the three local
transmission conditions is also presented in Figure 10 on the right. In this case with
asymmetric subdomains, we observe that the convergence behavior of Versions II and
IIT are much better than that of Version I, and Version III is the best among them.
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This is consistent with our previous numerical experiments, and shows that our ana-
lytical results for the two-subdomain case can provide appropriate local transmission
conditions to accelerate the simulation of more general heat transfer problems within
typical thermal protection structures.

5. Conclusion. We analyzed at the continuous level the optimized Schwarz
method applied to heat transfer problems with discontinuous diffusion coefficients. We
considered two nonoverlapping subdomains and optimized the transmission conditions
to accelerate the convergence of the iteration. To obtain good local approximations
of the transmission parameters, three local transmission parameters were studied. By
solving the min-max problem associated with each transmission condition, we ob-
tained analytical formulas for the optimized transmission parameters. These analyses
can also be extended to higher dimension by using Fourier techniques, following tech-
niques for the constant coefficient case in [2]. Numerical examples demonstrated that
the optimized transmission conditions with an appropriate scaling are very effective
and stable, and provide better convergence when the diffusion coefficient has a large
discontinuity. However, the performance of all three local transmission conditions
becomes rather similar when the discontinuity becomes small. In addition, we also
observe in our numerical experiments that both the mesh size and the time step can
influence the convergence, especially when the transmission parameters are not well
scaled with respect to the diffusion coefficients. To better understand the dependency
of the convergence on the mesh size and the time step, one needs to analyze the
optimized Schwarz method of the discrete level in the time and space directions for
such heat transfer problems. From a practical viewpoint, we showed that Version
IIT can be used to obtain effective and robust transmission conditions to solve heat
transfer problems with heterogeneous diffusion coefficients. Moreover, the numerical
experiment with asymmetric decomposition and multiple subdomains also reveals the
potential of the present method for realistic thermal protection structures.
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