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Summary

In this paper, we focus on a periodic resource allocation problem applied on a dynam-
ical system which comes from a biological system. More precisely, we consider a
system with N resources and N activities, each activity use the allocated resource
to evolve up to a given time T > 0 where a control (represented by a given permu-
tation) will be applied on the system to re-allocate the resources. The goal is to find
the optimal control strategies which optimize the cost or the benefit of the system.
This problem can be illustrated by an industrial biological application, namely the
optimization of a mixing strategy to enhance the growth rate in a microalgal race-
way system. A mixing device, such as a paddle wheel, is considered to control the
rearrangement of the depth of the algae cultures, hence the light perceived at each
lap. We prove that if the dynamics of the system is periodic, then the period corre-
sponds to one re-allocation whatever the order of the involved permutation matrix is.
A nonlinear optimization problem for one re-allocation process is then introduced.
Since N! permutations need to be tested in the general case, it can be numerically
solved only for a limited number of N . To overcome this difficulty, we introduce
a second optimization problem which provides a suboptimal solution of the initial
problem, but whose solution can be determined explicitly. A sufficient condition to
characterize cases where the two problems have the same solution is given. Some
numerical experiments are performed to assess the benefit of optimal strategies in
various settings.
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1 INTRODUCTION

Considering a fixed amount of the resources and a set of activities, we look for a distribution strategy which optimizes a given
objective function. This is the so-called resource allocation problem1. Due to its simple structure, this problem is encountered
in a number of applications including load scheduling2, manufacturing3, portfolio selection4 and computational biological
problem5. Periodic versions have also been considered. The periodic scheduling problem was first addressed in6 the framework
of operation research. Later on, the concept of proportionate fairness constraint has been introduced7 to design allocation
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algorithms which schedule the resources in proportion to task weight. Periodic resource allocation problems are also used in
ecology, e.g., in8,9 where the authors investigate long-term behaviour of harvesting policies for a forest composed of multiple
species with different maturity ages. In such problems, the state can also be described in terms of dynamical systems. As
an example, hospital resources (hospital beds) continuous allocation is studied in10 as a strategy to control the dengue fever,
associated with a patient recovery rate. In the same way, a population of a single species with logistic growth in a patchy
environment is considered in11. The problem here consists of the maximization of the total population by re-distributing the
limited resources among the patches.
In general, resource allocation problems are related to the assignment of a resource to a sequence of two or more tasks.

However, we focus in this paper on problems whereN resources are assigned toN tasks. Additionally, we consider permanent
regimes which are often relevant in the case of long term processes, as, e.g., crop harvesting, scheduling of appliances, etc.
Moreover, here we also account for the dynamical evolution of the system between two re-allocations, further increasing the
difficulty of the analysis. In this way, our work is related to the fields of switched systems12, impulse control13,14 and to periodic
control15. These techniques are usually used to tackle stabilization issues. In this paper, we consider them in view of optimization
issues.
In order to model the allocation process in the periodic system, we study the following allocation problem : Consider a system

withN resources andN activities, each activity uses the allocated resource to evolve during a given time T > 0. At time T , an
extra control is applied to re-allocate the resources according to a given permutation. It is proven that if the dynamics of the
system is periodic, then it is one period corresponding to one allocation process whatever the order of the considered control
strategy is. A nonlinear problem is then introduced in order to find the optimal control strategies. Since N! permutations need
to be tested in the general case, it can be numerically solved only for a limited number of N . To overcome this difficulty, we
propose a second optimization problem - a typical assignment problem - associated with a suboptimal solution of the initial
problem for which its optimal control can be determined explicitly. In addition, a sufficient condition is provided to characterize
cases when the two problems have the same solution.
For the sake of concreteness, we illustrate our theory by an industrial biological application, namely the mixing of microalgae

cells in a cultivation set-up. This emerging application has a promising potential, ranging from food to renewable energy16,17,18

and is also involved in many high added value commercial applications such as pharmaceutical processes, cosmetics or pig-
ments19,20. Outdoor algal cultivation is mainly carried out in open raceway ponds exposed to solar radiation. This hydrodynamic
system is set in motion by a paddle wheel, which homogenizes the medium for ensuring an equidistribution of the nutrients and
guarantees that each cell will have regularly access to the light21. Microalgae then grow between two re-distributions depending
on the light intensity received in their layer. Different strategies have been proposed to optimize the production of the biomass
in this algal raceway system22,23,24,25,26,27. First studies about the mixing policy have shown that a well-chosen mixing strategy
may improve the algal growth28,29. These works focus on algal production in a non-flat raceway system and assume constant
velocity of the fluid and periodicity of the photosynthetic activity. The influence of the mixing strategy on the algal productivity
is investigated only numerically by identifying the paddle wheel as a mixing device and modeling it by permutation30. The effi-
ciency of a strategy is evaluated through a cost functional related to the mean algal growth rate. Due to the high computational
cost of finding the optimum for this problem, an approximation of the objective functional is proposed, for which the optimum
can be determined explicitly.
In the current study, we extend these preliminary works to a general class of resource allocation problems, identify the periodic

solution of the underlying dynamical system as an asymptotic regime and develop a complete theory of the proposed approx-
imation. In particular, we propose a criterion to compare the solutions of the original problem to the ones of the approximate
resource allocation problem. New numerical results complete this study.
The paper is organized as follows. We introduce our periodic resource allocation problem and the related dynamical system in

Section 2. More precisely, the optimization problem together with a simplified version based on an approximate functional are
introduced in Subsection 2.2. Some technical lemmas are given in Subsection 2.3 and a criterion to guarantee that the original
problem and its approximation share the same solution is given in Subsection 2.4. Some implementation remarks conclude this
section in Subsection 2.5. Section 3 is devoted to the application to algal production. We present the models associated with the
biological and the mixing device in a raceway pond in Subsection 3.1. The considered parameters are given in Subsection 3.2.
We illustrate the performance of our control strategies by numerical experiments in Subsection 3.3. Finally, we conclude with
some perspectives of our work in Section 4.

Notation. In what follows, ℕ denotes the set of non-negative integers. The cardinal of a set E is denoted by #E. Given a
matrixM , we denote by ker(M) its kernel, byM⊤ the corresponding transposed matrix and byMi,j its coefficient (i, j). In the
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same way,Wn denotes the n-th coefficient of a vectorW , whereas ‖W ‖∞ denotes its infinite norm, i.e. ‖W ‖∞ ∶= maxn |Wn|.
The scalar product in ℝN , is denoted by ⟨⋅, ⋅⟩, and we denote by N the identity matrix of sizeN .
The set of permutations of N elements, i.e, the set of bijections of {1,⋯ , N}, is denoted by SN . The set of permutation

matrices of size N ×N is denoted by N . Recall that a permutation matrix is a matrix which has exactly one entry equal to 1
in each row and each column with the other entries being zero. A permutation matrix P is associated to a permutation � by the
formula Pi,j = 1 if i = �(j) and Pi,j = 0 otherwise. As consequence, ifW ∈ ℝN , (PW )n = W�−1(n) for all n ∈ {1,⋯ , N}.

2 DESCRIPTION OF THE CONTROL PROBLEM AND OPTIMIZATION

Given a period T , an initial time T0 and a sequence (Tk)k∈ℕ, with Tk∶ = kT + T0, we consider the following resource allocation
process: let (rn)Nn=1 ∈ ℝN representing a set ofN resources which are assumed to be constant over each time interval [Tk, Tk+1)
and renewed at each time Tk. These resources can be allocated to N activities denoted by (xn)Nn=1 where xn = xn(t) consists
of a real-valued function of time. Given a sequence of permutations (�k)k∈ℕ, with �k ∈ SN , suppose that on the time interval
[Tk, Tk+1), the resource r�k(n) is assigned to the activity xn, the latter evolving according to a linear dynamics

ẋn(t) = −a(r�k(n))xn(t) + b(r�k(n)), (1)

where a ∶ ℝ → ℝ+ and b ∶ ℝ → ℝ+ are given.
In this paper, we focus on an allocation strategy of the form �k = �k, where � ∈ SN is fixed and �k denotes the k−times

repeated composition of � with itself. Such an assumption expresses that the same allocation device is used at each period of
time. In this setting, the resource assignment process is such that at the end of each time period [Tk, Tk+1), the resource allocated
to the activity n is re-allocated to the activity �(n), or equivalently, that at the end of each time period [Tk, Tk+1), the resource n
is re-allocated to the activity �−1(n).
Because the resource (rn)Nn=1 are constant with respect to time, the solution of (1) can be computed explicitly. More precisely,

denote by x(t) ∈ ℝN the time dependent vector whose components are given by xn(t), i.e., x(t) ∶= (x1(t),⋯ , xN (t))⊤. The
process we consider reads

x(t) =Δ(t)x(Tk) + �(t), t ∈ [Tk, Tk+1) (2)
x(Tk) =Px(T −k ), (3)

where Δ(t) is a time dependent diagonal matrix with Δnn(t) ∶= e−a(r�k(n))(t−Tk), �(t) is a time dependent vector with

�n(t) ∶=
b(r�k(n))
a(r�k(n))

(1 − e−a(r�k(n))(t−Tk)), (4)

and P ∈ N the permutation matrix associated with �. In this way, k ∈ ℕ represents the number of re-assignments and
T −k represents the moment just before re-assignment. The goal of the current section is to optimize a mean benefit (defined in
Section 2.2) related to this reallocation process.

Remark 1. All the results presented in this paper also hold for non-constant (or even discontinuous) but T−periodic resources
(rn(t))Nn=1 ∈ ℝN . In the case of non-constant resources, the matrix Δ(t) and the vector b(t) cannot be expressed explicitly. Such
a technical issue can easily be handled using numerical integration and do not impact the ideas and analyses developed in this
work. Hence, we consider constant resources for the clarity of the presentation.

2.1 Periodic control regime assumption
DefineD ∶= Δ(T ) and v ∶= �(T ) and consider as a control the permutation matrix P ∈ N involved in (3). According to (2–3),
we have

x(Tk+1) = Px(T −k+1) = PDx(Tk) + Pv. (5)
In the next sections of this paper, we focus on a T -periodic solution of (2–3). We will motivate this choice by two theorems.

These require the following preliminary result.

Lemma 1. Given k ∈ ℕ and P ∈ N , the matrix N − (PD)k is invertible.
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Proof. Assume N − PD is not invertible, then there exists a non-null vector X ∈ ker(N − PD), which means X = PDX.
Let us denote dn = Dnn, n = 1,… , N . Denoting by � the permutation associated with P , we find that (DX)n = dnXn and
Xn = (PDX)n = d�(n)X�(n). In the same way, we have Xn =

(

(PD)kX
)

n = d�k(n)… d�(n)X�k(n). Denoting by K the order of �,
we have

Xn =
(

(PD)KX
)

n = d�K (n)… d�(n)X�K (n) = d�K (n)… d�(n)Xn.
Since, 0 < dn < 1 for n = 1,… , N , then 0 < d�K (n)… d�(n) < 1. This implies that Xn = 0, which contradicts our assumption.
Therefore, N − PD is invertible. That N − (PD)k is invertible for all k > 0 can be proved in much the same way.

We can now state a convergence result about
(

x(Tk)
)

k∈ℕ.

Theorem 1. There exists a unique T−periodic solution xper(t) of (2–3), satisfying

xper(Tk) = (N − PD)−1Pv. (6)

Moreover, for any arbitrary initial condition x(T0), we have limk→+∞ x(Tk) = xper(Tk).

Proof. The existence of a constant sequence (xper(Tk))k∈ℕ satisfying (5) follows from Lemma 1, applied with k = 1. Solving (5)
in this setting gives (6). Let us then define the sequence (ek)k∈ℕ by ek ∶= x(Tk) − (N − PD)−1Pv. Since

ek+1 = (PD)ek, (7)

we find that
‖ek+1‖∞ = ‖PDek‖∞ = ‖Dek‖∞ ≤ dmax‖e

k
‖∞,

where dmax ∶= maxn=1,…,N (dn) < 1. The result follows.

This theorem shows that after a transient response, the system x(t) can be correctly approximated by xper(t). This asymptotic
regime can be obtained in another way.

Theorem 2. We keep the notation of the previous lemma. Given k0 > 0, assume that the state x is k0T -periodic in the sense
that after k0 times of re-assignment, the state of each activity returns to its initial state xn(Tk0) = xn(T0). Then x = xper.

Proof. Since x is assumed to be k0T -periodic, we have e0 = ek0 = (PD)k0e0. According to Lemma 1, N −(PD)k0 is invertible,
meaning that e0 = 0. Combining this with (7), we get that ek = 0, for k ∈ ℕ. The result follows.

A natural choice for k0 would be the order K of the permutation associated with P , which is the smallest integer greater than
one such that PK = N . Indeed, in this case K is the minimal number of re-assignments required to recover the initial order
of the components of x. The previous result shows that every KT−periodic evolution will actually be T−periodic. In the next
section, we show that this property is decisive to formulate an optimization problem. In addition, the computations to solve the
optimization problem will be reduced, since the CPU time required to assess the quality of a permutation will not depend on its
order.

2.2 Objective function
We still consider an arbitrary control P ∈ N and the vector of activities x(t) defined by (2–3). Assume that the mean benefit
of the process on the time period [Tk, Tk+1), i.e., after k times of re-assignment, reads

f k ∶= ⟨w, 1
T

Tk+1

∫
Tk

x(t)dt⟩, (8)

where w ∈ ℝN is a weighting vector expressing the relative importance of each activity. Then the average benefit after K
re-assignment operations is given by

Jav ∶=
1
K

K−1
∑

k=0
f k. (9)
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Such a formalization has been used by Cominetti et al. in the context of forest maintenance and exploitation8. In this work,
an infinite sum is considered to study the total benefit of all the re-assignment operations. Replace now x(t) in (8), by its
expression (2–3). We get

f k = 1
T
⟨w, D̃x(Tk) + ṽ⟩ =

1
T
(

⟨D̃w, x(Tk)⟩ + ⟨w, ṽ⟩
)

,

where D̃nn = ∫ Tk+1
Tk

Δnn(t)dt and ṽn = ∫ Tk+1
Tk

�n(t)dt. The only term which depends on the re-assignment process is x(Tk).
From now on, we focus of on the asymptotic regime introduced in Theorem 1, meaning that we assume that x = xper. Because

of (6), one finds
⟨D̃w, xper(Tk)⟩ = ⟨D̃w, (N − PD)−1Pv⟩,

meaning that the benefit is the same for each re-assignment process. As a consequence, f k does not depend on k and that the
average benefit Jav (see (9)) satisfies

Jav(P ) =
1
T
(J (P ) + ⟨w, ṽ⟩) ,

where
J (P ) ∶= ⟨u, (N − PD)−1Pv⟩, (10)

with u = D̃w. It follows that maximizing Jav with respect to P is equivalent to maximizing J with respect to P . Since #N =
#SN = N!, an exhaustive test of all the possible controls is out of range for large value of N . Hence, the maximization of
J cannot be tackled in realistic cases where numerical accuracy must be kept. To overcome this difficulty, we propose in this
section an approximation of this problem whose optimum can be determined explicitly, with a negligible computational cost.
For this purpose, we expand the functional (10) as follows

⟨u, (N − PD)−1Pv⟩ =
+∞
∑

l=0
⟨u, (PD)lPv⟩ = ⟨u, P v⟩ +

+∞
∑

l=1
⟨u, (PD)lPv⟩,

and consider as an approximation the first term of this series, namely

J approx(P ) ∶= ⟨u, P v⟩. (11)

Without loss of generality (see Appendix B for the details), we assume that the entries of u are sorted in ascending order, meaning
that u1 ≤… ≤ uN . Note that optimizing J approx amounts to solving an assignment problem31. Indeed, we have for example

min
P∈N

J approx(P ) = min
�∈SN

N
∑

n=1
unv�(n).

The latter expression reads as an assignment problem associated with the cost matrix31, p.5 [uivj](i,j=1,…,N). To make our
exposition self-contained, we give the solution of this problem in Section 2.4.

Remark 2. A fairly common approach to deal with permutation matrices in discrete or combinatorial optimization is to relax
the problem by extending the optimization to the set of bistochastic matrices. As an example, this technique corresponds to the
Kantorovitch relaxation considered in optimal transport32 (see also33 for a more general presentation of the linear case, and34

for a similar strategy in the context of quantum chemistry). This approach allows the optimization to be performed by gradient-
type methods. At the theoretical level, the goal is then to prove that the convergence takes place towards extremal points, i.e.
permutation matrices. We have tested this approach on the nonlinear problem (10). Our experiments indicate that the obtained
limits are neither always permutation matrices nor optimal, which leads us to conjecture the existence of local (non-global)
maxima for this extended form of J .

2.3 Some technical lemmas
Let us state some preliminary properties about the permutation set SN that we will use in the next section. Given k ∈ ℕ, and
two arbitrary permutations �, �̃ ∈ SN , let us define

Ek(�, �̃) ∶=
{

n = 1,… , N | �k(n) ≠ �̃k(n)
}

,
Gk(�, �̃) ∶={n = 1,… , N | ∀k′ ≤ k, �k′(n) = �̃k′(n)},

and mk ∶= #Ek(�, �̃). We have the following result.

Lemma 2. For k ∈ ℕ, we have mk ≤ km1 and #Gk(�, �̃) ≥ max(N − km1, 0).
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Proof. To shorten notation, we write in this proof Ek instead of Ek(�, �̃), Ek+1 instead of Ek+1(�, �̃), Gk instead of Gk(�, �̃),
etc. From the definition of Ek, we have:

Ek+1 =
(

({1,… , N} ⧵ E1) ∩ Ek+1
)

∪ (E1 ∩ Ek+1).

The first subset in the right-hand side satisfies

�
(

({1,… , N} ⧵ E1) ∩ Ek+1
)

= �̃
(

({1,… , N} ⧵ E1) ∩ Ek+1
)

⊂ Ek,

so that #
(

({1,… , N} ⧵ E1) ∩ Ek+1
)

≤ #Ek =∶ mk.
On the other hand, (E1 ∩Ek+1) ⊂ E1, hence #(E1 ∩Ek+1) ≤ m1. As a consequence, mk+1 ≤ mk+m1. This implies mk ≤ km1.
As for Gk, we have:

Gk = (Gk+1 ∩ Gk) ∪ (�−k(E1) ∩ Gk). (12)
Indeed, let n ∈ Gk, i.e, �k(n) = �̃k(n). If �k+1(n) = �̃k+1(n), then n ∈ Gk+1. Otherwise, �k+1(n) ≠ �̃k+1(n), meaning that
�k+1(n) ≠ �̃(�k(n)) which implies �k(n) = �̃k(n) ∈ E1, so that n ∈ �−k(E1). This proves (12), and we get as a by-product

(Gk+1 ∩ Gk) ∩ (�−k(E1) ∩ Gk) = ∅.

Moreover, since Gk+1 ⊂ Gk, we get Gk+1 ∩ Gk = Gk+1. It follows that

#Gk = #Gk+1 + #{�−k(E1) ∩ Gk}.

Since #{�−k(E1) ∩ Gk} ≤ #E1 = m1, we obtain #Gk+1 ≥ #Gk − m1. The result follows.

In what follows, a transposition inSN between two elements i ≠ j is denoted by (i j). By abuse of notation, (n n) denotes the
identity for all n = 1,… , N . Given a permutation � ∈ SN , we consider the sequence of permutations (�n)n=0,…,N defined by

�0 = �
�n = (n �n−1(n))◦�n−1.

(13)

For all n ≤ N , it immediately follows from this definition that

�n|{1,…,n} = Id|{1,…,n} and �N−1 = �N = Id,

where Id denote the identity permutation. Let us give two additional properties of this sequence.

Lemma 3. Let � ∈ SN and (�n)n=1,…,N−1 defined by (13). One has:

{i = 1,… , N | �(i) = i} =
{

i = 1,… , N | ∀n = 1,… , N − 1, �n(i) = i
}

.

Proof. Given i with 1 ≤ i ≤ N , such that �(i) = i, let us prove that �n(i) = i by induction on n. Since �0 = �, the result holds
for n = 0. Suppose it holds at a rank n − 1, meaning that �n−1(i) = i. By definition of (�n)n=1,…,N , one has:

�n(i) = (n �n−1(n))◦�n−1(i) = (n �n−1(n))(i).

If i = n, then (n �n−1(n))(i) = �n−1(n) = �n−1(i) = i. If i = �n−1(n), then i = �n−1(i) = �n−1(n) and i = n, so that we conclude
as in the previous case. In the other cases, �n(i) = �n−1(i) = i. The result follows.

Lemma 4. Let i, j ∈ {1,… , N}, with i < j. Let � ∈ SN , with � = (i j)◦�′, where (i j) and �′∈ SN have disjoint supports,
i.e., �′(i) = i and �′(j) = j. The sequence defined by (13) satisfies �j = �j−1.

Proof. From (13), one has
�j = (j �j−1(j))◦�j−1.

We need to prove that �j−1(j) = j. Since �′ and (i j) are disjoint, then for n < i, �n = (i j)◦�′n, where �
′
n is defined by (13), with

the initial term �′0 = �
′. In particular, �n(i) = j for n < i.

In the case n = i, one has
�i = (i �i−1(i))◦�i−1 = (i j)◦�i−1 = (i j)◦(i j)◦�′i−1 = �

′
i−1.

In particular, �i(j) = j.
Finally, since �′i−1(i) = i, we find that �′i = �

′
i−1, and it follows by induction that for n > i, �n = �′n, which means �n(j) = j.

In particular �j−1(j) = j. This concludes the proof.

The sequence (�n)n=0,…,N can be used to decompose J (N ) − J (P ) for an arbitrary P ∈ N , as stated in the next Lemma.
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Lemma 5. Let � ∈ SN and P ∈ N the associated permutation matrix, we have:

⟨u, (N − P )v⟩ =
N−1
∑

n=1
(un − u�−1n−1(n))(vn − v�n−1(n)).

Proof. Given j ∈ {0,… , N}, define Sj =
∑N
n=1 unv�j (n). Since �j(n) and �j−1(n) might only differ for n = j and n = �−1j−1(j),

we have

Sj − Sj−1 =
N
∑

n=j
un(v�j (n) − v�j−1(n))

= uj(v�j (j) − v�j−1(j)) + u�−1j−1(j)(v�j (�−1j−1(j)) − v�j−1(�−1j−1(j)))

= uj(vj − v�j−1(j)) + u�−1j−1(j)(v�j−1(j) − vj)

= (uj − u�−1j−1(j))(vj − v�j−1(j)).

The result then follows from ⟨u, (N − P )v⟩ = SN−1 − S0.

2.4 Solutions of the optimization problems
The previous lemma enables us to solve the problems maxP∈N J

approx(P ) and minP∈N J
approx(P ). Recall that the entries of u

are sorted in ascending order.

Lemma 6. Let �+, �− ∈ SN such that v�+(1) ≤ v�+(2)⋯ ≤ v�+(N) and v�−(N) ≤ v�−(N−1) ≤ ⋯ ≤ v�−(1) and P+, P− ∈ N , the
corresponding permutation matrices. Then

P+ = argmaxP∈NJ
approx(P ), P− = argminP∈NJ

approx(P ).

Proof. Let P ∈ N and � ∈ SN the associated permutation, we have

⟨u, (P+ − P )v⟩ = ⟨u, (N − PP −1+ )w⟩ =
N−1
∑

n=1
(un − u(�′n−1)−1(n))(wn −w�′n−1(n)

), (14)

where w = (wn)Nn=1 ∶= (v�+(n))
N
n=1 and �

′
n is the sequence defined by (13) with �′ ∶= �−1+ ◦� the permutation associated with

PP −1+ . Since (wn)Nn=1 by its definition is an increasing sequence, �
′
n−1(n) ≥ n and (�′n−1)

−1(n) ≥ n, we find that ⟨u, (P+−P )v⟩ ≥ 0.
The proof for the problem minP∈N ⟨u, P v⟩ is similar.

We immediately deduce from this lemma that once u and v are given, the matrix P+, P− of Lemma 6 can be determined
explicitly. More precisely, P+ is the matrix corresponding to the permutation which associates the largest coefficient of u with
the largest coefficient of v, the second-largest coefficient with the second largest, and so on. In the same way, P− is the matrix
corresponding to the permutation which associates the largest coefficient of uwith the smallest coefficient of v, the second-largest
coefficient with the second smallest, and so on.

Remark 3. The optimal matrices P+ and P− are not unique as soon as either u or v contains at least two identical entries.

We focus now on the case where u as well as v have entries with a constant sign. Since the results in this section hold both
for minimization and maximization problems, we can assume without loss of generality that u, v are both positive. Using the
properties given in the previous section, we will show that in some cases, the problemmaxP∈N J (P ) (resp.minP∈N J (P )) and
maxP∈N J

approx(P ) (resp. minP∈N J
approx(P )) have the same solution.

We keep the notation of Lemma 6. Define for n = 1,… , N ,

p̃n ∶= min
i,j=1,…,N,i≠n,j≠n

|(un − ui)(v�+(n) − v�+(j))|. (15)

Denote by in and jn the solutions of the previous problem. Since un, v�+(n) are sorted in ascending order, we find immediately
that if n = 1 (resp.N), then in = jn = 2 (resp. in = jn = N − 1). Otherwise, in = n − 1 or in = n + 1, and the same result holds
for jn. Sort (p̃n)Nn=1 and denote by (pn)

N
n=1 the resulting sequence, i.e., p1 ≤,… ,≤ pN . Define then for m = 1,… , N

sm ∶=
m
∑

n=1
pn, (16)
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and

F −m ∶=
min(m,N)
∑

n=1
unv�−(N−m+n), F +m ∶=

N
∑

n=max(1,N−m+1)
unv�+(n). (17)

From the definition of these sequences, we have F +m ≥ F −m . See Appendix C for the case where u or v negative. We are now in
a position to give the main result of this section.

Theorem 3. Assume that u and v have positive entries and define

�(m1) ∶=
1

s
⌈

m1
2 ⌉

(

+∞
∑

l=1
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)

, (18)

where m1 refers to the notation in Lemma 2, dmax ∶= maxn=1,…,N (dn) and dmin ∶= minn=1,…,N (dn). Assume that:

max
m1≥2

�(m1) ≤ 1. (19)

Then the problem maxP∈N ⟨u, (N − PD)
−1Pv⟩ (resp. minP∈N ⟨u, (N − PD)

−1Pv⟩) and the problem maxP∈N ⟨u, P v⟩ (resp.
minP∈N ⟨u, P v⟩) have the same solution.

Proof. We keep the notation in Section 2.3 and give the proof in the case of the maximization problem. The case of the
minimization problem can be handled in the very same way. Let P ∈ N and � ∈ SN the associated permutation, we have

⟨u, (N − P+D)−1P+v⟩ − ⟨u, (N − PD)−1Pv⟩ =
+∞
∑

l=0
⟨u,

(

(P+D)lP+ − (PD)lP
)

v⟩ (20)

= ⟨u, (P+ − P )v⟩ +
+∞
∑

l=1
⟨u,

(

(P+D)lP+ − (PD)lP
)

v⟩. (21)

From the definition of Ek(�+, �) and of Gk(�+, �), we have E1(�+, �) ⊔ G1(�+, �) = {1,… , N}. Let us denote by (wn)Nn=1 =
(v�+(n))

N
n=1 and by �′n the sequence defined by (13) with �′0 ∶= �−1+ ◦�. From the definition of E1(�+, �) and G1(�+, �), we

have �(G1(�+, �)) = �+(G1(�+, �)) and �(E1(�+, �)) = �+(E1(�+, �)), which implies �′0(E1(�+, �)) = E1(�+, �), and for any
i ∈ G1(�+, �), �′0(i) = i. Using these properties and (14), we have

⟨u, (P+ − P )v⟩ =
N−1
∑

n=1
(un − u(�′n−1)−1(n))(wn −w�′n−1(n)

)

=
∑

n∈E1(�+,�)
(un − u(�′n−1)−1(n))(wn −w�′n−1(n)

) +
∑

n∈G1(�+,�)
(un − u(�′n−1)−1(n))(wn −w�′n−1(n)

)

=
∑

n∈E1(�+,�)
(un − u(�′n−1)−1(n))(wn −w�′n−1(n)

).

(22)

In the case where there exists a transposition (i i′) with i < i′ in �′, Lemma 4 implies that u(�′
i′−1

)−1(i′) = ui′ and w�′
i′−1

(i′) = wi′ .
The maximum number of transpositions in �′0 is

m1
2
if m1 is even,

m1−3
2

otherwise. Hence, the smallest number of non-zero terms
present in the last sum of (22) is given by m1 −

m1
2
= m1

2
if m1 is even,

m1−1
2

otherwise. In other words, there exists at least
⌈

m1
2

⌉

non-zero terms in the last sum of (22), which implies

⟨u, (P+ − P )v⟩ =
∑

n∈E1(�+,�)
(un − u(�′n−1)−1(n))(wn −w�′n−1(n)

) ≥ s
⌈

m1
2 ⌉
. (23)

For n ∈ {1,… , N} and l ∈ ℕ∗, let us denote by d�,l,n ∶= d�l(n)d�l−1(n)⋯ d�(n). Considering now the second term of the
right-hand side of (21), we get

< u, (PD)lPv >=
N
∑

n=1
und�l(n)d�l−1(n)⋯ d�(n)v�l+1(n) =

N
∑

n=1
und�,l,nv�l+1(n).
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Using this notation and Lemma 2, we find

|

|

|

⟨u, (P+D)lP+v − (PD)lPv⟩
|

|

|

=
|

|

|

|

|

|

N
∑

n=1
un(d�+,l,nv�l+1+ (n) − d�,l,nv�l+1(n))

|

|

|

|

|

|

=
|

|

|

|

|

|

∑

n∉Gl+1(�+,�)
un(d�+,l,nv�l+1+ (n) − d�,l,nv�l+1(n))

|

|

|

|

|

|

=
|

|

|

|

|

|

∑

n∉Gl+1(�+,�)
und�+,l,nv�l+1+ (n) −

∑

n∉Gl+1(�+,�)
und�,l,nv�l+1(n)

|

|

|

|

|

|

≤dlmax
∑

n∉Gl+1(�+,�)
unv�+(n) − d

l
min

∑

n∉Gl+1(�+,�)
unv�−(n)

≤dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

.

(24)

This result combined with (19), gives
|

|

|

|

|

+∞
∑

l=1
⟨u, (P+D)lP+v − (PD)lPv⟩

|

|

|

|

|

≤
+∞
∑

l=1
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

≤s
⌈

m1
2 ⌉
.

Considering now (23), we obtain

|

|

⟨u, (P+ − P )v⟩|| ≥
|

|

|

|

|

+∞
∑

l=1
⟨u, (P+D)lP+v − (PD)lPv⟩

|

|

|

|

|

.

It follows that the first term of (21) dominates the second one. As a consequence, the former has the same sign as the left-hand
side of (20). The result follows.

2.5 Implementation remarks
In this section, we give details on the practical computation of the infinite sum in (18). Given m1 ∈ {2,… , N}, define by l∗
such that

l∗ ∶=
⌊

N
m1

⌋

− 1.

We have
+∞
∑

l=1

(

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)

=
l∗
∑

l=1

(

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)

+
+∞
∑

l=l∗+1

(

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)

=
l∗
∑

l=1

(

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)

+
dl∗+1max

1 − dmax
F +N −

dl∗+1min

1 − dmin
F −N .

It follows that the infinite sum involved in �(m1) actually reduces to a finite sum that can be computed numerically without any
approximation. As for the evaluation of s

⌈

m1
2 ⌉

, only
⌈

N
2

⌉

terms need to be computed. Examples of behaviour of sm and F +m , F
−
m

are presented in Figure 3, whereas examples of behaviour of the function (18) with respect to m1 are shown in Figure 4.

3 APPLICATION TO ALGAL PRODUCTION

Algal raceway ponds are currently the most widespread reactors for microalgae growth. Spirulina, the most worldwide produced
microalgae, is produced in 83% of the cases in raceway ponds35. In this system, the algae are exposed to solar radiation and
advected in a laminar regime. This regime holds as long as they remain far enough from the mixing device, that usually consists
of a paddle wheel. Meanwhile, they evolve at a constant depth and one can consider that their vertical positions only change
after passing through this device36. Two main phenomena have to be taken into account to study algal production. First, the
photosynthetic activity of the algae close to surface may suffer from photoinhibition by which an excess of light decreases the
photosynthesis rate. Second, the algae at the bottom of the raceway may not receive any light since this quantity exponentially
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decreases with respect to depth. In this framework, it has been shown that a well-chosen mixing device can significantly increase
the algal growth by balancing the access to the light resource30,29. In this section, we show that optimizing microalgal productiv-
ity is a resource allocation problem, and we apply the theory developed in section 2. Finally, we provide some numerical results
to evaluate the efficiency of the mixing strategies and their approximation.

3.1 Biological dynamics and raceway mixing modeling
The growth of algae results from photosynthetic activity in the cells supported by solar radiation. This complex dynamics is
accurately described by the Han model37, which takes into account the above-mentioned phenomenon of photoinhibition. In
this model, each light harvesting unit is assumed to have three different states: open and ready to harvest a photon (A), closed
while processing the absorbed photon energy (B), or inhibited if several photons have been absorbed simultaneously leading to
an excess of energy (C). Their dynamics is described by the following system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ȧ = −�HIA +
1
�H
B,

Ḃ = �HIA −
1
�H
B + krC − kd�HIB,

Ċ = −krC + kd�HIB.

Here A,B and C are the relative frequencies of the three possible states with A+B+C = 1, and I is a continuous time-varying
signal representing the photon flux density. The coefficient �H stands for the specific photon absorption, �H is the turnover rate,
kr represents the photosystem repair rate and kd is the damage rate.
Since the sum of these three states is equal to one, the latter system can be reduced to two equations by eliminating B as

following:
(

Ȧ
Ċ

)

= � ⋅ (MH

(

A
C

)

+ bH ), � =
(

1 0
0 kd

)

, MH =

(

−(�HI +
1
�H
) − 1

�H
−�HI −( kr

kd
+ �HI)

)

, bH =

(

1
�H
�HI

)

.

The dynamics of the open state A reaches its steady state following a process whose speed is much higher than the dynamics of
the photoinhibition state C . This phenomenon is mainly due to the presence of the multiplicative parameter kd which is on the
order of 10−4 whereas the absolute value of the entries ofMH and bH are on the order of 0.1−6 (cf. Table 1 for typical values for
the Han parameters). We can then apply a slow-fast approximation using singular perturbation theory38. This approach consists
in replacing A by its pseudo steady state

Asteady ∶=
1 − C

�H�HI + 1
, (25)

into the reduced evolution equation of C . The Han dynamics can then be reduced to a single evolution equation on C:

Ċ = −�(I)C + �(I), (26)

where
�(I) ∶= kd�H

(�HI)2

�H�HI + 1
+ kr, �(I) ∶= kd�H

(�HI)2

�H�HI + 1
.

The gross specific growth rate is proportional to �HIA, replacing A by (25), the net specific growth rate is defined by

�(C, I) ∶= −(I)C + � (I), (27)

where
(I) ∶=

kH�HI
�H�HI + 1

, �(I) ∶=
kH�HI

�H�HI + 1
− R.

Here, R denotes the respiration rate and kH is a factor which relates the photosynthetic activity to the growth rate.
We assume that the system is perfectly mixed so that the biomass concentration is homogeneous. Meanwhile, we also assume

that the photosynthetic units grow slowly such that the variations of biomass concentration and background turbidity are negli-
gible over one lap of the raceway. At this timescale, the turbidity and biomass concentration can be supposed to be constant. In
this framework, the light intensity reads as a function of the depth z and can be modeled by Beer-Lambert’s Law, i.e.,

I(z) = Is exp("z), (28)
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where Is is the light intensity at the free surface and " is the light extinction coefficient. The average net specific growth rate
over the domain is then defined by

�̄ ∶= 1
T

T

∫
0

1
ℎ

0

∫
−ℎ

�
(

C(t, z), I(z)
)

dzdt, (29)

where ℎ is the depth of the raceway pond and T is the average duration of one lap of the raceway pond.
Let us now see how this model can be included in the framework of Section 2. In order to compute numerically (29), we

introduce a vertical discretization of the fluid, consisting of N layers uniformly distributed on a vertical grid. The depth of the
layer n is given by

zn ∶= −
n − 1

2

N
ℎ, n = 1,… , N. (30)

For a given initial photoinhibition state Cn(0) associated with an algal cell located in layer n, let Cn(t) be the solution of (26) at
time t. In this semi-discrete setting, the average net specific growth rate in the raceway pond can be defined by

�̄N ∶= 1
T

T

∫
0

1
N

N
∑

n=1
�(Cn(t), In)dt, (31)

where In is the light intensity received in the layer n. The solution of (26) can be computed explicitly to get a formula that takes
the form of (2). Denoting by C(t) the time dependent vector whose components are given by Cn(t), it follows that �̄N satisfies

�̄N = 1
NT

(

⟨Γ, C(0)⟩ + ⟨1, Z⟩

)

, (32)

where 1 is a vector of sizeN whose coefficients are equal to 1, and Γ, Z are two vectors such that

Γn ∶=
(In)
�(In)

(e−�(In)T − 1),

Zn ∶=
(In)�(In)
�(In)2

(1 − e−�(In)T ) −
(In)�(In)
�(In)

T + � (In)T .

The detail of the computations giving rise to (32) is presented in Appendix A.
Assume now that at each lap, the layers are permuted according to � ∈ SN , meaning that the algae at the layer n1 are

supposed to be entirely transferred to the layer n2= �(n1) when passing through the mixing device. This mixing process is
depicted schematically on an example in Figure 1.

Tk T −k+1 Tk+1 T −k+2

Layer four

Layer three

Layer two

Layer one

� z

0

−ℎ

z1 = z�(4)

z2 = z�(1)

z3 = z�(2)

z4 = z�(3)

FIGURE 1 Schematic representation of the mixing process over two laps. Here, the vertical discretization number N = 4 and
the mixing device corresponds to the cyclic permutation � = (1 2 3 4).
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The interest of such a device is to mix the algae to better balance their exposure to light and increase the production. In this
way, though the light resource is considered to be constant, this mixing model and the constraints on the light level received at
each layer make the process equivalent to a resource allocation problem.
At this step, we see that up to a change of notation, this model can be interpreted in terms of the resource allocation process

described in Section 2.More precisely, the activity xn(t) corresponds to the photoinhibition stateCn(t), the resource rn correspond
to the light intensity In and the functions a, b correspond to �, �.
Considering now the asymptotic regime, we get thanks to Theorem 1 and (6) that the state satisfies in this case C(0) =

(N −PD)−1PV , whereD and V are a diagonal matrix and a vector of sizeN ×N andN respectively, whose components are
given by

Dnn ∶= e−�(In)T , Vn ∶=
�(In)
�(In)

(1 − e−�(In)T ). (33)

Our goal is to find the control, i.e. a permutation �, which maximizes the average growth rate �̄N . Since only C(0) in (32)
depends on the control P , we find that the objective function �̄N = ⟨Γ, (N − PD)−1PV ⟩ has the form of J (P ) in (10) with
u = Γ, v = V and D defined in (33).

3.2 Parameter settings
Consider a raceway whose water elevation ℎ = 0.4m, which corresponds to typical raceway pond setting. All the numerical
parameters values considered in this section for Han’s model are taken from39 and recalled in Table 1. Recall that Is is the light

TABLE 1 Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -
� 0.25 s
�H 0.047 m2 μmol−1

kH 8.7 10−6 -
R 1.389 10−7 s−1

intensity at the free surface. In order to fix the value of the light extinction coefficient " in (28), we assume that only a fraction q
of Is reaches the bottom of the raceway pond, meaning that Ib = qIs, where q ∈ [0, 1] and Ib is the light intensity at the bottom.
It follows that " can be computed by

" = (1∕ℎ) ln(1∕q).
In practice, this quantity can be implemented in the experiments by adapting the biomass harvesting frequency, or the dilu-
tion rate for continuous cultivation. In what follows, the varying parameters are Is, the ratio q and T . We consider Is ∈
[0, 2500]μmolm−2 s−1, q ∈ [0.1%, 10%] and T ∈ [1, 1000]s. The number of layers N remains small as we need to test
numericallyN! permutation matrices for each triplet (Is, q, T ).

3.3 Numerical tests
As shown in30, Section IV.B, Problem (10) admits non-trivial optimal permutation strategies whichmay significantly change accord-
ing to the parameter settings. In this section, we study and compare the true and the approximated solutions as well as their
efficiency with respect to the average net specific (29).
We start by investigating some properties of the items defined in the previous sections. Recall that the two sequences u, v

used in Section 2.2 correspond in our application to Γ, V respectively. We considerN = 20 layers and two parameters triplets,
namely (Is, q, T ) = (2000, 5%, 1000) and (800,0.5%,1). Figure 2 shows the evolution of these two quantities as a function of I .
Note that in both cases, V is positive with sorted entries, as it can be seen in (4). On the contrary, the discretized Γ is negative
and not necessarily sorted. We refer to Appendix A for more details about V and Γ.
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FIGURE 2 Γ and V with respect to the light intensity I (Blue curve). Discretization points (Red point) chosen for (Is, q, T ) =
(2000, 5%, 1000) (Left) and (800,0.5%,1) (Right).

We then study the behaviour of the sequences F +m , F
−
m , sm and �(m1) defined in Section 2.4 for the same two parameters

triplets. Note that since Γ is negative, F −m and F +m are defined as in Appendix C (and not as in (17)). We choose N = 7 and
N = 20 to check the performance for two different discretization numbers of layers. One can see in Figure 4 that the maximal

FIGURE 3 Example of sequences F +m , F
−
m (Top) and sm (Bottom) with respect tom for the two parameters triplets. Left:N = 7.

Right:N = 20.

value of �(m1) is always obtained for m1 = 2, and that the maximal value �(m1) appears to be an increasing function ofN . This
makes the criterion given in Section 2.4 less efficient for large value of layer numberN . Further analysis is required to obtain a
criterion that does not depend onN .
The next test is devoted to the convergence of the average growth rate �̄N with respect to the number of layers N . We keep

the two triplets of parameters of the previous test. Due to the limit of the computer memory, the computation of �̄N (Pmax) is
tractable for small values ofN , in our case lower than or equal toN = 11. Such an issue does not occur in the case of �̄N (P+).
Figure 5 presents the behaviour of �̄N . For the parameter triplet (2000, 5%, 1000), the criterion is satisfied until N = 8 (green
circle), which is confirmed in Figure 4 (Left) for N = 7 where the maximal value of �(m1) is already close to 1. Though the
criterion is not satisfied forN > 8, we observe that P+ = Pmax fromN = 2 toN = 11. As for the triplet (800,0.5%,1), one can
see that P+ = Pmax until N = 3. Figure 6 shows the optimal control strategies for these two different parameter triplets in the
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FIGURE 4 Example of behaviour of �(m1) with respect to m1 for two parameters triplets and two different N . Left: N = 7.
Right:N = 20.

FIGURE 5 Average growth rate �̄N obtained with Pmax and P+ as a function of N for the two parameters triplets. The green
circles mark the case when the criterion is satisfied. The black squares mark the case when Pmax = P+ is observed.

case N = 11 and N = 100. It can be observed that for the parameter triplet (2000, 5%, 1000), the two controls P+, Pmax have
the same form forN = 11 andN = 100 (Figure 6 Top). Hence, one can expect Pmax = P+ for largerN which is the case until
N = 11 (as shown in Figure 5 black square). However, this may not be the case for (800,0.5%,1) since P+, Pmax have already
different forms forN = 11 (Figure 6 Bottom).
In the following tests, we focus only on two special cases: large lap duration time (T = 1000 s) and small lap duration time

(T = 1 s). In practice, the former corresponds to typical time required to complete one lap in an industrial raceway pond system,
whereas the latter rather corresponds to a lab-scale raceway system. For the small lap duration time case, we observe the so-called
flashing effect 38. This phenomenon corresponds to the fact that the growth rate is an increasing function of the light exposition
frequency. It can be observed in Figure 7, where �̄N (Pmax) decreases with respect to T for all considered light intensities.
The next test is dedicated to the efficiency of the criterion (19). More precisely, we evaluate the function �̄N defined by (31)

for the optimal control Pmax which solves Problem (10) and for the control P+ which solves the approximated Problem (11). We
consider two different discretization values N = 5 and N = 9. Figure 8 shows the results for T = 1 s and T = 1000 s. We see
that for large values of T , the optimum approximation almost always coincides to the true optimum. Nevertheless, we observe
that the criterion (19) becomes less efficient for largerN . Note that the case corresponding to Is = 0μmolm−2 s−1 is particular
since no light is available in the system, implying that Γ, V equal to zero. In this case the value of the objective function do not
depend on the control P . Hence, �̄N (Pmax) = �̄N (P+) when Is = 0μmolm−2 s−1.
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FIGURE 6 Pattern of the optimal matrix Pmax for Problem (10) and N = 11 (Left) and P+ for Problem (11) and N = 100
(Right) for the two parameters triplets. The blue points represent non-zero entries, i.e., entries equal to 1.

FIGURE 7 Average specific growth rate in the case q = 0.1% andN = 7 for four different light intensities Is.

We finally evaluate the efficiency of various mixing strategies. Define

r1 ∶=
�̄N (Pmax) − �̄N (N )

�̄N (N )
, (34)

r2 ∶=
�̄N (Pmax) − �̄N (Pmin)

�̄N (Pmin)
, (35)

r3 ∶=
�̄N (N ) − �̄N (Pmin)

�̄N (N )
, (36)
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FIGURE 8 Average net specific growth rate �̄N for T = 1 s (Top) and for T = 1000 s (Bottom). Left: N = 5. Right: N = 9.
The red surface is obtained with the control Pmax and the blue surface is obtained with the control P+. The purple stars represent
the cases where Pmax = P+ or, in case of multiple solution, �̄N (Pmax) = �̄N (P+). The green circle represent the cases where the
criterion (19) is satisfied.

where Pmin ∈ N is the matrix that minimizes J , (see (10)), i.e., that corresponds to the worse strategy. We consider N = 9
layers. Figure 9 presents the results for T = 1 s and T = 1000 s. Better performance is in most cases obtained for a small lap

FIGURE 9 Three ratios (34)- (36) for T = 1 s (Left) and for T = 1000 s (Right). In each figure, the red surface represents r1,
the blue surface represents r2 and the green surface represents r3.

duration T = 1 s. In this way, we observe that the relative improvement between the best and the no mixing strategy may reach
15%, whereas the relative improvement between the worst and the best strategy may reach 30%. In both two cases, a better
improvement can be obtained with high values of Is and low values of q.
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To compare the efficiency of the approximation P+ with respect the true optimal mixing strategy Pmax, we define two extra
ratios:

r̃1 ∶=
�̄N (P+) − �̄N (N )

�̄N (N )
, (37)

r̃2 ∶=
�̄N (P+) − �̄N (Pmin)

�̄N (Pmin)
. (38)

Figure 10 presents the results for T = 1 s and T = 1000 s. As already mentioned, for a large lap duration time, the optimization

FIGURE 10 Two ratios (37)- (38) for T = 1 s (Left) and for T = 1000 s (Right). In each figure, the red surface represents r̃1,
the blue surface represents r̃2.

problem (11) provides a good approximation.
This can be observed with the blue and red surface in Figure 9 (Right) and in Figure 10 (Right), both surfaces have the same

behaviours. As expected, the approximation becomes less efficient in the case of short lap duration time. This can be observed in
Figure 9 (Left) and in Figure 10 (Left). However, the maximal values of r1, r2 are still preserved by their approximations r̃1, r̃2.

4 CONCLUSION

We have studied a periodic resource allocation problem combined with a dynamical system. The periodicity of the problem
enables us to reduce the computation to one assignment process. A significant computational effort is still required when dealing
with larger number ofN . We overcome this difficulty by defining a second optimization problem which has an explicit solution
that coincide with the true solution when a given criterion is satisfied.
This developed theory is then applied to a microalgal production system with a mixing device. Non-trivial optimal mixing

strategies can be obtained and the proposed second optimization problem provides a reliable approximation for large time
duration T . Besides, our experimental results show the significance of the choice of themixing strategy: the relative ratio between
the best and the worst case reaches 30% in some cases. We also observe a flashing effect meaning that better results are obtained
when T goes to zero.
Further works will be devoted to the improvement of the function � used in Theorem 3 in order to improve our approach for

large number ofN . An approximation problem for small lap duration T can also be considered with an appropriate criterion to
evaluate this approximation.
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APPENDIX

A EXPLICIT COMPUTATIONS

In this appendix, we provide the computational details to solve (26) and (31) for an arbitrary number n ∈ {1,… , N}. Given two
points t1, t2 ∈ [0, T ]. Since In is constant, Equation (1) can be integrated and becomes

Cn(t2) = e�(In)(t1−t2)Cn(t1) +
�(In)
�(In)

(1 − e�(In)(t1−t2)). (A1)

The time integral in (31) can be computed by
T

∫
0

�(Cn(t), In)dt =

T

∫
0

−(In)Cn(t) + � (In)dt = −(In)

T

∫
0

Cn(t)dt + � (In)T .

Replacing xn by Cn, t2 by t and t1 by 0 in (A1) and integrating t from 0 to T gives
T

∫
0

Cn(t)dt =

T

∫
0

(

e−�(In)tCn(0) +
�(In)
�(In)

(1 − e−�(In)t)
)

dt

=
Cn(0)
�(In)

(1 − e−�(In)T ) +
�(In)
�(In)

T −
�(In)
�2(In)

(1 − e−�(In)T ).

Using notations given in Section 3.1, we have

Γ =
(I)
�(I)

(e−�(I)T − 1), V =
�(I)
�(I)

(1 − e−�(I)T ).

From the definition of �(I), �(I), (I), we find
�(I)
�(I)

=
�(I)

�(I) + kr
=

kd�(�HI)2

kd�(�HI)2 + kr��HI + kr
,

(I)
�(I)

=
kH�HI

kd�(�HI)2 + kr��HI + kr
.

Remark that Γ and V always have the opposite sign. Note also that I → �(I)
�(I)

is increasing on [0,+∞), which is not the case for
I → (I)

�(I)
. It follows that V increases on ℝ+ and Γ is not monotonic on ℝ+ (see Figure 2).

B OPTIMIZATION PROBLEM WITH ARBITRARY VECTORS

Let ũ, v ∈ ℝN two arbitrary vectors. Let Q ∈ N such that u ∶= Qũ has entries sorted in ascending order. Since Q is a
permutation matrix, we have QT = Q−1. For any P ∈ N , let us denote by P̃ ∶= Q−1PQ, we have P̃ ∈ N a permutation
matrix. Let us denote by ṽ ∶= Q−1v and by D̃ = Q−1DQ. Note that D̃ is still a diagonal matrix with a different order of the
diagonal coefficients. Using this notation, we find for the objective function (10) satisfies

J (P ) ∶= ⟨u, (N − PD)−1Pv⟩ = ⟨ũ, Q−1(N − PD)−1QQ−1PQQ−1v⟩

= ⟨ũ,
(

Q−1(N − PD)Q
)−1P̃ ṽ⟩

= ⟨ũ, (Q−1Q −Q−1PQQ−1DQ)−1P̃ ṽ⟩
= ⟨ũ, (N − P̃ D̃)−1P̃ ṽ⟩.

For the objective function (11), we get

J approx(P ) ∶= ⟨u, P v⟩ = ⟨ũ, Q−1PQQ−1v⟩ = ⟨ũ, P̃ ṽ⟩.

Therefore, these problems can still be treated similarly in the general case.
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C REMARK ON F +
M , F

−
M

Let u, v ∈ ℝN such that the entries of u are sorted in ascending order. One should be careful when defining the two sequences
F +m and F −m in Section 2.4, since the sign of u and v plays an important role in the definition of these two sequences. For instance,
assume that u is now negative and v is positive. Let ũ ∶= −u, since u is assumed to be sorted in ascending order, ũ is positive
and sorted in descending order. Using the definition in (17), one has

F̃ +m ∶=
min(m,N)
∑

n=1
ũnv�̃+(n), F̃ −m ∶=

N
∑

n=max(1,N−m+1)
ũnv�̃−(2N−m−n+1),

where v�̃+(1) ≥ v�̃+(2) ≥,… ,≥ v�̃+(N) and v�̃−(1) ≤ v�̃−(2) ≤,… ,≤ v�̃−(N). Let us define by �+ ∶= �̃− and �− ∶= �̃+. One has

F̃ +m = −
min(m,N)
∑

n=1
unv�−(n), F̃ −m = −

N
∑

n=max(1,N−m+1)
unv�+(2N−m−n+1).

Therefore, in this case we can define F +m and F −m by

F −m ∶=
min(m,N)
∑

n=1
unv�−(n), F +m ∶=

N
∑

n=max(1,N−m+1)
unv�+(2N−m−n+1).

The case where u is positive and v is negative, or both u, v are negative can be treated similarly.
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