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Abstract

The potential of industrial applications for microalgae has motivated their recent fast development. Their
growth dynamics depends on different factors that must be optimized. Since they get their energy from
photosynthesis, light is a key factor that strongly influences their productivity. Light is absorbed and
scattered in the liquid medium, and irradiance exponentially decreases towards the darkest part of the
photobioreactor at a rate non-linearly depending on the biomass concentration. Maximizing productivity
is then a tricky problem, especially when the growth rate is inhibited by an excess of light. Productivity
optimization turns out to be highly dependent on how light is distributed along the reactor, and is therefore
related to the extinction rate and the background turbidity. We propose a theoretical analysis of this
problem, by introducing the concept of optical depth productivity for systems where background turbidity
must be accounted for. A global optimum maximizing productivity is proposed, extending the concept of the
compensation condition, consisting in compensating the algal growth rate at the bottom of the reactor by
the respiration. This condition can drive the optimization of the surface biomass productivity depending on
the minimum reachable depth. We develop a nonlinear controller and prove the global asymptotic stability
of the biomass concentration towards the desired optimal value.

Keywords: Photobioreactor, Optimization, Nonlinear adaptive control, Microalgae, Light extinction,
Compensation condition, Turbidostat.

1. Introduction

Microalgae are photosynthetic microorganisms
whose potential has been highlighted in the
last decades, especially for renewable energy and
wastewater treatment [43, 24, 36]. Compared with
terrestrial plants, whose growth is slower due to
CO2 availability, the high actual photosynthetic
yield of microalgae cultures leads to higher biomass
production potential. Some algal species can be
grown to target numerous high added value com-
mercial applications: pharmaceutical, cosmetics or
food industries [18, 39]. These microorganisms
are generally cultivated at industrial scale in sim-
pler and cheaper open raceway ponds or in high-
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tech closed photobioreactors, using solar or artifi-
cial light depending on the applications.

The biomass productivity in these reactors de-
pends on the photosynthesis efficiency resulting
from the light distribution along depth. Light in-
tensity is strongly attenuated in the photobioreac-
tor due to the absorption and scattering of the mi-
croalgae and the background turbidity of the culti-
vation medium. Depending on the position of the
algal cells in the reactor, they perceive different
light intensities which further influence the photon
harvesting dynamics. Light attenuation is generally
described by a Beer-Lambert law [26] where the
light extinction rate varies with the process type
and algal concentration. Some studies have more
accurately represented the way light is attenuated
in the process, especially to deal with very dense
multi-scattering medium where a photon can be
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scattered several times before being eventually ab-
sorbed [32]. There were a lot of works dedicated to
better represent growth in a dense reactor [26, 42],
with experimental validation [20, 25, 14] which were
later carried out in more complicated geometries,
also accounting for the influence of the solar an-
gle [1, 35]. The influence of the background turbid-
ity and the reactor geometry have often been ne-
glected, even if its influence on the average growth
rate turns out to be non negligible, especially for
some geometries [30].

The gap with industrial production is however
still important and other factors should be taken
into account, such as temperature, pH, nutrients,
etc. There exists several realistic models for photo-
bioreactor dynamics accounting for these effects [27,
6, 5, 38, 4]. These models were even made more ac-
curate by including hydrodynamics [29, 16, 2]. Fi-
nally, a new generation of models is emerging when
considering also the bacterial community interact-
ing with microalgae [11, 37, 12]

Here we come back to the theory and we focus
on the core mechanisms involved in photobioreactor
productivity, especially when background turbidity
is taken into account. This theoretical study will
give the main direction to be optimized in real sys-
tems. Authors in [31] provided an optimal condi-
tion to maximize the surface biomass productivity
in a simplified framework. This so-called compensa-
tion condition consists in cancelling the net growth
rate at the reactor bottom. It was validated by
some experimental studies [40, 41]. This principle
allows to adapt the biomass concentration to the
reactor depth in order to maximize productivity. It
has been assessed numerically, with Model Predic-
tive Control, and shown to be still valid for more
complicated and realistic cases where temperature
and light simultaneously vary [33, 15].

In this paper, we focus on understanding how this
principle can be affected by the background turbid-
ity, and more precisely how this can modify the
theoretical results of [31]. Our first contribution,
was to extend the work in [31] by choosing a more
realistic description of the algal growth dealing with
photoinhibition. Our second contribution consisted
in considering a general biomass dependent light
extinction function accounting for the background
turbidity of the system. The concept of optical
depth productivity is introduced and a condition
is derived on the optical depth for globally maxi-
mizing productivity. This optimum corresponds to
the compensation condition. We then use this op-

timal condition to characterize the optimization of
the surface biomass productivity depending on the
minimum achievable water depth. When the light
extinction rate is affine with respect to the algal
biomass, an upper limit to the productivity (ob-
tained for an infinitely small depth) is given. A
nonlinear controller is given and is proved to sta-
bilize the evolution of the biomass towards the op-
timal desired value. The optimal behaviours are
illustrated in different cases by numerical experi-
ments.

This paper is organized as follows. In Section 2,
we define the key concepts such as average growth
rate and light distribution. We then study the op-
timization problem in Section 3. More precisely
we investigate the global behaviour of the optical
depth productivity and the optimal condition in
Subsection 3.1. The optimal biomass concentra-
tion for a given reactor depth to maximize the sur-
face biomass productivity is investigated in Subsec-
tion 3.2. A nonlinear controller is then introduced
in Section 4 to stabilize the biomass concentration
towards its optimal value. We illustrate and dis-
cuss the behaviour of the optima in different cases
by some numerical experiments in Section 5.

2. Description of the model

For a given light intensity I [µmol m−2 s−1], the
growth rate of microalgae is defined by a Haldane-
type description parametrized as in [9]

µ(I) := µmax
I

I + µmax

θ ( II∗ − 1)2
, (1)

where θ is the initial slope of µ [d−1], µmax denotes
the maximum value of µ and I∗ represents the op-
timal light intensity. This description results from
a mechanical consideration of the light harvesting
dynamics represented by the Han system in steady
state [23]. The light attenuation is described by a
Beer-Lambert law

I(X, z) := Is exp
(
ε(X)z

)
, (2)

where X [g m−3] represents the biomass concentra-
tion, z ∈ [−h, 0] denotes the vertical position of
the algal cells with h [m] the depth and Is is the
light intensity at the reactor surface. The light ex-
tinction ε, which summarises the light absorption
and diffusion, is considered to be correlated to the
biomass concentration X

ε(X) := α0(s)Xs + α1, (3)
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where 0 < s ≤ 1, α0(s) > 0 [m2 g−1] stands for the
specific light extinction coefficient of the microal-
gae species. It depends on the parameter s. The
background turbidity, α1 [m−1], is due to all non-
microalgae components i.e. suspended solids and
dissolved colored material. The dependence of s in
α0 will be omitted hereafter when no confusion may
occur.

From (2) one can compute the mean light
intensity received by the algae culture Ī =

Is
∫ 0

−h e
ε(X)zdz = Is

ε(X)

(
1 − e−ε(X)h

)
. This quan-

tity is a decreasing function of ε(X), which confirms
the intuition that a higher biomass concentration or
a higher background turbidity leads to lower mean
light received in the reactor, due to stronger light
attenuation.

Replacing I by (2) in (1), one can see that the
growth rate varies with depth of the reactor. Lower
growth rate in the upper part of the reactor results
from the photo-inhibition caused by the high light
intensity. Similarly, growth rate is weak in the lower
part of the reactor because of the low light intensity.
The mean growth rate in the reactor is defined by

µ̄(X,h) :=
1

h

∫ 0

−h
µ(I(X, z))dz. (4)

Applying then a change of the variable y = ε(X)z,
it can be written as

µ̄(X,h) =
1

ε(X)h

∫ ε(X)h

0

µ(I(−y))dy, (5)

so that the mean growth rate depends on the op-
tical depth ε(X)h. This quantity is denoted by
Y [-] hereafter. In this case, the average growth
rate (5) can also be written as a function of Y
(i.e. µ̄(X,h) = µ̄(Y )). Our aim is to optimize the
surface biomass productivity (units: g ·m−2 · d−1)
which is defined by

Π := (µ̄−R)Xh. (6)

Remark 2.1. The evolution of the biomass con-
centration X is given by

Ẋ = (µ̄−R−D)X, (7)

where R [d−1] is the respiration rate and D [d−1]
denotes the reactor dilution rate. Note that at equi-
librium, the biomass surface productivity Π is the
product between dilution rate (D = µ̄−R) and sur-
face biomass Xh.

Note that a nonlinear controller for D is intro-
duced in Section 4 to stabilize (7) to the value of X
optimizing productivity.

Remark 2.2. The average growth rate (4) is de-
fined for flat reactors with a rectangular section.
For more complex geometries, for instance hori-
zontal triangular cylinder or horizontal semicircu-
lar cylinder, (4) still play an important role for
the average growth rate in these reactors. We re-
fer [30] for further details. For sake of simplic-
ity, our analysis applies to flat systems (flat pan-
els, raceways,...) but could straightforwardly be ex-
tended to other shapes.

3. Analysis of the optimal productivity

In this section, we investigate the optimization
problem associated with the productivity Π. Note
that the biomass concentration X and the depth h
are both defined on R+.

3.1. Optical depth productivity
First of all, let us define the optical depth pro-

ductivity (units: d−1) by

P := (µ̄−R)Y. (8)

Remark 3.1. According to the definition of the op-
tical depth productivity (8), a thin reactor with high
biomass concentration is equivalent to a deep reac-
tor with low biomass concentration as long as they
both share the same optical depth Y . A low value of
Y means a weaker photon harvesting since less light
is absorbed. On the reverse, a too high Y means
that light hardly reaches the bottom of the reactor,
with an area where respiration (loss of CO2) exceeds
growth (fixation of CO2). Hence, it is necessary to
determine the value of Y which maximizes the effi-
ciency of the productivity P .

Theorem 3.1. Given a surface light intensity Is,
there exists an optimal value Yopt which maximizes
the optical productivity P . This value satisfies
µ (I(Yopt)) = R and can be expressed explicitly ac-
cording to the growth rate at the surface µ(Is):

if µ(Is) > R,

Yopt=ln

(
2IsRµmax
θI∗2

µmax−R+
2Rµmax
θI∗ −

√
(µmax−R)(µmax−R+

4Rµmax
θI∗ )

)
,

if µ(Is) ≤ R,

Yopt=ln

(
2IsRµmax
θI∗2

µmax−R+
2Rµmax
θI∗ +

√
(µmax−R)(µmax−R+

4Rµmax
θI∗ )

)
.

(9)
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Proof. For a given Y , the optical productivity P
can be written from (5) and (8)

P (Y ) =

∫ Yopt

0

µ(I(−y))−Rdy +

∫ Y

Yopt

µ(I(−y))−Rdy

=P (Yopt) +

∫ Y

Yopt

µ(I(−y))−Rdy, (10)

where Yopt is chosen according to (9). On the other
hand, for the function

µ(I(−y)) =
µmaxI(−y)

I(−y) + µmax

θ ( I(−y)
I∗ − 1)2

,

there exists a y∗ with µ(I(−y∗)) = µmax such that
µ(I(−y)) is increasing from 0 to y∗ and decreasing
from y∗ to +∞. According to the value of µ(I(0))
(i.e. µ(Is)), two cases must be considered:

• if µ(I(0)) = µ(Is) > R, the second term
of (10) is always negative. Indeed, in the case
where Y is smaller than Yopt, using the con-
cavity of µ(I(−y)), one finds µ (I(−y)) > R,
∀y < Yopt. In other words, the second term
of (10) removes the microalgae which grow
more than they respire. Otherwise, one finds
µ (I(−y)) < R, ∀y > Yopt (for the same reason
as above). This means that the second term
of (10) adds the microalgae which respire more
than their growth.

• if µ(I(0)) = µ(Is) ≤ R, then there exists a
value ỹ ∈ [0, y∗) such that µ(I(−ỹ)) = R.
Then if Y is greater than ỹ, the second term
of (10) is negative for the same reason as above.
Otherwise, the productivity P (Y ) is negative.

In both cases, the second term of (10) is negative.
Thus Yopt maximizes the quantity P .

In order to compute Yopt, one needs to solve
µ(I) = R, or equivalently:

Rµmax

θI∗2
I2 + (R− µmax −

2Rµmax

θI∗
)I +

Rµmax

θ
= 0.

The discriminant of this second order polynomial
equation is given by ∆ = (µmax − R)(µmax − R +
4Rµmax

θI∗ ) > 0, which implies that there exists two
real roots. The sum and the product of two roots
are both positive, hence both of these two roots are
also positive. Finally Yopt can be determined by the
growth rate at the surface µ(Is):

• if µ(Is) > R, then there exists one root in
the interval (0, Is) and one root in the inter-
val (Is,+∞). In this case, one has

Yopt=ln

(
2IsRµmax
θI∗2

µmax−R+
2Rµmax
θI∗ −

√
(µmax−R)(µmax−R+

4Rµmax
θI∗ )

)
.

• if µ(Is) ≤ R, then two roots both lies into
the interval (0, Is]. In this case, we choose
the smaller one (since it represents the light
at lower part of the reactors)

Yopt=ln

(
2IsRµmax
θI∗2

µmax−R+
2Rµmax
θI∗ +

√
(µmax−R)(µmax−R+

4Rµmax
θI∗ )

)
.

This concludes the proof.

Remark 3.2. As shown in (9), the value of Yopt
only depends on the model parameters (θ, µmax, I∗,
R) and on the light intensity at the reactor sur-
face Is. In other words, the cancellation of the net
growth rate at the bottom of the reactor is the opti-
mal strategy to maximize optical depth productivity
(see in Figure 2 for illustrations).

3.2. Surface biomass productivity

In this section, we focus on the surface biomass
productivity Π. From the definition of Π (6) and
the definition of P (8), one has

Π =
X

ε(X)
P. (11)

In general, it is not possible to apply the same strat-
egy (as in the proof of Theorem 3.1) to optimize Π,
since P and Π do generally not have the same be-
haviour. Only in the case where s = 1 and α1 = 0,
the factor X

ε(X) simplifies, leading to the same opti-
mum. Using then Theorem 3.1, we deduce directly
the following results.

Corollary 3.1. If the light extinction function de-
fined by (3) satisfies α1 = 0 and s = 1, then Yopt de-
fined by (9) maximizes the productivity Π and Yopt

is the global optimum. Moreover, Ỹopt := Yopt/α0

is the optimal surface biomass.

Proof. Since α1 = 0 and s = 1, Y = ε(X)h = α0Ỹ
with Ỹ := Xh the surface biomass. Meanwhile,
using (11), one has P (·) = α0Π(·), then following
the same analysis, one finds that Yopt maximizes
P (·), therefore the productivity Π(·). Finally, Ỹopt
is given by Yopt/α0.
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Corollary 3.2. If the objective is to reach a
biomass concentration X1, there exists a unique re-
actor depth h1 which satisfies ε(X1)h1 = Yopt and
maximizes the productivity Π(X1, ·) for this biomass
target.

Proof. Since X1 is fixed, then using (11), one has
directly that the optimum is given by Yopt. In this
case, h1 is defined by Yopt/ε(X1).

In Corollary 3.2, we have studied the case with
a fixed biomass concentration X. This result does
not depend on the considered law ε(X). However,
optimizing X is more tricky, Corollary 3.1 provides
a result in the case with a specific value of α1 and
s. In more general case, the strategy used in the
proof of Theorem 3.1 may fail when optimizing
X. Indeed, let (X1, h1) such that Yopt = ε(X1)h1.
For a biomass concentration X > X1, one has
Y = ε(X)h1 > Yopt. Applying then Theorem 3.1,
one finds immediately P (Y ) < P (Yopt). However,
in the case where the background turbidity is not
negligible (i.e. α1 > 0), one has X

ε(X) >
X1

ε(X1) us-
ing the definition (3). Then according to (11), it is
not clear if Π(X1, h1) is larger than Π(X,h1). In
this way, we focus on the case where α1 > 0 in the
following. Let us start with a technical lemma.

Lemma 3.1. Let h1 a given depth and (X1, h1)
such that Yopt = ε(X1)h1, then there exists X̃ > X1

such that Π(X̃, h1) > Π(X1, h1).

Proof. Using the definition of the surface
biomass productivity (6) and the definition of
the average growth rate (4), and applying a
change of variable I = Is exp(ε(X)z), one has
Π(X,h1) = X

ε(X)

∫ Is
I(X,h1)

µ(I)−R
I dI. Let us de-

note by f(I) = µ(I)−R
I and by F (I) such that

F ′(I) = f(I). Note that F can actually be
found explicitly as shown in [30, Appendix B].
The latter equation then becomes Π(X,h1) =
X
ε(X) (F (Is)− F (I(X,h1))). Taking the partial
derivative with respect to X gives ∂XΠ(X,h1) =
(1−s)α0X

s+α1

ε2(X) (F (Is)− F (I(X,h1))) −
X
ε(X)f(I(X,h1))∂XI(X,h1). Since Yopt = ε(X1)h1,
using Theorem 3.1, one has immediately
µ(I(X1, h1)) = µ(I(Yopt)) = R, then
one finds f(I(X1, h1)) = 0. Moreover,
F (Is) − F (I(X1, h1)) = P (Yopt) > 0 and
s ≤ 1. These imply that ∂XΠ(X1, h1) > 0. In
other words, there exists X̃ > X1 such that

Π(X̃, h1) > Π(X1, h1). This concludes the
proof.

According to Corollary 3.2, the couple (X1, h1)
satisfies ε(X1)h1 = Yopt and corresponds to the op-
timum of Π(X1, ·) for a given X1. However, the
previous lemma implies that this is not the optimal
condition to optimize Π(·, h1) for a given h1. This
then enables us to prove the next theorem.

Theorem 3.2. If α1 > 0, there is no global opti-
mum for the productivity Π(·, ·) in R+ × R+.

Proof. Let us assume that there exists a global op-
timum for the productivity Π denoted by (X∗, h∗).
Since (X∗, h∗) is a global optimum, in particular,
this is an optimum in the direction of h. Using
Corollary 3.2, we find ε(X∗)h∗ = Yopt. However,
using Lemma 3.1, there exists X̃∗ > X∗ such that
Π(X̃∗, h∗) > Π(X∗, h∗). This contradicts the fact
that (X∗, h∗) is a global optimum. Therefore, the
productivity Π(·, ·) has no global optimum.

Since no global optimum for the productivity Π
can be found when α1 > 0, then we would like
to study the asymptotic behaviour of Π. In the
following, we focus on the optimum in the direction
of X and in the direction of h separately. Given X0

and consider the sequence (Xn, hn)n∈N defined by

hn =
Yopt

ε(Xn−1)
, Xn := argmaxX∈R+

Π(X,hn).

(12)
From the definition above, the sequence
(Xn−1, hn)n>0 corresponds to the optimum in
the direction of h for Xn−1, whereas the sequence
(Xn, hn)n>0 corresponds to the optimum in the
direction of X for hn. In plain words, these two
sequences defined by (12) aims at searching the
local optima by optimizing in the direction of
h and in the direction of X alternately. Let us
provide some more information about the sequence
(Xn, hn)n>0.

Theorem 3.3. limn→∞Xn = ∞, limn→∞ hn = 0
and

lim
n→∞

Π(Xn, hn) =

{
P (Yopt)
α0

, s = 1,

+∞, s < 1.

Proof. By Lemma 3.1, one has (Xn)n∈N which
is a strictly increasing sequence. Hence, the se-
quence (hn)n∈N∗ is strictly decreasing by its con-
struction (12). Since for each n ∈ N∗, hn >
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0, then this sequence converges to a limit that
we denote by hlim. Assume that hlim > 0,
then from (12), one has hlim = limn→∞ hn =

limn→∞
Yopt

ε(Xn−1) = Yopt limn→∞
1

α0Xn−1+α1
, which

means that limn→∞Xn =: Xlim < ∞. Then
(Xlim, hlim) is a global optimum, hence a contradic-
tion with Theorem 3.2. Therefore hlim = 0, which
means that Xlim =∞.

On the other hand, by the construction of
these two sequences (Xn−1, hn)n>0, (Xn, hn)n>0

and Lemma 3.1, one has Π(Xn−1, hn) <
Π(Xn, hn) < Π(Xn, hn+1). Using (11),
one has Π(Xn−1, hn) = Xn−1

ε(Xn−1)P (Yopt) and
Π(Xn, hn+1) = Xn

ε(Xn)P (Yopt). In the case s = 1,
passing to the limit of the latter two equations gives
limn→∞Π(Xn−1, hn) = limn→∞

Xn−1

ε(Xn−1)P (Yopt) =

P (Yopt) limn→∞
Xn−1

α0Xn−1+α1
=

P (Yopt)
α0

and
limn→∞Π(Xn, hn+1) = limn→∞

Xn
ε(Xn)P (Yopt) =

P (Yopt) limn→∞
Xn

α0Xn+α1
=

P (Yopt)
α0

. This gives

limn→∞Π(Xn, hn) =
P (Yopt)
α0

. However, in the
case 0 < s < 1, the previous limits become
limn→∞Π(Xn−1, hn) = limn→∞

Xn−1

ε(Xn−1)P (Yopt) =
P (Yopt)
α0

limn→∞X1−s
n−1 = +∞ and

limn→∞Π(Xn, hn+1) = limn→∞
Xn
ε(Xn)P (Yopt) =

P (Yopt)
α0

limn→∞X1−s
n = +∞. Therefore,

limn→∞Π(Xn, hn) = +∞. This concludes
the proof.

Corollary 3.3. For s = 1, the sequence
(Xn, hn) verifies limn→∞ ε(Xn)hn = Yopt, and
the growth rate at the reactor bottom satisfies
limn→∞ µ(I(Xn, hn)) = R.

Proof. By the construction of sequences
(Xn−1, hn)n>0, (Xn, hn)n>0 and Lemma 3.1,
one has Π(Xn−1, hn) < Π(Xn, hn) < Π(Xn, hn+1).
Using (11), the previous inequalities be-
come Xn−1

ε(Xn−1)P (Yopt) < Xn
ε(Xn)P (ε(Xn)hn) <

Xn
ε(Xn)P (Yopt), where we use the fact that
ε(Xn−1)hn = ε(Xn)hn+1Yopt by Defini-
tion (12). Since Xn

ε(Xn) > 0, dividing
the latter inequalities by Xn

ε(Xn) > 0 gives
ε(Xn)Xn−1

ε(Xn−1)Xn
P (Yopt) < P (ε(Xn)hn) < P (Yopt).

Moreover, using the definition (3) for s = 1, one has
ε(Xn)Xn−1

ε(Xn−1)Xn
= α0XnXn−1+α1Xn−1

α0XnXn−1+α1Xn
> 1 − α1

α0Xn−1+α1
.

In other words, (1 − α1

α0Xn−1+α1
)P (Yopt) <

P (ε(Xn)hn) < P (Yopt). Denoting by
Yn = ε(Xn)hn and passing the latter inequalities to

the limit, one then has limn→∞ P (Yn) = P (Yopt).
On the other hand, P (Y ) =

∫ Y
0
µ(I(−y))− Rdy is

decreasing on the interval (Yopt,+∞) for the reason
that µ(I(−y)) is decreasing and µ(I(−y)) < R
on this interval. Since for all n ∈ N, Yn > Yopt,
one has limn→∞ Yn = Yopt. Finally µ(I(−y)) is a
continuous function with respect to y in R+, one
has limn→∞ µ(I(Xn, hn)) = limn→∞ µ(I(Yn)) =
µ(I(Yopt)) = R. This concludes the proof.

The previous theorem shows that without con-
straint on the reactors, an infinite thin reactor with
an infinite dense biomass concentration can maxi-
mize the productivity. According to how light at-
tenuates in the reactors (i.e. value of s), this pro-
ductivity can be increased infinitely. However for
real reactors, there is a constraint on the minimal
reactor depth hlim (below which mixing is no more
possible). An optimal solution can then be found
in this case. Indeed, as shown in Theorem 3.3,
a higher productivity can be obtained for higher
biomass concentration and smaller reactor depth.
Considering the minimal reactor depth, one can find
the optimal biomass concentration maximizing the
productivity.

4. Optimal control implementation in closed
loop

As shown in previous section, there exists opti-
mal biomass concentration for a given reactor depth
h. In this section, let us show that the evolution of
the biomass concentration X (defined in (7)) can
be stabilized to a desired biomass concentration by
applying an appropriate controller. More precisely,
we consider the dilution rate D in (7) as a con-
troller. Let us denote by X? ∈ (0, X(0)) the desired
biomass concentration.

Assumption 1 (H1). We assume that:

a. thanks to an oxygen probe, the quantity Φ :=
(µ̄(X,h) − R)X is measured on-line from the
plant,

b. the growth rate for the influent light intensity is
larger than the respiration (i.e. µ(Is) > R),

c. the maximal dilution rate Dmax is larger than the
maximal growth rate µmax.

The quantity Φ denotes the average oxygen pro-
duction which is available from the reactor. Indeed,
oxygen sensors are currently available and easy to
implement. Note that numerical estimators can

6



also be applied to obtain the quantity Φ. The in-
fluent light intensity is logically assumed to enable
biomass growth, i.e., to be neither too low nor too
inhibiting. The dilution rate (by medium addition
in the system) and harvesting rate is adapted to the
maximal growth rate of the species.

In the sequel, we assume that (H1) holds. Then
we have the following result.

Proposition 4.1. The control law

D =

{
Dmax X ≥ X̄
(µ̄(X,h)−R) XX? X < X̄

(13)

globally stabilizes equation (7) towards the positive
point X?.

Remark 4.1. X̄ > X? is chosen to determine the
area where the control will be at its maximum rate.
It is defined so that (µmax −R) X̄X? < Dmax.

Proof. From the definition of (13), the control vari-
able D is positive. On the other hand, µ̄(0, h) > R,
limX→∞ µ̄(X,h) = 0 and µ̄(·, h) is continuously
decreasing with respect to X. If the initial state
X(0) ≥ X̄, then replacing D = Dmax into (7) gives

Ẋ = (µ̄(X,h)−R−Dmax)X.

In particular, µ̄(X(0), h) − R − Dmax < 0, hence
there exists a time t1 > 0 such that the state X
decreases from 0 to t1 andX(t1) = X̄. When t > t1,
D = Φ

X? . Replacing D = Φ
X? into (7) gives

Ẋ = (µ̄(X,h)−R)
X

X?
(X? −X) =

Φ

X?
(X? −X).

(14)
Note that the system is now in the positive invariant
region X < X̄ and cannot come back again to X ≥
X̄. Moreover, 0 < µ̄(X,h)−R < µmax −R. Then,
integrating (14) gives ∀t ≥ t1, 0 < X? ≤ X(t) ≤
X(0).

In the case the initial state X(0) ∈ (0, X̄), the
control variable D = Φ

X? and the evolution equa-
tion (7) once again becomes (14), hence we follow
the small strategy as above.

Finally we find in both two cases that ∀t ≥
0, 0 < X? ≤ X(t) ≤ X(0). Therefore, the state
X? is globally exponentially stable for the evolution
equation (7) by using the control law (13).

5. Numerical results

In this section, we will illustrate some optimal
conditions to maximize the algal productivity. In

this way, we first introduce an algorithm to com-
pute the sequences defined in (12). We then give
the parameters that we use for the numerical ex-
periments and show some numerical results.

5.1. Numerical settings
In practice, one can use the next algorithm

to compute for two sequences (Xn−1, hn)n>0 and
(Xn, hn)n>0 defined by (12).

Algorithm 1 Search Optimum
1: Input: Yopt, nmax and X0.
2: Output: (Xn, hn)n>0

3: Set n := 0.
4: while n < nmax do
5: Set n = n+ 1.
6: Compute hn = Yopt/ε(Xn−1).
7: Compute Xn such that dΠX(Xn, hn) = 0.
8: end while

The Haldane parameters are given by µmax =
1.64 d−1, θ = 4.09 × 10−7 and I∗ =
202.93µmol m−2 s−1 and the respiration rate R =
0.12 d−1. The considered surface light intensity
is Is = 2000µmol m−2 s−1. For s = 1, we take
from [30] the specific light extinction coefficient for
the species Chlorella pyrenoidosa α0 = 0.2 m2 g−1

and the background turbidity α1 = 10 m−1. Note
that for the case where s < 1, we compute the coef-
ficient α0(s) to find the one providing an extinction
coefficient as close as possible to the reference linear
case which is generally the one measured:

α0(s) := argminX∈[Xmin,Xmax]|α0(1)X− α0(s)Xs|.
(15)

5.2. Numerical study
In this section, we provide some numerical tests

to illustrate the influence of the water depth h, the
biomass concentration X and the light extinction
function ε(X) on algal productivity.

5.2.1. Evaluation of different light extinction coef-
ficient

As mentioned in the previous section, the light
extinction coefficient α0 needs to be better esti-
mated when s < 1, in comparison with the reference
case s = 1. For this reason, for a range of biomass
concentration X in [0, 1000] (g ·m−3), we use (15)
to find α0 that provide the same average extinction
rate. Figure 1 shows ε(X) defined by (3) for dif-
ferent values of s when the background turbidity
α1 > 0.
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Figure 1: ε(X) with respect toX for s ∈ {0.2, 0.4, 0.6, 0.8, 1}.

5.2.2. Global optimum of optical depth
The optimal optical depth Yopt can be computed

explicitly using (9) once the light intensity at the
reactor surface Is and the model parameters (θ,
µmax, I∗, R) are fixed. Figure 2 presents the evo-
lution of the growth rate µ and optical depth pro-
ductivity P with respect to y for different value of s
and α1. One can see that the optimum is obtained

Figure 2: Growth rate µ and optical depth productivity P
with respect to y. Left: s = 1 and α1 = 10 m−1. Right:
s = 0.365 and α1 = 0 m−1.

with Yopt = 6.337, which also satisfies numerically
µ(I(Yopt)) = R. Moreover, as mentioned in Re-
mark 3.2, Yopt does not change for other values of
α1 and s.

In the same way, for a given biomass concentra-
tion X, Corollary 3.2 provides a condition to de-
termine the optimal depth to maximize the sur-
face biomass productivity Π. Figure 3 illustrates
this corollary with a biomass concentration X =
50 g ·m−3 for different values of s and α1. Note

Figure 3: Productivity (Π) and net growth rate (µnet(X,h))
with respect to depth (h) for X = 50 g ·m−3. Left: s = 1
and α1 = 10 m−1. Right: s = 0.365 and α1 = 0 m−1.

that the optimal depth h∗ satisfies the relation
ε(X)h∗ = Yopt. In other words, one can see that

this optimum satisfies µ (I(X,h∗)) = R. It is worth
remarking that the range of the productivity Π
changes for different value of s and α1, this mo-
tivates the next test, where we study how these
parameters affect algal growth.

5.2.3. Influence of the background turbidity and s
Here we study the influence of the background

turbidity α1 and the value of s on the productiv-
ity Π. We keep the biomass concentration value
X = 50 g ·m−3 and compute h by using the rela-
tion ε(X)h = Yopt for different values of α1 and s.
Note that the depth h computed in this way is the
optimum to maximize the productivity for the given
biomass concentration. Figure 4 represents the op-
timal surface biomass productivity Π with respect
to the background turbidity. As we can expect in-

Figure 4: Optimal surface biomass productivity with respect
to the background turbidity α1 for X = 50 g ·m−3 and dif-
ferent value of s.

tuitively, the larger the background turbidity is, the
smaller the productivity is. Furthermore, the pro-
ductivity increases with the value of s for a fixed
value of turbidity α1.

5.2.4. Local optimum in the case s = 1

In reality, the depth h depends on the type of
reactors. As an example, h = 0.1 m − 0.5 m for
raceway ponds, h = 1 cm − 10 cm for tubular pho-
tobioreactors and h = 0.1 mm − 1 mm for biofilm
reactors (where the microalgal biomass is fixed on
a support). By knowing the lowest bound admissi-
ble for the reactor depth (depending on the process
type), we only need to optimize the productivity
in the direction of X. Note that the turbidity α1

may change the optimal condition to maximize the
surface biomass productivity Π. Indeed, Figure 5
illustrates this for a reactor depth h = 0.15 m. Note
that X0 satisfies the relation ε(X0)h = Yopt which
also means that the net growth rate at the bottom
of the reactor is zero (see the blue point in these
two figures). On the other hand, the red point
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Figure 5: Productivity (Π) with respect to biomass concen-
tration (X) for h = 0.15 m. Left: α1 = 0 m−1. Right:
α1 = 10 m−1.

(X1, h) is the optimum which maximize the sur-
face biomass productivity Π for this given depth
h. One can see that X0 = X1 = 158.427 g ·m−3

in the case the background turbidity is zero in the
system (Left), meaning that the optimum is the
point which cancels the net average growth rate at
the reactor bottom as we have mentioned in Corol-
lary 3.1. However, Lemma 3.1 indicates that by tak-
ing into account the background turbidity (Right),
these two points are no longer the same and the op-
timum then satisfies X1 = 204.190 g ·m−3 > X0 =
108.427 g ·m−3.

The global behaviour of the surface biomass pro-
ductivity Π is represented on Figure 6, for h ∈ (0, 1]
and X ∈ (0, 1000]. To discuss the influence of
the background turbidity, we consider two possi-
ble values, α1 = 0 m−1 and α1 = 10 m−1. Note

Figure 6: Global behaviour of productivity (Π) with respect
to depth (h) and biomass concentration (X). Left: α1 =
0 m−1. The blue stars represent the optimal couple (X,h)
such that Π finds its global maximum. Right: α1 = 10 m−1.
The red circles represent the suboptimal couple (X,h) where
Π finds its maximum in the direction of h for a given X. The
black squares represent the suboptimal couple (X,h) where
Π finds its maximum in the direction of X for a given h.

that the blue points in the left figure (X,h) sat-
isfy the relation ε(X)h = Yopt which is also the
global optimum. However, by taking into account
the background turbidity (see figure on the right),
no global optimum exists as mentioned in Theo-
rem 3.2. Instead, for a given biomass concentra-
tion, the optimal depths can still be found using
the relation ε(X)h = Yopt (represented by the red
circles in the right figure). For a given water depth,
the optimal concentrations are obtained by can-

celling the derivative of Π(·, h) (represented by the
black squares in the right figure). Furthermore, one
can observe that this two suboptima become closer
when X increases and h decreases, meanwhile the
productivity also increases in this direction.

Let us set X0 = 50 g ·m−3, α1 = 10 m−1 and
nmax = 104. Figure 7 illustrates the properties of
these two sequences constructed by Algorithm 1.
Starting from the figure on the top, the blue point

Figure 7: Up: First-two elements of these two sequences.
Down Left: Surface biomass Xnhn and optical depth
ε(Xn)hn for the sequence (Xn, hn)n>0. Down Right: Pro-
ductivity Π(Xn, hn) and net growth rate at the reactor bot-
tom µ(Xn, hn)−R for the sequence (Xn, hn)n>0.

and the yellow point are the first-two element of
the sequence (Xn−1, hn)n>0, the red point and
the purple point are the first-two element of the
sequence (Xn, hn)n>0. Recall that the sequence
(Xn−1, hn)n>0 always satisfies ε(Xn−1)hn = Yopt
and the net growth rate at the reactor bottom is
always 0. We then only study the asymptotic be-
haviour of the sequence (Xn, hn)n>0. As shown in
bottom left figure, the surface biomass Xnhn con-
verges to Yopt

α0
and the optical depth ε(Xn)hn con-

verges to Yopt, as proved in Lemma 3.3. The pro-
ductivity Π(Xn, hn) converges to P (Yopt)/α0, see
bottom right figure as proved in Theorem 3.3. Fi-
nally, the net growth rate at the reactor bottom
converges to zero, which is the global optimum con-
dition in the case where the background turbidity is
0 (see Corollary 3.1). In particular, since (Xn, hn)
are the optima in the direction of X for each hn,
one can see that the net growth rate at the reac-
tor bottom for these optima are always negative,
meaning that the compensation condition is only
satisfied asymptotically.
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5.2.5. Local optimum in the case s < 1

We start with a similar study as in Figure 5 in the
case s < 1. Recall that the depth of the reactor is
given by h = 0.15 m and two background turbidity
values are given by α1 = 0 m−1 and α1 = 10 m−1.
Figure 8 illustrates the results for s = 0.365. Re-

Figure 8: Productivity (Π) with respect to biomass concen-
tration (X) for h = 0.15 m. Left: α1 = 0 m−1. Right:
α1 = 10 m−1.

call that the blue point (X0, h) satisfies the rela-
tion ε(X0)h = Yopt which also means that the net
growth rate at the reactor bottom is zero, and the
red point (X1, h) represents the optimum which
maximizes the productivity for this depth h. In
the case α1 = 0 m−1, we find X0 = 13.327 g ·m−3

and X1 = 1149.298 g ·m−3, whereas we obtain
X0 = 4.715 g ·m−3 and X1 = 1064.574 g ·m−3 in
the case α1 = 10 m−1. These two points do not co-
incide even when the background turbidity is zero,
which is different from the case s = 1.

Figure 9 presents the global behaviour of surface
biomass productivity in the case s = 0.365. Un-

Figure 9: Global behaviour of productivity (Π) with respect
to depth (h) and biomass concentration (X). Left: α1 =
0 m−1. Right: α1 = 10 m−1. The red circles represent the
suboptimal couple (X,h) where Π finds its maximum in the
direction of h for a given X. The black squares represent the
suboptimal couple (X,h) where Π finds its maximum in the
direction of X for a given h.

like for the case s = 1 (Figure 6), the influence
of the background turbidity becomes smaller when
s < 1. However, similarly to this s = 1 case (Right),
the productivity becomes larger when the biomass
concentration X increases and the water depth h
decreases. Furthermore, Figure 10 shows the di-
vergence of the productivity Π, as proved in Theo-
rem 3.3.

Figure 10: Π(Xn, hn) for the sequence (Xn, hn)n>0.

5.2.6. Controller test
We present the efficiency of the controller D de-

signed in Proposition 4.1. Let us set h = 0.1 m,
s = 1, X(0) = [2500, 50]g m−3, Dmax = 10µmax

and keep other parameter settings. Figure 11 illus-
trates the behaviour of the biomass concentration
X under our controller D. Note that the desired

Figure 11: Evolution of the biomass concentration X in
closed loop for two initial conditions.

biomass concentration X? = argmaxX∈R+
Π(X,h).

One can see that the evolution of the biomass con-
centration X in closed loop converges to the desired
optimal biomass concentration (after five days).

6. Discussion

Optimization of algal productivity turns out to
be strongly dependent on how light is distributed
along the reactor, which depends on the algal scat-
tering and absorption rates and of the background
turbidity. In some applications, e.g. in wastew-
ater treatment [12], the background turbidity, can
be very high, resulting from the contribution of dis-
solved matter, but also from bacterial biomass. Ne-
glecting this contribution can then induce strong
model inaccuracies and suboptimal productivity.
When background turbidity is neglected, only areal
biomass matters, whatever the liquid depth. This
radically changes when background turbidity is no
more zero, and the minimum depth compatible with
the cultivation system must be chosen to maximize
productivity. For standard photobioreactors the
minimal optical path will be in the range of cen-
timeters, while for raceway ponds it will of about
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10 cm. More recent technologies are probably even
better tailored for imposing a thinner liquid depth,
and especially the thin layer reactors [17] as con-
firmed by the experimental work of [3, 13] who
showed that the mean irradiance inside the culture
was driving productivity. The limit of thinner re-
actors is reached by biofilm based systems, which
have proved to reach high efficiencies [21, 19].

Here we have considered a relatively simple
model for light use, and we neglected the impact
of photosystem dynamics, especially when hydro-
dynamics transports the cells through a gradient of
light intensities. In this more complicated, yet more
realistic framework, the proposed optimal strat-
egy can still be extended. When both light gra-
dient and hydrodynamics are taken into account,
[7] showed that some topologies of the reactor bot-
tom can further enhance productivity. Mixing is
also a very important factor that enhances produc-
tivity as confirmed numerically [8] and further ex-
perimentally [10]. In Section 4, a nonlinear con-
troller playing with the dilution rate, was proposed
to bring the biomass concentration towards the de-
sired value optimizing productivity.

Of course, for outdoor reactors, other factors
must be accounted for and this ideal situation where
a constant light drives the dynamics does not oc-
cur anymore. Although light is the crucial energy
source for the photosynthetic growth of microalgae,
key parameters such as temperature, pH or nutrient
limitation can also strongly affect the production ef-
ficiency in bioreactors. Many works exist account-
ing for these parameters to provide engineering con-
trol strategies applied in bioreactors [9, 33, 34]. The
proposed strategies needs now to be extended first
in order to account for the variation of light inten-
sity along time.

7. Conclusion

The concept of optical productivity P has been
defined and a global optimum Yopt has been found
to maximize P . This condition corresponds to a
situation where the net growth rate at the reactor
bottom is zero. This optimum can be used to char-
acterize the optimal water depth which maximizes
surface biomass productivity for a target biomass
concentration value. When the light extinction rate
is affine with respect to the biomass concentration,
an upper limit to the productivity is given which
is obtained for an infinitely small depth and an in-
finitely large biomass concentration.

The proposed nonlinear controller stabilizes the
biomass concentration to its optimal value X?. It
could be improved by integrating an extremum
seeking strategy [28, 22] to automatically target
the desired biomass without identifying it in ad-
vance. In such a way, it could automatically adapt
to changes in the environment affecting the microal-
gal dynamics.
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