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Abstract

We present new Dirichlet-Neumann and Neumann-Dirichlet algorithms
with a time domain decomposition applied to unconstrained parabolic op-
timal control problems. After a spatial semi-discretization, we use the La-
grange multiplier approach to derive a coupled forward-backward optimal-
ity system, which can then be solved using a time domain decomposition.
Due to the forward-backward structure of the optimality system, three
variants can be found for the Dirichlet-Neumann and Neumann-Dirichlet
algorithms. We analyze their convergence behavior and determine the op-
timal relaxation parameter for each algorithm. Our analysis reveals that
the most natural algorithms are actually only good smoothers, and there
are better choices which lead to efficient solvers. We illustrate our analysis
with numerical experiments.
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1 Introduction
PDE-constrained optimal control problems arise in various areas, often contain-
ing multiphysics or multiscale phenomena, and also high frequency components
on different time scales. This requires very fine spatial and temporal discretiza-
tions, resulting in very large problems, for which efficient parallel solvers are
needed; we refer to [13, 24] for a brief review. We present and analyze a new
class of time domain decomposition methods based on Dirichlet-Neumann and
Neumann-Dirichlet techniques. We consider as our model a parabolic control
problem: for a given target function ŷ ∈ L2(Q) and γ ∈ R+, ν ∈ R+

∗ , we want
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to minimize the cost functional

J(y, u) :=
1

2
‖y − ŷ‖2L2(Q) dt+

γ

2
‖y(T )− ŷ(T )‖2L2(Ω) +

ν

2
‖u‖2Uad

, (1)

subject to the linear parabolic state equation

∂ty −∆y = u in Q := Ω× (0, T ),

y = 0 on Σ := ∂Ω× (0, T ),

y(0) = y0 on Σ0 := Ω× {0},
(2)

where Ω ⊂ Rd, d = 1, 2, 3 is a bounded domain with boundary ∂Ω, and T
is the fixed final time. The control u on the right-hand side of the PDE is
in an admissible set Uad, and we want to control the solution of the parabolic
PDE (2) towards a target state ŷ. For simplicity, we consider here homogeneous
boundary conditions.

The parabolic control problem (1)-(2) has a unique solution for the classical
choice u ∈ L2(Q), which can be characterized by a forward-backward optimality
system, see e.g. [4, 17, 24]. More recently, also energy regularization has been
considered, see [21] for elliptic and [15] for parabolic cases. This is motivated
by the fact that the state y ∈ L2(0, T ;H1

0 (Ω)) is well-defined as the solution of
the heat equation (2) for the control z ∈ L2(0, T ;H−1(Ω)), and thus offers an
interesting alternative.

We are interested in applying Time Domain Decomposition methods (DDMs)
to the forward-backward optimality system. DDMs were developed for elliptic
PDEs and are very efficient in parallel computing environments, see e.g. [6, 23].
DDMs were extended to time-dependent problems using waveform relaxation
techniques from [16], with a spatial decomposition and solving the problem on
small space-time cylinders [11]. The extension of DDMs to elliptic control prob-
lems is quite natural, see [1, 2, 5, 8], but less is known about DDMs applied to
parabolic control problems.

The role of the time variable in forward-backward optimality systems is key,
and it is natural to seek efficient solvers through time domain decomposition.
For classical evolution problems, the idea of time domain decomposition goes
back to [22]. Parallel Runge Kutta methods were introduced in [20] with good
small scale time parallelism. In [19, 25], the authors propose to combine multi-
grid methods with waveform relaxation. Parareal [18] uses a different approach,
namely multiple shooting with an approximate Jacobian on a coarse grid, and
Parareal techniques led to a new ParaOpt algorithm [9] for optimal control, see
also [12]. In [7, 14], Schwarz methods are used to decompose the time domain
for optimal control.

We develop and analyze here new time domain decomposition algorithms
to solve the PDE-constrained problem (1)-(2) using Dirichlet-Neumann and
Neumann-Dirichlet techniques that go back to [3] for space parallelism. We
introduce in Section 2 the optimality system and its semi-discretization. In
Section 3 we present our new time parallel Dirichlet-Neumann and Neumann-
Dirichlet algorithms and study their convergence. Numerical experiments are
shown in Section 4, and we draw conclusions in Section 5.
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2 Optimality system and its semi-discretization
The PDE-constrained optimization problem (1)-(2) can be solved using La-
grange multipliers [24, Chapter 3], see also [10] for a historical context. To
obtain the associated optimality system, we introduce the Lagrangian function
L associated with Problem (1)-(2),

L(y, u, λ) =J(y, u) + 〈∂ty −∆y − u, λ〉

=

∫ T

0

(
〈∂ty, λ〉V ′,V +

∫
Ω

(1

2
|y − ŷ|2 +

ν

2
|u|2 +∇y · ∇λ− uλ

)
dx
)

dt

+
γ

2

∫
Ω

|y(T )− ŷ(T )|2 dx,

with y ∈ W (0, T ) := L2(0, T ;V ) ∩ H1(0, T ;V ′), u ∈ L2(Q), V := H1
0 (Ω) and

V ′ := H−1(Ω) the dual space of V . Here λ ∈ L2(0, T ;V ) denotes the adjoint
state (also called the Lagrange multiplier). Taking the derivative of L with re-
spect to λ and equating this to zero, we find for all test functions χ ∈ L2(0, T ;V ),

0 = 〈∂λ L(y, u, λ), χ〉 =

∫ T

0

(
〈∂ty, χ〉V ′,V +

∫
Ω

(
∇y · ∇χ− uχ

)
dx
)

dt,

which implies that y ∈ V is the weak solution of the state equation (2) (also
called the primal problem). Taking the derivative of L with respect to y and
equating this to zero, and obtain for all χ ∈W (0, T )

0 = 〈∂y L(y, u, λ), χ〉 =

∫ T

0

(
〈∂tχ, λ〉V ′,V +

∫
Ω

(
(y − ŷ)χ+∇χ · ∇λ

)
dx
)

dt

=〈χ(T ), λ(T ) + γ(y(T )− ŷ(T ))〉L2(Ω) − 〈χ(0), λ(0)〉L2(Ω)

+

∫ T

0

〈−∂tλ−∆λ+ (y − ŷ), χ〉V ′,V dt,

where we used integration by parts with respect to t in ∂tχ and with respect to
x in ∇χ. By choosing χ ∈ C∞0 (Q) and applying an argument of density, we find
that the last integral is zero. Choosing then χ ∈ W (0, T ) such that χ(0) = 0,
we obtain the adjoint equation (also called the dual problem)

∂tλ+ ∆λ = y − ŷ in Q,
λ = 0 on Σ,

λ(T ) = −γ(y(T )− ŷ(T )) on ΣT := Ω× {T}.
(3)

Finally, taking the derivative of L with respect to u and equating this to zero,
we obtain for all test functions χ ∈ L2(Q),

0 = 〈∂u(y, u, p), χ〉 =

∫ T

0

∫
Ω

(νu− λ)χdx dt,
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which gives the optimality condition

λ = νu in Q. (4)

If a control u is optimal with the associated state y of the optimization prob-
lem (1)-(2), then the first-order optimality system (2), (3) and (4) must be
satisfied. This is a forward-backward system, i.e., the primal problem is solved
forward in time with an initial condition while the dual problem is solved back-
ward in time with a final condition, and our new time decomposition algorithms
solve this system. Since the time variable plays a special role, we consider a
semi-discretization in space, and replace the spatial operator −∆ in the pri-
mal problem (2) by a matrix A ∈ Rn×n, for instance using a Finite Difference
discretization in space. We then obtain as above the semi-discrete optimality
system (dot denoting the time derivative){

ẏ +Ay = u in (0, T ),

y(0) = y0,

{
λ̇−ATλ = y − ŷ in (0, T ),

λ(T ) = −γ(y(T )− ŷ(T )),

where λ(t) = νu(t) for all t ∈ Ω. Eliminating u, we obtain in matrix form
(
ẏ

λ̇

)
+

(
A −ν−1I
−I −AT

)(
y
λ

)
=

(
0
−ŷ

)
in (0, T ),

y(0) = y0,

λ(T ) + γy(T ) = γŷ(T ),

(5)

where I is the identity. If A is symmetric, A = AT , which is natural for dis-
cretizations of−∆, then it can be diagonalized, A = PDP−1,D := diag(d1, . . . , dn)
with di the i-th eigenvalue of A. The system (5) can thus also be diagonalized

(
ż
µ̇

)
+

(
D −ν−1I
−I −D

)(
z
µ

)
=

(
0
−ẑ

)
in (0, T ),

z(0) = z0,

µ(T ) + γz(T ) = γẑ(T ),

where z := P−1y, µ := P−1λ, ẑ := P−1ŷ and z0 := P−1y0. This system then
represents n independent 2× 2 systems of ODEs of the form

(
ż(i)

µ̇(i)

)
+

(
di −ν−1

−1 −di

)(
z(i)

µ(i)

)
=

(
0
−ẑ(i)

)
in (0, T ),

z(i)(0) = z(i),0,

µ(i)(T ) + γz(i)(T ) = γẑ(i)(T ),

(6)

where z(i), µ(i), ẑ(i) are the i-th components of the vectors z, µ, ẑ. Isolating
the variable in each equation in (6), we find the identities

µ(i) = ν(ż(i) + diz(i)), z(i) = µ̇(i) − diµ(i) + ẑ(i). (7)
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We use the identity of z to eliminate µ, and obtain a second-order ODE from (6),
z̈(i) − (d2

i + ν−1)z(i) = −ν−1ẑ(i) in (0, T ),

z(i)(0) = z(i),0,

ż(i)(T ) + (ν−1γ + di)z(i)(T ) = ν−1γẑ(i)(T ).

(8)

Similarly, we can also eliminate z to get
µ̈(i) − (d2

i + ν−1)µ(i) = − ˙̂z(i) − diẑ(i) in (0, T ),

µ̇(i)(0)− diµ(i)(0) = z(i),0 − ẑ(i)(0),

γµ̇(i)(T ) + (1− γdi)µ(i)(T ) = 0.

(9)

To simplify the notation in what follows, we define

σi :=
√
d2
i + ν−1, ωi := ν−1γ + di, βi := 1− γdi. (10)

In our analysis for the error, ŷ will equal zero, which implies ẑ = 0, and the
solution of (8) and (9) is then

z(i)(t) or µ(i)(t) = Ai cosh(σit) +Bi sinh(σit), (11)

where Ai, Bi are two coefficients.

Remark 1. Our arguments above work for any diagonalizable matrix A, and
thus our results will apply to more general parabolic optimal control problems
than the heat equation. Note also that the diagonalization is only a theoretical
tool for our convergence analysis, and not needed to run our new time domain
decomposition algorithms.

3 Dirichlet-Neumann and Neumann-Dirichlet al-
gorithms in time

We now apply Dirichlet-Neumann (DN) and Neumann-Dirichlet (ND) tech-
niques in time to obtain our new time domain decomposition algorithms to
solve the system (6), and study their convergence. Focusing on the error equa-
tions, we set the initial condition y0 = 0 (i.e., z0 = 0) and the target functions
ŷ = 0 (i.e., ẑ = 0). We decompose the time domain Ω := (0, T ) into two
non-overlapping time subdomains Ω1 := (0, α) and Ω2 := (α, T ), where α is the
interface. We denote by zj,(i) and µj,(i) the restriction to Ωj , j = 1, 2 of z(i) and
µ(i). Since system (6) is a forward-backward system, it appears natural at first
sight to keep this property for the decomposed case, as illustrated in Figure 1:
we expect to have a final condition for the adjoint state µ(i) in Ω1 since we
already have an initial condition for z(i); similarly, we expect to have an initial
condition for the primal state z(i) in Ω2 since we already have a final condition

5



0 Tα

Ω1 Ω2
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µ(i)

Figure 1: Illustration of the forward-backward system.

for µ(i). Therefore, a natural DN algorithm in time solves for the iteration index
k = 1, 2, . . . 

(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

żk2,(i)(α) = żk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

(12)

and then the transmission condition is updated by

fkα,(i) := (1− θ)fk−1
α,(i) + θµk2,(i)(α), (13)

with a relaxation parameter θ ∈ (0, 1). However, there are many other ways
to decouple in time using DN and ND techniques for problem (6): we can
apply the technique to both states (z(i), µ(i)) as in (12), or we can apply it
just to one of these two states in the reduced forms (8) and (9). And with
the identities (7), we can transfer the Dirichlet and the Neumann transmission
condition from one state to the other. We list in Table 1 all possible new time
domain decomposition algorithms we can obtain, along with their equivalent
representations in terms of other formulations. The algorithms can be classified
into three main categories, and each category is composed of two blocks, the
first block represents a DN technique applied to (6), whereas the second block
represents a ND technique. Each block contains three rows: the first row is the
algorithm applied to formulation (6), the second row the algorithm applied to
formulation (8) and the third row the algorithm applied to formulation (9).

Remark 2. In Table 1, the transmission conditions z̈(i) +diż(i) and µ̈(i)−diµ̇(i)

are in fact Robin type conditions, since, using the identity (7) of z(i) and µ(i),
we find

ż(i) = µ̈(i) − diµ̇(i), µ̇(i) = z̈(i) + diż(i).

On the other hand, from the first equation of (8) and of (9), we have

z̈(i) − σ2
i z(i) = 0, µ̈(i) − σ2

i µ(i) = 0.
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Problem Ω1 Ω2 algorithm type

Category I: (z(i), µ(i))

(6) µ(i) ż(i) (DN)
(8) ż(i) + diz(i) ż(i) (RN)
(9) µ(i) µ̈(i) − diµ̇(i) (DR)
(6) µ̇(i) z(i) (ND)
(8) z̈(i) + diż(i) z(i) (RD)
(9) µ̇(i) µ̇(i) − diµ(i) (NR)

Category II: z(i)

(6) z(i) ż(i) (DN)
(8) z(i) ż(i) (DN)
(9) µ̇(i) − diµ(i) µ̈(i) − diµ̇(i) (RR)
(6) ż(i) z(i) (ND)
(8) ż(i) z(i) (ND)
(9) µ̈(i) − diµ̇(i) µ̇(i) − diµ(i) (RR)

Category III: µ(i)

(6) µ(i) µ̇(i) (DN)
(8) ż(i) + diz(i) z̈(i) + diż(i) (RR)
(9) µ(i) µ̇(i) (DN)
(6) µ̇(i) µ(i) (ND)
(8) z̈(i) + diż(i) ż(i) + diz(i) (RR)
(9) µ̇(i) µ(i) (ND)

Table 1: Combinations of the DN and ND algorithms. The letter R stands for
a Robin type condition.
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Substituting z̈(i) and µ̈(i) gives

µ̇(i) = z̈(i) + diż(i) = diż(i) + σ2
i z(i), ż(i) = µ̈(i) − diµ̇(i) = σ2

i µ(i) − diµ̇(i).

Thus the transmission conditions containing a second derivative in Table 1 are
indeed Robin type conditions. We decided to keep the notations z̈(i) and µ̈(i) in
Table 1 to show the direct link between the two states z(i) and µ(i).

However, there are other interpretations of some transmission conditions in
certain circumstances. For instance, let us take the Neumann condition ż(i) in
the second block of Category II for the problem (6), it can also be interpreted as
a Robin condition σ2

i µ(i)−diµ̇(i) using the above argument. Then, this algorithm
can also be read as a Robin-Dirichlet (RD) type algorithm instead of a Neumann-
Dirichlet type. Moreover, this interpretation is particularly useful in this case,
since it reveals the fact that the forward-backward property of the problem (6)
is still kept by this algorithm. Otherwise, we can also use the identity of µ(i)

in (7) to transfer this Neumann condition ż(i) to µ(i)−diz(i). This is also useful
from a numerical point of view, since we can transfer a Neumann condition to
a Dirichlet type condition. This will be used in detail in the following analysis.

3.1 Category I
We start with the algorithms in Category I, which run on the pair (z(i), µ(i)) to
solve (6), and study the DN and then the ND variant.

3.1.1 Dirichlet-Neumann algorithm (DN1)

This is (12), at first sight the most natural method that keeps the forward-
backward structure as in the original problem (6). To analyze the convergence
behavior, we can choose any of the problem formulations (8), (9), since they
are equivalent to (6). Choosing (8), the algorithm DN1 for i = 1, . . . , n, and
iteration k = 1, 2, . . . is given by

z̈k1,(i) − σ
2
i z
k
1,(i) = 0 in Ω1,

zk1,(i)(0) = 0,

żk1,(i)(α) + diz
k
1,(i)(α) = fk−1

α,(i),


z̈k2,(i) − σ

2
i z
k
2,(i) = 0 in Ω2,

żk2,(i)(α) = żk1,(i)(α),

żk2,(i)(T ) + ωiz
k
2,(i)(T ) = 0,

(14)

and the update of the transmission condition defined in (13) becomes

fkα,(i) = (1− θ)fk−1
α,(i) + θ

(
żk2,(i)(α) + diz

k
2,(i)(α)

)
. (15)

This is a Robin-Neumann type algorithm applied to solve the problem (8). Using
the general solution (11), and the initial and final condition, we find

zk1,(i)(t) = Aki sinh(σit), z
k
2,(i)(t) = Bki

(
σi cosh

(
σi(T − t)

)
+ωi sinh

(
σi(T − t)

))
,

(16)
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where Aki and Bki are determined by the transmission conditions at α in (14).
Note that we will use (16) in the analysis for all algorithms, since only the
transmission conditions will change. Inserting (16) at the interface α into (14)
and solving for Aki , Bki gives

Aki =
fk−1
α,(i)

σi cosh(ai) + di sinh(ai)
,

Bki = −
fk−1
α,(i) cosh(ai)(

σi cosh(ai) + di sinh(ai)
)(
σi sinh(bi) + ωi cosh(bi)

) ,
where we let ai := σiα and bi := σi(T − α) to simplify the notations, and
ai + bi = σiT . Using the update of the transmission condition (15), we obtain

fkα,(i) = (1− θ)fk−1
α,(i)+θ(ż

k
2,(i)(α) + diz

k
2,(i)(α))

= (1− θ)fk−1
α,(i)+θB

k
i

(
(ωidi − σ2

i ) sinh(bi) + σi(di − ωi) cosh(bi)
)

= (1− θ)fk−1
α,(i)+θf

k−1
α,(i)ν

−1 σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) .
which leads to the following result.

Theorem 1. The algorithm DN1 (12)-(13) converges if and only if

ρDN1
:= max

di∈λ(A)

∣∣∣1−θ(1−ν−1 σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

))∣∣∣ < 1, (17)

where λ(A) is the spectrum of the matrix A.

Remark 3. Instead of focusing on the state z(i) for the analysis, we could also
have focused on the state µ(i), which gives the same result, see Appendix A.

To get more insight in the convergence behavior, we consider a few special
cases.

Corollary 1. If the matrix A is not singular, then the algorithm DN1 (12)-(13)
for θ = 1 converges for all initial guesses.

Proof. Substituting θ = 1 into (17), we have

ρDN1
|θ=1 = ν−1 max

di∈λ(A)

∣∣∣ σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) ∣∣∣. (18)

Using the definition of σi, βi and ωi from (10), the numerator can be written as

σiγ + βi tanh(bi) = γ
(
σi − di tanh(bi)

)
+ tanh(bi).
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Since 0 < tanh(x) < 1, ∀x > 0 and σi−di tanh(bi) > 0, both the numerator and
the denominator in (18) are positive. Now the difference between the numerator
and the denominator is(

σi + di tanh(ai)
)(
ωi + σi tanh(bi)

)
− ν−1

(
σiγ + βi tanh(bi)

)
=
(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

)
−
(
σi(ωi − di) + (σ2

i − ωidi) tanh(bi)
)

=ωidi
(

tanh(bi) + tanh(ai)
)

+ σidi
(
1 + tanh(bi) tanh(ai)

)
=
(
1 + tanh(bi) tanh(ai)

)(
σidi + ωidi tanh(σiT )

)
> 0,

meaning that for each eigenvalue di,

0 < ν−1 σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) < 1.

This concludes the proof.

Remark 4. For the Laplace operator with homogeneous Dirichlet boundary con-
ditions in our model problem (2), there is no zero eigenvalue for its discretization
matrix A. If an eigenvalue di = 0, we have σi|di=0 =

√
ν−1, ωi|di=0 = γν−1

and βi|di=0 = 1. Substituting these values into the convergence factor (18), we
find

ρDN1
|θ=1,di=0 = ν−1

√
ν−1γ + tanh

(√
ν−1(T − α)

)
√
ν−1

(
γν−1 +

√
ν−1 tanh

(√
ν−1(T − α)

) ) = 1,

and convergence is lost. The convergence behavior of the algorithm DN1 for
small eigenvalues is thus not good. Furthermore, inserting di = 0 into (17)
and using the above result, we find that ρDN1

|di=0 = 1, independently of the
relaxation parameter θ and the interface position α: relaxation can not fix this
problem.

Remark 5. If some di goes to infinity, we have σi ∼∞ di and ωi ∼∞ di, and
therefore

lim
di→∞

∣∣∣1− θ(1− ν−1 σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

))∣∣∣ = |1− θ|,

which is independent of α, so high frequency convergence is robust with relax-
ation. One can use θ = 1 to get a good smoother, with the following convergence
factor estimate.

Corollary 2. If A is positive semi-definite, then the algorithm DN1 (12)-(13)
with θ = 1 satisfies the convergence estimate ρDN1 |θ=1 ≤ 1+γσmin

νd2min
, with dmin :=

minλ(A) the smallest eigenvalue of A.
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Proof. Since for θ = 1, Corollary 1 shows that the convergence factor is between
0 and 1 for each eigenvalue di, we can take (18) and remove the absolute value,

ρDN1
|θ=1 = ν−1 max

di∈λ(A)

tanh(bi) + γ
(
σi − di tanh(bi)

)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) .
Using the definition of σi and ωi from (10), we have σi > di ≥ 0 and ωi ≥
di ≥ 0. Since 0 < tanh(x) < 1, ∀x > 0, we obtain that σi + di tanh(ai) ≥ di,
ωi + σi tanh(bi) ≥ di and σi − di tanh(bi) ≤ σi. This implies

tanh(bi) + γ
(
σi − di tanh(bi)

)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) ≤ 1 + γσi
d2
i

=
1

di
(

1

di
+ γ

σi
di

).

Using once again the definition of σi from (10), we find

σi
di

=

√
1 +

ν−1

d2
i

≤

√
1 +

ν−1

d2
min

.

Hence, we have
1 + γσi
d2
i

≤ 1 + γσmin

d2
min

,

which concludes the proof.

Since A comes from a spatial discretization, the smallest eigenvalue of A
depends only little on the spatial mesh size, and convergence is thus robust
under mesh refinement. Corollary 2 is however less useful when ν is small: for
example for γ = 0, the bound is less than one only if ν > 1

d2min
, but we have also

the following convergence result.

Theorem 2. The algorithm DN1 (12)-(13) converges for all initial guesses un-
der the assumption that the matrix A is not singular.

Proof. From Corollary 1, we know that the convergence factor satisfies 0 <
ρDN1

|θ=1 < 1. Using its definition (17), we find for θ ∈ (0, 1),

0 < 1− θ < ρDN1 = 1− θ(1− ρDN1 |θ=1) < 1.

which concludes the proof.

Remark 6. As shown in the previous proof, the function g(θ) := 1 − θ(1 −
ρDN1

|θ=1) is decreasing for θ ∈ (0, 1), which makes θ = 1 the best relaxation pa-
rameter. This is further confirmed by our numerical experiments (see Figure 4).
Due to the bad convergence behavior of the algorithm DN1 for small eigenvalues,
it only makes this most natural DN algorithm a good smoother but not a good
solver.
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3.1.2 Neumann-Dirichlet algorithm (ND1)

We now invert the two conditions, and apply the Neumann condition to the state
µ(i) in Ω1 and the Dirichlet condition to the state z(i) in Ω2, still respecting the
forward-backward structure. For iteration index k = 1, 2, . . ., the algorithm
ND1 computes

(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µ̇k1,(i)(α) = µ̇k2,(i)(α),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

zk2,(i)(α) = fk−1
α,(i),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

(19)

and we update the transmission condition by

fkα,(i) := (1− θ)fk−1
α,(i) + θzk1,(i)(α), θ ∈ (0, 1). (20)

For the convergence analysis, we choose to use the formulation (9), i.e.
µ̈k1,(i) − σ

2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µ̇k1,(i)(α) = µ̇k2,(i)(α),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µ̇k2,(i)(α)− diµk2,(i)(α) = fk−1
α,(i),

γµ̇(i)(T ) + βiµ(i)(T ) = 0,

(21)

where the update of the transmission condition (20) becomes

fkα,(i) = (1− θ)fk−1
α,(i) + θ

(
µ̇k1,(i)(α)− diµk1,(i)(α)

)
, θ ∈ (0, 1). (22)

The algorithm ND1 (19) can thus be interpreted as a NR type algorithm (21).
Using the general solution (11) and the initial and final conditions, we get

µk1,(i)(t) = Aki
(
σi cosh(σit) + di sinh(σit)

)
,

µk2,(i)(t) = Bki

(
γσi cosh

(
σi(T − t)

)
+ βi sinh

(
σi(T − t)

))
,

(23)

and from the transmission condition in (21) on each domain, and we obtain

Aki =
fk−1
α,(i)

(
σiγ sinh(bi) + βi cosh(bi)

)(
ωi sinh(bi) + σi cosh(bi)

)(
σi sinh(ai) + di cosh(ai)

) ,
Bki =

−fk−1
α,(i)

ωi sinh(bi) + σi cosh(bi)
.

12



Using the relation (22), we find

fkα,(i) = (1− θ)fk−1
α,(i) + θ(µ̇k1,(i)(α)− diµk1,(i)(α))

= (1− θ)fk−1
α,(i) + θAki ν

−1 sinh(ai)

= (1− θ)fk−1
α,(i) + θfk−1

α,(i)ν
−1 σiγ + βi coth(bi)(

σi + di coth(ai)
)(
ωi + σi coth(bi)

) .
which leads to the following result.

Theorem 3. The algorithm ND1 (19)-(20) converges if and only if

ρND1
:= max

di∈λ(A)

∣∣∣1− θ(1− ν−1 σiγ + βi coth(bi)(
σi + di coth(ai)

)(
ωi + σi coth(bi)

))∣∣∣ < 1. (24)

The convergence factor of the algorithm ND1 (24) is very similar to that of
DN1 (17). For instance, the behavior for large and small eigenvalues shown in
Remarks 4 and 5 still hold: when inserting di = 0 into (24) we find

ρND1
|di=0 =

∣∣∣1− θ(1− ν−1

√
ν−1γ + coth

(√
ν−1(T − α)

)
√
ν−1

(
γν−1 +

√
ν−1 coth

(√
ν−1(T − α)

) ))∣∣∣ = 1,

again independent of the relaxation parameter θ and the interface position α;
and when the eigenvalue di goes to infinity, we find

lim
di→∞

∣∣∣1− θ(1− ν−1 σiγ + βi coth(bi)(
σi + di coth(ai)

)(
ωi + σi coth(bi)

))∣∣∣ = |1− θ|,

again independent of the interface position α. Due however to the presence
of the hyperbolic cotangent function in (24) instead of the hyperbolic tangent
function in (17), we need further assumptions to obtain results like Corollaries 1
and 2. Indeed, substituting θ = 1 into (24) and using the definition of σi, βi
from (10), the numerator reads

σiγ + βi coth(bi) = γ
(√

d2
i + ν−1 − di coth

(√
d2
i + ν−1(T − α)

))
+ coth

(√
d2
i + ν−1(T − α)

)
.

Depending on γ, ν and α, this value could be negative. However, by setting
γ = 0, the numerator is guaranteed to be positive, and we obtain the following
results.

Corollary 3. If A is not singular and the parameter γ = 0, then the algorithm
ND1 (19)-(20) for θ = 1 converges for all initial guesses.

Proof. Substituting θ = 1 and γ = 0 into (24), we get

ρND2
|θ=1 = ν−1 max

di∈λ(A)

∣∣∣ coth(bi)(
σi + di coth(ai)

)(
di + σi coth(bi)

) ∣∣∣. (25)
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Since coth(x) > 1, ∀x > 0, both the numerator and the denominator in (25) are
positive, and the difference between them is(

σi + di coth(ai)
)(
di + σi coth(bi)

)
− ν−1 coth(bi)

=
(
σi + di coth(ai)

)(
di + σi coth(bi)

)
− (σ2

i − d2
i ) coth(bi)

=d2
i

(
coth(bi) + coth(ai)

)
+ σidi

(
1 + coth(bi) coth(ai)

)
=
(

coth(ai) + coth(bi)
)(
d2
i + σidi coth(σiT )

)
> 0,

meaning that for each eigenvalue di,

0 < ν−1 coth(bi)(
σi + di coth(ai)

)(
ωi + σi coth(bi)

) < 1,

which concludes the proof.

Corollary 4. If A is positive semi-definite and the parameter γ = 0, then the
algorithm ND1 (19)-(20) for θ = 1 satisfies the convergence estimate

ρND1
|θ=1 ≤

coth
(
σmin(T − α)

)
ν(σmin + dmin)2

. (26)

Proof. Since we have shown in Corollary 3 that the convergence factor is between
0 and 1 for each eigenvalue di, we can take (25) and remove the absolute value,

ρND2
|θ=1 = ν−1 max

di∈λ(A)

coth(bi)(
σi + di coth(ai)

)(
di + σi coth(bi)

) .
Since σi =

√
d2
i + ν−1 ≥ di ≥ 0 and coth(x) > 1, ∀x > 0, we obtain that

σi + di coth(ai) ≥ σi + di and di + σi coth(bi) ≥ σi + di. This implies that

coth(bi)(
σi + di coth(ai)

)(
di + σi coth(bi)

) ≤ coth(bi)

(σi + di)2
.

Recalling coth(bi) = coth(σi(T − α)), and using the fact that di ≥ dmin and
σi ≥ σmin :=

√
d2

min + ν−1, we find

coth(bi)

(σi + di)2
≤ coth(σmin(T − α))

(σmin + dmin)2
,

which concludes the proof.

Like for DN1, the estimate (26) is independent of the spatial mesh size, and
since for γ = 0, the convergence factor satisfies 0 < ρND1

|θ=1 < 1 as shown in
Corollary 3, using the definition of the convergence factor (24), we obtain the
following result.

Theorem 4. The algorithm ND1 (19)-(20) converges for all initial guesses if
γ = 0 and the matrix A is not singular.
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3.2 Category II
We now study algorithms in Category II which run only on the state z(i) to
solve the problem (6), based on DN and ND techniques.

3.2.1 Dirichlet-Neumann algorithm (DN2)

As explained in Table 1, we apply the Dirichlet condition in Ω1 and the Neumann
condition in Ω2 both on the primal state z(i). For the iteration index k =
1, 2, . . . , the algorithm DN2 solves

(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

zk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

żk2,(i)(α) = żk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

(27)

and we update the transmission condition by

fkα,(i) := (1− θ)fk−1
α,(i) + θzk2,(i)(α), θ ∈ (0, 1). (28)

At first glance, this algorithm does not have the forward-backward structure,
with both an initial and a final condition on z1,(i) in Ω1 and nothing on µ1,(i).
However, as mentioned in Remark 2, this is only a matter of interpretation:
using the identity of z(i) from (7), we can rewrite the transmission condition

zk1,(i)(α) = fk−1
α,(i), =⇒ µ̇k1,(i)(α)− diµk1,(i)(α) = fk−1

α,(i),

and define the update (28) as

fkα,(i) := (1− θ)fk−1
α,(i) + θ(µ̇k2,(i)(α)− diµk2,(i)(α)),

to rediscover the forward-backward structure. Moreover, with the interpretation
of µk1,(i), the algorithm DN2 (27) is a RN type algorithm.

For the analysis, we choose the state z(i) formulation: for i = 1, . . . , n and
iteration index k = 1, 2, . . . , the equivalent algorithm reads

z̈k1,(i) − σ
2
i z
k
1,(i) = 0 in Ω1,

zk1,(i)(0) = 0,

zk1,(i)(α) = fk−1
α,(i),


z̈k2,(i) − σ

2
i z
k
2,(i) = 0 in Ω2,

żk2,(i)(α) = żk1,(i)(α),

żk2,(i)(T ) + ωiz
k
2,(i)(T ) = 0,

(29)
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where we still update the transmission condition by (28). Note that (29) is still
a DN type algorithm, like (27). Using the solutions (16) to determine the two
coefficients Aki and Bki , we get from (29)

Aki =
fk−1
α,(i)

sinh(ai)
, Bki = −

fk−1
α,(i) coth(ai)

σi sinh(bi) + ωi cosh(bi)
.

With (28), we find

fkα,(i) = (1− θ)fk−1
α,(i) − θf

k−1
α,(i) coth(ai)

σi cosh(bi) + ωi sinh(bi)

σi sinh(bi) + ωi cosh(bi)
,

and thus obtain the following convergence results.

Theorem 5. The algorithm DN2 (27)-(28) converges if and only if

ρDN2 := max
di∈λ(A)

∣∣∣1− θ(1 + coth(ai)
σi coth(bi) + ωi
σi + ωi coth(bi)

)∣∣∣ < 1. (30)

Corollary 5. The algorithm DN2 for θ = 1 does not converge if α ≤ T
2 .

Proof. Substituting θ = 1 into (30), we have

ρDN2
|θ=1 = max

di∈λ(A)

∣∣∣ coth(ai)
σi coth(bi) + ωi
σi + ωi coth(bi)

∣∣∣. (31)

Since coth(x) > 1, ∀x > 0, both the numerator and the denominator in (31) are
positive. When ai ≤ bi (i.e., α ≤ T − α), we have coth(ai) ≥ coth(bi), and thus
the difference between the numerator and the denominator is

coth(ai)
(
ωi + σi coth(bi)

)
− (σi + ωi coth(bi))

=ωi
(

coth(ai)− coth(bi)
)

+ σi
(

coth(bi) coth(ai)− 1
)
> 0,

meaning that

coth(ai)
σi coth(bi) + ωi
σi + ωi coth(bi)

> 1.

which concludes the proof.

We need some extra assumptions to conclude for the case α > T
2 .

Corollary 6. The algorithm DN2 for θ = 1 does not converge if γ = 0.

Proof. We showed in Corollary 5 the result for α ≤ T
2 . Now α > T

2 implies
that ai > bi, thus coth(ai) < coth(bi). Inserting γ = 0 into (31) and using
the definition of σi from (10), the difference between the numerator and the
denominator of (31) becomes

coth(ai)
(
di + σi coth(bi)

)
− (σi + di coth(bi))

=di
(

coth(ai)− coth(bi)
)

+ σi
(

coth(bi) coth(ai)− 1
)

=
(

coth(ai)− coth(bi)
)(
di + σi coth(bi − ai)

)
> 0,

where we use the fact that di + σi coth(bi − ai) < di − σi < 0. This shows that
DN2 for θ = 1 also does not converge for α > T

2 when γ = 0.
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Unlike in Corollary 2 where we have an estimate of the convergence factor
for DN1, we cannot provide a general convergence estimate for the algorithm
DN2 (27)-(28), since we showed in Corollary 5 and Corollary 6 that it does not
converge in some cases. However, we can still show the convergence behavior
for extreme eigenvalues. In particular, if the eigenvalue di = 0, we find

ρDN2
|di=0 =

∣∣∣∣1− θ √
ν−1 cosh(

√
ν−1T)+γν−1 sinh(

√
ν−1T)

sinh(
√
ν−1α)(

√
ν−1 sinh(

√
ν−1(T−α))+γν−1 cosh(

√
ν−1(T−α)))

∣∣∣∣ .
(32)

When the eigenvalue goes to infinity, using Remark 5, we obtain

lim
di→∞

ρDN2
= |1− 2θ|.

By equioscillating the convergence factor for small (i.e., ρDN2 |di=0) and large
eigenvalues (i.e., ρDN2

|di→∞), we obtain after some computations

θ∗DN2
=

2

2 +

√
ν−1 cosh(

√
ν−1T)+γν−1 sinh(

√
ν−1T)

sinh(
√
ν−1α)(

√
ν−1 sinh(

√
ν−1(T−α))+γν−1 cosh(

√
ν−1(T−α)))

2

3 + coth(
√
ν−1α)

coth
(√

ν−1(T−α)
)

+γ
√
ν−1

1+γ
√
ν−1 coth

(√
ν−1(T−α)

) .
(33)

Theorem 6. If we assume that the eigenvalues of A are anywhere in the interval
[0,∞), then the optimal relaxation parameter θ?DN2

for the algorithm DN2 (27)-
(28) with γ = 0 is given by (33) and satisfies θ?DN2

< 1
2 .

Proof. Taking the derivative of the convergence factor ρDN2 from (30) with
respect to the eigenvalue di, we get

dρDN2

ddi
= − diα

σi sinh2(ai)

σi coth(bi) + ωi
σi + ωi coth(bi)

− ν−1 coth(ai)

σi

βi(coth2(bi)− 1) + di(T−α)
sinh2(bi)

(1− γ2ν−1 − 2diγ)

(σi + ωi coth(bi))2
,

where we used σi, ωi and βi from (10). The derivative becomes negative with γ =
0, meaning that the convergence factor decreases with respect to the eigenvalue
di. We can then deduce the optimal relaxation parameter using equioscillation:
inserting γ = 0 into (33), the denominator becomes 3+coth(

√
ν−1α) coth(

√
ν−1(T−

α)) < 4.

For γ > 0, it is not clear when the convergence factor ρDN2
is monotonic

with respect to the eigenvalues, and thus the optimal relaxation parameter θ?DN2

could differ from (33).
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3.2.2 Neumann-Dirichlet algorithm (ND2)

We now invert the two conditions: for the iteration index k = 1, 2, . . . , the
algorithm ND2 to study is

(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

żk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

zk2,(i)(α) = zk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

(34)

and then we update the transmission condition by

fkα,(i) := (1− θ)fk−1
α,(i) + θżk2,(i)(α), θ ∈ (0, 1). (35)

Similar to the algorithm DN2 (27)-(28), we cannot see the forward-backward
structure in Ω1 for the algorithm ND2 (34)-(35). But by interpreting the Neu-
mann condition on z1,(i) in terms of µ1,(i) as explained in Remark 2, the forward-
backward structure is again revealed through a RD type algorithm.

We proceed for the convergence analysis using the formulation (8): for i =
1, . . . , n and iteration index k = 1, 2, . . . , we solve
z̈k1,(i) − (d2

i + ν−1)zk1,(i) = 0 in Ω1,

zk1,(i)(0) = 0,

żk1,(i)(α) = fk−1
α,(i),


z̈k2,(i) − (d2

i + ν−1)zk2,(i) = 0 in Ω2,

zk2,(i)(α) = zk1,(i)(α),

żk2,(i)(T ) + diz
k
2,(i)(T ) = −γν−1zk2,(i)(T ),

(36)
where we still update the transmission condition by (35). Note that both algo-
rithms (34) and (36) are of ND type.

Using the solutions (16) and the transmission condition in (35), we obtain

Aki =
fk−1
α,(i)

σi cosh(ai)
, Bki =

fk−1
α,(i) tanh(ai)/σi

σi cosh(bi) + ωi sinh(bi)
.

and we therefore get for the update condition (35)

fkα,(i) = (1− θ)fk−1
α,(i) − θf

k−1
α,(i) tanh(ai)

σi sinh(bi) + ωi cosh(bi)

σi cosh(bi) + ωi sinh(bi)
.

Theorem 7. The algorithm ND2 (34)-(35) converges if and only if

ρND2
:= max

di∈λ(A)

∣∣∣1− θ(1 + tanh(ai)
σi tanh(bi) + ωi
σi + ωi tanh(bi)

)∣∣∣ < 1. (37)
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Corollary 7. The algorithm ND2 for θ = 1 converges if α ≤ T
2 .

Proof. Substituting θ = 1 into (37), we have

ρND2
|θ=1 = max

di∈λ(A)

∣∣∣ tanh(ai)
σi tanh(bi) + ωi
σi + ωi tanh(bi)

∣∣∣. (38)

Since 0 < tanh(x) < 1, ∀x > 0, both the numerator and the denominator in (38)
are positive. In the case where ai ≤ bi (i.e., α ≤ T − α), we have tanh(ai) ≤
tanh(bi), and the difference between the numerator and the denominator is

tanh(ai)
(
ωi + σi tanh(bi)

)
− (σi + ωi tanh(bi))

=ωi
(

tanh(ai)− tanh(bi)
)

+ σi
(

tanh(bi) tanh(ai)− 1
)
< 0,

meaning that

0 < tanh(ai)
σi tanh(bi) + ωi
σi + ωi tanh(bi)

< 1.

This concludes the proof.

As shown in Corollary 5, the algorithm DN2 (27)-(28) with θ = 1 does not
converge for α ≤ T

2 , whereas the algorithm ND2 (34)-(35) converges in this
case. This reveals a symmetry behavior, since the only difference between these
two algorithms is that we exchange the Dirichlet and the Neumann condition
in the two subdomains. This symmetry is well-known for classical DN and ND
algorithms.

Corollary 8. For γ = 0, the algorithm ND2 for θ = 1 converges for all initial
guesses.

Proof. This is shown in Corollary 7 for α ≤ T
2 . If α > T

2 , i.e. ai > bi,
then tanh(ai) > tanh(bi), and the difference between the numerator and the
denominator is

tanh(ai)
(
di + σi tanh(bi)

)
− (σi + di tanh(bi))

=di
(

tanh(ai)− tanh(bi)
)

+ σi
(

tanh(bi) tanh(ai)− 1
)

=
(

tanh(bi) tanh(ai)− 1
)(
σi − di tanh(ai − bi)

)
< 0,

where we use the fact that 0 < σi − di < σi − di tanh(ai − bi). This shows that
the algorithm ND2 for θ = 1 converge for α > T

2 in the case γ = 0.

Notice that the matrix A here can be singular, in contrast to the algorithm
DN1 in Corollary 1 where non-singularity is needed for A. As in the previous
section, we can still show the convergence behavior for extreme eigenvalues. If
the eigenvalue di = 0, we find

ρND2
|di=0 =

∣∣∣∣1− θ √
ν−1 cosh(

√
ν−1T)+γν−1 sinh(

√
ν−1T)

cosh(
√
ν−1α)(

√
ν−1 cosh(

√
ν−1(T−α))+γν−1 sinh(

√
ν−1(T−α)))

∣∣∣∣ .
(39)
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The expression (39) is very similar to (32): when γ = 0, the convergence fac-
tor (32) becomes

ρDN2
|di=0,γ=0 =

∣∣∣1− θ(1 + coth
(√

ν−1α
)

coth
(√

ν−1(T − α)
))∣∣∣ ,

whereas (39) becomes

ρND2
|di=0,γ=0 =

∣∣∣1− θ(1 + tanh
(√

ν−1α
)

tanh
(√

ν−1(T − α)
))∣∣∣ .

We find again the symmetry between DN2 and ND2. In the case when the
eigenvalue goes to infinity, using Remark 5, we obtain

lim
di→∞

ρND2
= |1− 2θ|,

as for DN2. By equioscillating the convergence factor again for small and large
eigenvalues, we obtain after some computations the relaxation parameter

θ∗ND2
=

2

2 +

√
ν−1 cosh(

√
ν−1T)+γν−1 sinh(

√
ν−1T)

cosh(
√
ν−1α)(

√
ν−1 cosh(

√
ν−1(T−α))+γν−1 sinh(

√
ν−1(T−α)))

=
2

3 + tanh(
√
ν−1α)

tanh(
√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

.

(40)

We thus obtain a similar result as Theorem 6.

Theorem 8. If we assume that the eigenvalues of A are anywhere in the interval
[0,∞), then the optimal relaxation parameter θ?ND2

for the algorithm ND2 (34)-
(35) with γ = 0 is given by (40), and satisfies 1

2 < θ?ND2
< 2

3 .

Proof. As for Theorem 6, we take the derivative of ρND2 with respect to di,

dρND2

ddi
=

diα

σi cosh2(ai)

σi tanh(bi) + ωi
σi + ωi tanh(bi)

+
ν−1 tanh(ai)

σi

βi(1− tanh2(bi))− di(T−α)
cosh2(bi)

(γ2ν−1 + 2diγ − 1)

(σi + ωi tanh(bi))2
,

with σi, ωi and βi defined in (10). For γ = 0, the derivative is positive and thus
ρND2 increases with di. Therefore θ∗ND2

is determined by equioscillation. Insert-
ing γ = 0 into (40), the denominator becomes 3+tanh(

√
ν−1α) tanh(

√
ν−1(T −

α)) < 4.

As for DN2 however, the monotonicity of the convergence factor ρND2
is not

guaranteed for γ > 0, and the optimal relaxation parameter θ?ND2
may differ

from (40).
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3.3 Category III
We finally study algorithms in Category III which run only on the state µ(i) to
solve the problem (6), and use DN and ND techniques.

3.3.1 Dirichlet-Neumann algorithm (DN3)

As shown in Table 1, we apply the Dirichlet condition in Ω1 and the Neumann
condition in Ω2, both to the state µ(i). For iteration index k = 1, 2, . . . , the
algorithm DN3 solves

(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

µ̇k2,(i)(α) = µ̇k1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

(41)

and we update the transmission condition by

fkα,(i) := (1− θ)fk−1
α,(i) + θµk2,(i)(α), θ ∈ (0, 1). (42)

The forward-backward structure is now less present in Ω2, where we would
expect to have an initial condition for z2,(i) instead of µ2,(i). By using the
identity of µ(i) in (7), we can interpret the Neumann condition

µ̇k2,(i)(α) = µ̇k1,(i)(α), =⇒ diż
k
2,(i)(α) + σ2

i z
k
2,(i)(α) = diż

k
1,(i)(α) + σ2

i z
k
1,(i)(α),

a Robin type condition on z2,(i). Therefore, the algorithm DN3 can also be
interpreted as a DR algorithm.

For the convergence analysis, it is natural to choose the interpretation in
µ(i), i.e., using (9), which gives

µ̈k1,(i) − σ
2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µ̇k2,(i)(α) = µ̇k1,(i)(α),

γµ̇(i)(T ) + βiµ(i)(T ) = 0,

(43)

where we still update the transmission condition through (42). We observe that
both (41) and (43) are DN type algorithms. Proceeding as before, we obtain:

Theorem 9. The algorithm DN3 (41)-(42) converges if and only if

ρDN3 := max
di∈λ(A)

∣∣∣1− θ(1 +
σi + di coth(ai)

σi coth(ai) + di

γσi coth(bi) + βi
γσi + βi coth(bi)

)∣∣∣ < 1. (44)
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To get more insight, we choose θ = 1 in (44), and find

ρDN3
|θ=1 = max

di∈λ(A)

∣∣∣σi + di coth(ai)

σi coth(ai) + di

γσi coth(bi) + βi
γσi + βi coth(bi)

∣∣∣. (45)

It is less clear whether γσi +βi coth(bi) is positive, since, using the definition of
βi and σi from (10), we have

γσi + βi coth(bi) = γ
(√

d2
i + ν−1 − di coth

(√
d2
i + ν−1(T − α)

))
+ coth

(√
d2
i + ν−1(T − α)

)
,

and depending on the values of ν, γ and α, this could be negative. However, we
can simplify (45) by setting γ = 0, and obtain:

Corollary 9. If γ = 0, then the algorithm DN3 with θ = 1 converges for all
initial guesses.

Proof. Substituting θ = 1 into (45), we have

ρDN3
|θ=1 = max

di∈λ(A)

∣∣∣σi tanh(ai) + di
σi + di tanh(ai)

tanh(bi)
∣∣∣. (46)

Both the numerator and the denominator are positive. Using 0 < tanh(x) < 1,
∀x > 0, we get(

di + σi tanh(ai)
)
− (σi + di tanh(ai)) =

(
di − σi

)(
1− tanh(ai)

)
< 0.

0 < tanh(bi)
σi tanh(ai) + di
σi + di tanh(ai)

< 1.

which concludes the proof.

For γ = 0, the algorithm DN3 (41)-(42) converges for θ = 1 as well as the
algorithm ND2 (34)-(35), since their convergence factors are very similar. For
extreme eigenvalues, inserting di = 0 into (44), we find the identical formula
as (39), and when the eigenvalue goes to infinity, we also obtain

lim
di→∞

ρDN3 = |1− 2θ|,

By equioscillating the convergence factor between small and large eigenvalues,
we obtain thus the same relaxation parameter as (40), which leads to:

Theorem 10. If we assume the eigenvalues of A can be anywhere in the interval
[0,∞), then the optimal relaxation parameter θ?DN3

for the algorithm DN3 (41)-
(42) with γ = 0 is identical to θ?ND2

.

Proof. For γ = 0, the convergence factors (38) and (46) become the same when
exchanging ai and bi, and the result thus follows as for Theorem 8.
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3.3.2 Neumann-Dirichlet algorithm (ND3)

We now exchange the Dirichlet and Neumann conditions on the two subdomains,
and obtain 

(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µ̇k1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

µk2,(i)(α) = µk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

(47)

where the transmission condition is updated by

fkα,(i) := (1− θ)fk−1
α,(i) + θµ̇k2,(i)(α), θ ∈ (0, 1). (48)

As for DN3, we need to use the identity (7) and interpret µk2,(i)(α) = µk1,(i)(α)
as

żk2,(i)(α) + diz
k
2,(i)(α) = żk1,(i)(α) + diz

k
1,(i)(α),

to reveal the forward-backward structure with a NR type algorithm. Using
formulation (9), we get

µ̈k1,(i) − σ
2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µ̇k1,(i)(α) = fk−1
α,(i),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µk2,(i)(α) = µk1,(i)(α),

γµ̇(i)(T ) + βiµ(i)(T ) = 0.

(49)

Theorem 11. The algorithm ND3 (47)-(48) converges if and only if

ρND3
:= max

di∈λ(A)

∣∣∣1− θ(1 +
σi + di tanh(ai)

σi tanh(ai) + di

γσi tanh(bi) + βi
γσi + βi tanh(bi)

)∣∣∣ < 1. (50)

As in the previous section, we choose θ = 1 in (50), and find

ρND3
|θ=1 = max

di∈λ(A)

∣∣∣σi + di tanh(ai)

σi tanh(ai) + di

γσi tanh(bi) + βi
γσi + βi tanh(bi)

∣∣∣. (51)

Again, using the definition of βi and σi from (10), we have

γσi tanh(bi) + βi = γ
(√

d2
i + ν−1 tanh

(√
d2
i + ν−1(T − α)

)
− di

)
+ 1,

and depending on the values of ν, γ and α, this could be negative. However, we
can simplify (51) by taking γ = 0, and then obtain the following result.
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Corollary 10. If γ = 0, then the algorithm ND3 with θ = 1 does not converge.

Proof. Inserting γ = 0 into (51), we get

ρDN3 |θ=1 = max
di∈λ(A)

∣∣∣σi coth(ai) + di
σi + di coth(ai)

coth(bi)
∣∣∣. (52)

Both the numerator and the denominator are positive. Using coth(x) ≥ 1,
∀x > 0, we find(

di + σi coth(ai)
)
− (σi + di coth(ai)) =

(
σi − di

)(
coth(ai)− 1

)
> 0.

implying that
σi coth(ai) + di
σi + di coth(ai)

coth(bi) > 1.

which concludes the proof.

Comparing Corollaries 9 and 10, we find again a symmetry if γ = 0, as for
Corollaries 5 and 7, and with θ = 1, ND3 diverges like DN2 when γ = 0. In fact,
in this case, the convergence factor of ND3 (52) is very similar to the convergence
factor of DN2 (31). Due to this divergence, we cannot provide a general estimate
of the convergence factor. We can however still study the convergence behavior
for extreme eigenvalues. Inserting di = 0 into (50), we find also (32), and thus
for small eigenvalues ND3 behaves like DN2, like we observed for ND2 and DN3

earlier. When the eigenvalue goes to infinity, we also obtain

lim
di→∞

ρND3 = |1− 2θ|.

Hence all the four algorithms DN2, ND2, DN3 and ND3 have the same limit
for large eigenvalues. By equioscillation, we then obtain the same relaxation
parameter as (33). This leads to a similar result as Theorem 6.

Theorem 12. If we assume that the eigenvalues of A are anywhere in the
interval [0,∞), then the optimal relaxation parameter θ?ND3

for the algorithm
ND3 (47)-(48) with γ = 0 is identical to θ?DN2

.

Proof. In the case γ = 0, the convergence factors (31) and (52) are the same
when exchanging ai and bi, and thus the proof follows as for Theorem 6.

4 Numerical experiments
We illustrate now our six new time domain decomposition algorithms with nu-
merical experiments. We divide the time domain Ω = (0, 1) into two non-
overlapping subdomains with interface α, and fix the regularization parameter
ν = 0.1. We will investigate the performance by plotting the convergence factor
as function of the eigenvalues d ∈ [10−2, 102].
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Figure 2: Convergence factor with θ = 1 for a symmetric decomposition of the
six new algorithms as function of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0.
Right: γ = 10.

4.1 Convergence factor with θ = 1 for a symmetric decom-
position

We show in Figure 2 the convergence factors for all six algorithms for a symmet-
ric decomposition, α = 1

2 , with θ = 1, on the left without final target state (i.e.,
γ = 0), and on the right with a final target state for γ = 10. Without final tar-
get state, the convergence factor of DN1 and ND1 coincide, as one can see also
by substituting γ = 0 and ai = bi into (18) and (25). The same also holds for
the pairs DN2 and ND3, and DN3 and ND2. We also see the symmetry between
DN2 and ND2, as well as DN3 and ND3. This changes when a final target state
with γ = 10 is present: while the convergence behavior remains similar for DN1

and ND1, the symmetry between DN2 and ND2
1 and DN3 and ND3 remains.

Furthermore, DN3 converges with no final target but diverges with γ = 10, and
vice versa for ND3. In terms of the convergence speed, DN1 and ND1 are much
better than the other four algorithms for high frequencies in both cases, and
ND1 is slightly better overall than DN1 when γ = 10. The good high frequency
behavior follows from our analysis: it depends for all 6 algorithms only on θ. In
the case θ = 1 here, the limit is |1− θ| = 0 for DN1 and ND1, and |1− 2θ| = 1
for DN2, DN3, ND2 and ND3. For the zero frequency, d = 0, the convergence
factor for DN1 and ND1 equals 1 for all γ, but for DN2, DN3, ND2 and ND3

this depends on γ. Inserting θ = 1 into (32) and (39), we obtain for DN2 and
ND3 the convergence factor coth(

√
ν−1α)

√
ν−1 coth(

√
ν−1α)+ν−1γ√

ν−1+ν−1γ coth(
√
ν−1α)

, and for ND2

and DN3 tanh(
√
ν−1α)

√
ν−1 tanh(

√
ν−1α)+ν−1γ√

ν−1+ν−1γ tanh(
√
ν−1α)

. For γ = 0, the two convergence
factors are approximately 1.185 for DN2 and ND3, 0.844 for ND2 and DN3, and
for γ = 10, we get 1.005 for DN2 and ND3, and 0.995 ND2 and DN3.

1This is a bit hard to see on the right in Figure 2, but zooming in confirms that the
convergence factor of DN2 is above 1, and below 1 for ND2.
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Figure 3: Convergence factor with θ = 1 for an asymmetric decomposition of
all six new algorithms as function of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0
and α = 0.3. Right: γ = 10 and α = 0.7.

4.2 Convergence factor with θ = 1 for an asymmetric de-
composition

For θ = 1, we show on the left in Figure 3 the convergence factors with interface
at α = 0.3 and no final target state (i.e., γ = 0), and on the right α = 0.7 with
a final target state γ = 10. For DN1 and ND1, the convergence factor is similar
in both cases, ND1 being slightly better, and convergence is also similar to the
symmetric case. This is because the convergence factor of the two algorithms for
small and large eigenvalues is independent of the values of α, ν and γ. Their high
frequency behavior is also much better compared to the other four algorithms in
the two cases. For the other four algorithms, we see again the symmetry between
DN2 and ND2, and DN3 and ND3. In general, DN2 and ND3 behave similarly,
and also ND2 and DN3, but the influence of γ is more significant for DN3 and
ND3 than DN2 and ND2. However their convergence factors all go to 1 for large
eigenvalues, as for the symmetric decomposition. For the zero frequency, using
the expressions (32) and (39) with θ = 1, we obtain approximately 1.386 for
DN2 and ND3, and 0.722 for ND2 and DN3 in the case γ = 0, α = 0.3. For
γ = 10, α = 0.7, we get 0.771 for DN2 and ND3, and 1.296 for ND2 and DN3.

4.3 Convergence factor for Category I with different θ

Since DN1 and ND1 performed quite similarly, and much better than the others,
we now investigate the dependence of DN1 on θ in more detail. On the left in
Figure 4 we show the convergence factor of DN1 without final target state and
a symmetric decomposition, and on the right with a final target state γ = 10
and an asymmetric decomposition. The convergence is very similar for these
two settings, DN1 is robust, and θ = 1 gives the best performance.
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Figure 4: Convergence factor with different relaxation parameters of DN1 as
function of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0 and α = 0.5. Right:
γ = 10 and α = 0.7.

Figure 5: Convergence factor with θ? for a symmetric decomposition as function
of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0. Right: γ = 10.

4.4 Convergence factor with optimal θ for a symmetric
decomposition

Since the algorithms in Categories II and III are strongly related, we compare
them now in Figure 5 for a symmetric decomposition using their optimal relax-
ation parameter θ?, obtained numerically. On the left without final state, DN2

and ND3, and also ND2 and DN3, have the same convergence factor, and the
optimal relaxation parameter satisfies θ?DN2

= θ?ND3
and θ?ND2

= θ?DN3
as proved

in Theorem 10 and Theorem 12. These correspond to the value found using (33)
and (40). In terms of the convergence speed, ND2 and DN3 are slightly better
than DN2 and ND3. However, these similarities disappear when we add a final
target state γ = 10. On the right in Figure 5, we see that now the convergence
behavior of DN2 and ND2 is similar, and also DN3 and ND3 are rather simi-
lar, and DN2 and ND2 converge much faster compared to the others. We also
see equioscillation between small and large eigenvalues. The theoretical results
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Figure 6: Convergence factor with θ? for an asymmetric decomposition as func-
tion of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0 and α = 0.3. Right: γ = 10
and α = 0.7.

in (33) as well as in (40) still determine the optimal relaxation parameter θ?DN2

and θ?ND2
for DN2 and ND2, but not for DN3 and ND3, where we observe an

equioscillation between small eigenvalues with some eigenvalues in the interval
[1, 10]. Also ND3 is slightly better than DN3.

4.5 Convergence factor with optimal θ for an asymmetric
decomposition

We show in Figure 6 the convergence factor with the optimal relaxation pa-
rameter θ? for the four algorithms in Categories II and III for an asymmetric
decomposition. On the left with α = 0.3 and no target state γ = 0 the con-
vergence factors of the four algorithms are similar. This is consistent with the
monotonicity we proved without final state. The optimal relaxation parame-
ters satisfy θ?DN2

= θ?ND3
and θ?ND2

= θ?DN3
, and we can use (33) and (40) to

determine their values. Similar to the symmetric decomposition, ND2 and DN3

are slightly better than the others. However, these properties disappear again
on the right in Figure 6 when there is a final state γ = 10. While DN2 and
ND2 still equioscillate between the small and large eigenvalues, and the optimal
relaxation parameter can be determined using (33) and (40), for DN3 and ND3

the equioscillation is between large eigenvalues and some eigenvalues in the in-
terval [1, 10]. Hence, the optimal relaxation parameters for the algorithms DN3

and ND3 are different from DN2 and ND2. Also DN2 and ND2 converge much
faster than the other two, and DN2 is slightly faster than ND2.

5 Conclusion
We introduced and analyzed six new time domain decomposition methods based
on Dirichlet-Neumann and Neumann-Dirichlet techniques for parabolic optimal
control problems. Our analysis shows that while at first sight it might be natu-
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ral to preserve the forward-backward structure in the time subdomains as well,
there are better choices that lead to substantially faster algorithms. We find that
the algorithms in Categories II and III with optimized relaxation parameter are
much faster than the algorithms in Category I, and they can still be identified
to be of forward-backward structure using changes of variables. We also found
many interesting mathematical connections between these algorithms. Algo-
rithms in Category I are natural smoothers, while algorithms in Categories II
and III with optimized relaxation parameter are highly efficient solvers.

Our study was restricted to the two subdomain case, but the algorithms can
all naturally be written for many subdomains, and then one can also run them
in parallel. They can also be used for more general parabolic constraints than
the heat equation. Extensive numerical results will appear elsewhere.
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A Convergence analysis using µ(i)

We can also use formulation (9) to analyze the convergence behavior of the
algorithm DN1 (12)-(13), we then need to study

µ̈k1,(i) − σ
2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µ̈k2,(i)(α)− diµ̇k2,(i)(α) = µ̈k1,(i)(α)− diµ̇k1,(i)(α),

γµ̇(i)(T ) + βiµ(i)(T ) = 0,

(53)
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with the update of the transmission condition

fkα,(i) = (1− θ)fk−1
α,(i) + θµk2,(i)(α) θ ∈ (0, 1). (54)

This is a DR type algorithm applied to solve (9). Using (23), we determine the
two coefficients Aki and Bki from the transmission condition from (53). Using
then relation (54), we find

fkα,(i) = (1− θ)fk−1
α,(i) + θν−1fk−1

α,(i)

γσi + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) ,
which is exactly the same convergence factor as (17).

32


	Introduction
	Optimality system and its semi-discretization
	Dirichlet-Neumann and Neumann-Dirichlet algorithms in time
	Category I
	Dirichlet-Neumann algorithm DN1
	Neumann-Dirichlet algorithm ND1

	Category II
	Dirichlet-Neumann algorithm DN2
	Neumann-Dirichlet algorithm ND2

	Category III
	Dirichlet-Neumann algorithm DN3
	Neumann-Dirichlet algorithm ND3


	Numerical experiments
	Convergence factor with th1 for a symmetric decomposition
	Convergence factor with th1 for an asymmetric decomposition
	Convergence factor for Category I with different th
	Convergence factor with optimal thopt for a symmetric decomposition
	Convergence factor with optimal thopt for an asymmetric decomposition

	Conclusion
	Convergence analysis using ui

