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SHOULD HYDRODYNAMICS BE TAKEN INTO ACCOUNT WHEN
CALCULATING THE GROWTH RATE OF MICROALGAE IN A
PHOTOBIOREACTOR ?

J. IGNACIO FIERRO U., LIU-DI LU, OLIVIER BERNARD

Abstract. Microalgae, as photosynthetic organisms, are cultivated in photobioreactors for vari-
ous industrial applications. Light intensity, a critical factor influencing their growth rate, is inherently
non-uniform within photobioreactors. In regions distant from the illuminated surface, microalgae ex-
perience photolimitation due to insufficient photon availability, hindering optimal activation of the
photosynthetic machinery. Conversely, near the illuminated surface, excessive light intensity can
damage key photosynthetic proteins, leading to photoinhibition. While mixing in photobioreactors
does not alter the light gradient, it influences the light exposure history of cells through hydrody-
namic advection. In this study, we employ Han’s mechanistic model to describe the dynamics of
photon harvesting and its consequences, including photoinhibition and photolimitation. First, we
calculate the time-averaged growth rate for arbitrary continuous light signals, revealing how mixing
impacts growth under the assumption of periodic light signals generated by hydrodynamics. Next,
we address the computational challenge of estimating growth rates in photobioreactors using com-
putational fluid dynamics (CFD), modeling a single-phase incompressible fluid. Finally, we analyze
the case of a raceway pond, evaluating errors arising when growth rate is estimated without account-
ing for hydrodynamics. We analytical demonstrate that the gain in growth is related to the cell
movement along the light gradient. Our results show that in predominantly laminar hydrodynamic
regimes, hydrodynamics has only a marginal effect on microalgal growth. Moreover, we show that
the average productivity can be estimated based on a static approximation of the average growth
rate taking into account the light distribution, with an error lower than 10%.

Key words. microalgae, mixing, computational fluid dynamics, raceway pond, Han model.

MSC codes. 92B99, 34A05, 34C25, 34A34, 76B07

1. Introduction. Microalgae are capable of converting COs into biomass using
energy from visible light. These microorganisms are cultivated industrially in ei-
ther open or closed photobioreactors [19]. Open systems such as raceway ponds are
simple and cost-effective, shallow, oval-shaped channels, mixed with a paddle wheel.
Closed systems, like tubular reactors, represent more advanced technology with more
controlled culturing conditions. These reactors can operate in batch mode or with
continuous addition of growth medium. Two key characteristics define these systems:
(1) microalgae cells act as light-absorbing particles, creating a heterogeneous light
distribution within the reactor. Areas near the light source experience high illumi-
nation, while deeper regions remain in darkness. (2) Intensive mixing is employed to
prevent biomass sedimentation and ensure uniform nutrient distribution. As a result,
cells are advected through light gradients, experiencing alternating periods of high
and low light intensity.

Photon harvesting in microalgae is a dynamic process, and the average growth
rate in a photobioreactor emerges from the complex interplay between photosystem
dynamics and hydrodynamics [7]. Accurately modeling this interaction is challenging,
as it requires accurate representation of 1/ reactor hydrodynamics, 2/ light distribu-
tion within the reactor, 3/ dynamic response of photon harvesting in response to light
variations. This approach, which explicitly accounts for the light history of cells, is
classified as type III in [3]. However, the complexity of type III models often limits
their practical application, leading to the use of simplified growth rate (i) calcula-
tions. Type I models depend solely on incident light at the reactor surface, while
type II models incorporate simple light transfer models like the Lambert—Beer law,
coupled with Monod-like or Haldane-type functions for p(I). Unlike type I and II
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models, which are static, type III models are dynamic.

Photosystem dynamics are typically described by three-population models, such
as the Han model [14] or the Eilers—Peeters model [11]. These models use three dif-
ferential equations to represent the probability of the photosystem being in one of
three states: open and ready to process photons, closed and processing photons,
or damaged due to excess light energy. These models capture two key phenom-
ena—photoabsorption and photoinhibition—which operate on different timescales.
The recovery rate after damage is significantly slower than photon harvesting, en-
abling a slow-fast approximation in the three-population model [15].

Cells in photobioreactor are exposed to continuous, fluctuating light signals over
time resulting from their trajectories in the light gradient. In practice, they are
most of the time exposed to suboptimal light conditions, reducing photosynthetic
efficiency. Recent studies have explored optimizing light absorption in these reactors,
by introducing specific topographies [5] or enhancing vertical mixing [6].

Using the Han model, we investigate the impact of fluctuating light signals on
growth rates. By considering the typical timescales of light variations, we simplify the
Han model using a slow-fast approximation and compare its predictions with those
assuming steady-state photosystems. We first apply our coupled model to simple
periodic light signals, commonly used in laboratory-scale photobioreactors. Then, we
reconstruct the cell trajectories in a raceway pond using computational fluid dynamics
(CFD) simulations. The trajectories of the cells in the light gradient provide realistic
light patterns whose effect on photosynthesis can be assessed using Han’s model.

This paper is organized as follows. We first present the hydrodynamic and biolog-
ical models in Section 2, where we compare two strategies for computing the growth
rate: w4 is a more realistic computation accounting for the dynamics of the photo-
systems, and pg is an approximation easier to compute assuming a static response of
the photosynthetic apparatus. The main results of this paper, is a characterization
of the relationship between the dynamic growth rate (14) and the static approxima-
tion (ng). To better understand this relationship, we provide theoretical analysis in
Section 3 and study the impact of continuous periodic light signals. We demonstrate
that all solutions of the biological model converge to a unique periodic solution. Nu-
merical studies are provided in Section 4, where we first illustrate the mixing in a
photobioreactor using two typical periodic light signals. We then analyze the race-
way pond using a CFD model to simulate the motion of particles, tracking the light
perceived by individual microalgae. We compare the actual average growth rate and
the static approximation by taking space into account. A detailed discussion is given
in Section 5, where we comment our results and their applications on the design of
photobioreactors. Finally, we conclude by demonstrating that the average growth rate
computed assuming the steady state of the photosystems is a reliable approximation.

2. Hydrodynamic and biological models.

2.1. Computational fluid dynamic model model and cell tracking. The
water flow in a raceway pond can be simulated with CFD, which integrates the Navier—
Stokes equations. Several studies have used CFD to simulate the velocity field in open
ponds [25, 27]. Lagrangian approaches have also been used to assess the mixing effi-
ciency in algae cultures. For example, the mixing length is computed in [1] as a result
of different paddle wheel velocities. In our study, we consider a real raceway pond from
the Environmental Biotechnology Laboratory of INRAE Narbonne in France [17]. We
use a layer-averaged Euler and Navier—Stokes model for the numerical simulation of
incompressible free surface, as presented in [2]. The meshing of the raceway pond
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Fig. 2.1: 2D mesh of the simulated raceway pond.

consists of a fixed 2D triangular mesh of the bottom of the raceway, as shown in Fig-
ure 2.1. The layers are defined by the water depth, giving the third dimension of the
system. This approximation of the Navier—Stokes equations is more accurate than
the well-known shallow water system. It employs a multi-layered model based on a
Galerkin-type approximation of the velocity field, utilizing piecewise constant basis
functions. A decisive advantage for raceway ponds is also that this discretization of
Navier—Stokes equations represents the free surface (and the waves) more simply, yet
more accurately than the classical approaches. The incompressible and hydrostatic
Navier—Stokes system with free surface is given by

V-U =0,
Ju Ouw 1 u 0%u
(2.1) E+Vm,y‘(u®u)+w—%Vwﬁ—k%@—kﬂ
9 _
az_ pog)

where U = (u,v,w)” is the velocity of the liquid, w = (u,v)? is the horizontal veloc-
ity, o is —plg + X, where ¥ = 1V, yu is the total stress tensor, p is the pressure, g is
the gravity acceleration constant, pg is the fluid density and p is the viscosity coeffi-
cient. The fluid is assumed to be Newtonian. The hydrostatic Navier—Stokes system
is relevant here, since vertical acceleration is negligible compared to the horizontal
acceleration. The paddle wheel is indirectly represented by the force F as used in [4],

o [cos(8)
(2.2) F=F (\/(x ~ Zneat)? + (7 — zwhee1)2w) 0( )
sin(6

where F'is a constant, 6 is the angle between the vertical axis and the blade, w = 6, and
Twheel, Zwheel are the coordinates of the paddle wheel in the x and z axis respectively.
Note that the force does not affect the y-axis, which is parallel to the central axis of
the paddle wheel. It has been shown that using a 2D (horizontal and vertical axis)
representation of the raceway hydrodynamics [4] is computationally more efficient
than using model (2.1)-(2.2).

The fluid domain along the z-axis is delimited by the free surface denoted by
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Fig. 2.2: Representation of a simulated raceway pond and the velocity field of some
particles. The height corresponds to 0.3 (m). Left: Simulated particles representa-
tion (paddle wheel simulated at 12.5 RPM). Top Right: Lagrangian tracers of few
particles (paddle wheel simulated at 20 RPM). Bottom Right: The streamline of
some particles’ trajectories (paddle wheel simulated at 15 RPM).

n(t,z,y), then the system (2.1) is completed with the following boundary condition:

(2.3) % +u-Vg,n=0.

The CFD model was validated in [2] using a velocity sensor in a smaller raceway pond.
Our simulations are very similar to the one in [17], carried out with a commercial
software, where a physical model of the paddle wheel was implemented.

We assume that the microalgae have the same density as the medium, so that the
trajectories of the cells match that of the background flow. Under this hypothesis,
Lagrangian’s trajectories of these particles can be reconstructed from the Eulerian
description (2.1) denoted by (X n)fvz”f“, where Ny, is the number of simulated parti-
cles. The position of each particle X ,,(t) = (pn,Yn, z,)T is computed by solving the
equation

dX ()
dt

where (2,0, Yno, 2no) is the initial position of the particle. We denote by 2 the domain
of the raceway. We initiate the position of the particles randomly, following a uniform
distribution in the domain €.

Similar works on the same pond [16, 23] have considered a growth model tracking
the position of Lagrangian trajectories, using the same model (2.1), (2.2), and (2.4).
In our study, we have considerably improved the numerical schemes, so that much
more particle trajectories could be simulated with a higher accuracy. In particular, it
is challenging to reproduce with the simulation the expected equidistribution of the
cells along time, and much of the biases appeared in previous schemes were reduced.
To illustrate this photobioreactor, we show a simulated raceway pond in Figure 2.2
together with the distribution of the velocity magnitude. The paddle wheel is posi-
tioned just above the red surface. Some cells (in white) are represented together with

4

(24) = U(t)7 Xn(o) = (xn(]aynOa ZnO)Ta
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Fig. 2.3: Left: Illustration of the evolution between the three states in the Han model.
Right: Parameters of the Han model used in this study.

their respective streamlines. The trajectories of the cells are mainly horizontal in the
straight sections of the raceway pond.

2.2. Light distribution within the raceway pond. We assume that a pop-
ulation of microalgae cells, each with a radius of 10 (um), follows fluid streamlines
within the light gradient. Due to the incompressibility of the fluid and the cells’ den-
sity being equal to that of the medium, the particles are, in theory, uniformly distrib-
uted throughout the raceway. This assumption justifies the use of the Lambert—Beer
law to approximate the light distribution, taking into account the scattering and ab-
sorption effects of the cells. The vertical motion of the cells in the light gradient can
therefore provide the individual light history of each cell. We assume that light strikes
perpendicularly to the ground surface. To reach a cell X,,, the light must travel a
distance 1(t, Ty, Yn) — zn, from the free surface. Then the light signal I,, perceived by
this particle is computed with the Lambert—Beer law as

(2.5) L,(t) = Tpe €n(t:mnyn)=2n)

where I is the light perceived at the free surface, £ > 0 is the light extinction constant.

2.3. Biological model. To describe how photons are harvested by the photosys-
tems under a varying light intensity, we consider the mechanistic model of Han [14],
which characterizes the process of photon harvesting with possible photoinhibition
induced by the photodamage of the photosystem II (PSII). There are three possible
states for PSII: open or reactive state A, closed or activated state B, and inhibited
or damaged state C'. The relation of these three states are schematically presented in
Figure 2.3. The dynamics of PSII can be described by the differential equations:

(2.6) da = —IapA—l—E, 4B = IopA—E—l—kTC’—k‘dUpIB, e = —k,C+kqoplB,
dt T dt T dt

where op (umol 'm?) is the effective cross-section of PSII, I (umolm ?s~') is the
light intensity perceived by the microalgae, 7 (s) is the minimal time required for
an electron to transfer from water on the donor side of the photosynthetic unit to
the terminal electron acceptors, which is also called the turnover time, kq (=) is the
damage rate and k, (s7!) is the recovery rate of PSII. A, B and C represent the
probability distribution of each state, therefore

(2.7) A+B+C=1.

The algal growth rate is assumed to be proportional to the open state A and the
light intensity I. More precisely, the growth rate given by the kinetic model (2.6)

5
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corresponds to
(2.8) pa(l,A) =aocplA,

where « is a constant of proportionality relating the flux of electrons triggered by
the photons and cell growth. At steady state, the state A of the system (2.6) tends
towards Ag (see, e.g., [7]). This corresponds exactly to a Haldane model where the
growth rate is a function of light, that is

1
14+ 7opl + %T(UPI)Q.

(2.9) us(I) = aoplAg = aopl

The maximum of ug is given by pimax = , and it is reached when the light

k
T+2 k—dT
T

intensity value is

(210) Iopt =
d

op ET

=

As shown in [12], using (2.7) and substituting it into the system (2.6), we end up with
two equations
dA 1 1 1
—_ = — (O’p[-i-)A—C“r,
dt T T T
(2.11)
E—k —oplA— IJrﬁ C+opl
Q" ra|Top op by opl|.

In practice, the factor kg4 is in the range of 10™%, as shown in Figure 2.3. Therefore,
system (2.11) has slow/fast timescales, and we can consider the slow manifold pro-
posed in [18, Chapter 11], where A rapidly reaches a pseudo steady state depending
on the value of C:

1-C

2.12 =
(2.12) 1+710opl’

This reduces the system (2.11) to a single equation of C,

dC
(2.13) P —(v(I) + k)C + (1),
: . kar(opD)® ; - —
with v(I) == Tr-o-7 - Inparticular, the steady state of C'is given by Cy == SR =

Z—jr(ap[)z
1+TJPI+:—7‘%T(UPI)2 ’
ing Cg into (2.12).

For a continuous bounded light signal I : [0, 4+00) — [Iin, Imax] with 0 < Iin <
Ihax, We present an estimation of the actual growth rate 4 as a function of the static
approximation pg assuming the Han model in equilibrium. To simplify the notation,
we write p4(t) instead of pa(I(t), A(A(0); t)) and pg(t) instead of pus(I(t)). We now
demonstrate that the initial condition rapidly does not affect the dynamics anymore
and can therefore be neglected after a time interval of 10/k, (about 25 minutes), much
smaller than the typical timescale of growth.

6

Consequently, the steady state of A can be obtained by substitut-
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PROPOSITION 2.1. Let I : [0,400) — [Imin, Imax] be a continuous bounded light
signal. Assuming that A(0) = 0, the growth rate pa can be written as

t
2.14 A(t) = pg(t I(t)) + kr e~ f; y(I(w))+k, dw ds.
( I s () (y

0
Furthermore, the following estimations hold

~(I(t)) + kr
V(Imax) + kr

~(I(t)) + kr

(2.15)  ps(t) A Ton) + For”

(1= Ot t0) < () < ps)

In general, for any initial condition A(0) = Ay, the associated growth rate converges
to (2.14) when t goes to infinity.

Proof. The general solution of (2.13) is given by
t
(2.16) C(t) = C(0)e~ Jo 7wtk dw 4 / y(I(s))e™ J: T )tk dw g g
0
Using then (2.12), the state A can be written as

1 +’7’0’p[(0) _ [t
A(A0): #) =A(0)—— 2P\ = g v(I(w))+ky dw
(A4(0): 1) (© 1+ 7opl(t) ¢

t
+ As(®)(V(I(®)) + k) / = ST+, dw g
0

(2.17)

which depends on the initial value A(0). If A(0) = 0, the latter becomes,
t

(2.18) A0;1) = As(t)(v(I(¢)) +k,)/ o ST ) Hhndw g o
0

Then, equation (2.14) is deduced from the definitions (2.8) and (2.9). The upper
bound in (2.15) follows from the fact that 7 is an increasing function of I and

1 — o= (VUmin)+hr)t

t t
— JEAI() Hky dw o < / [ Tawin) e dw g
e s < e s
/O 0 V(Imin) + k'r
1

< —
- ’Y(Imin) + k'r

. ¢t t ot
For a similar reason, we find fo e~ Js YT tkrdw g > fo e o YImax)+hrdw g —
1 — o= (1(Tmax) +hp )t

O AR e Substituting these two inequalities into (2.18) and using the defi-
nitions (2.8) and (2.9), we obtain the estimation (2.15). Finally, if A(0) = Ay # 0,
using (2.17) and (2.18), we have

. Al — 1+ 70pL(0) _ peo(r(w))+, dw

(2.19)
1+ TUPImax k.t
< |A(Q)|———————e" "
o | ( )| 1+ 70plnin ¢
The latter converges to zero at a rate k,, thus A(A(0); t) converges to A(0;1). ad

Based on Proposition 2.1, for large timescales, we will assume that the initial
condition of the state A is zero.
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2.4. Growth rate in the raceway pond. To estimate the growth rate in the
raceway pond, we need to define the average growth rate of all simulated particles
moving within the photobioreactor. We first define the time-averaged dynamic growth
rate and its static approximation by

1 [T 1 [T
(2.20) mam g | wa@dn ms =g [ s
0 0

Then the space-time-averaged dynamic growth rate and its static approximation are
defined as

1 Npar 1 Npar
(2.21) Tig= Y Balln), Bs=
n=1

Npar

In the Eulerian description, the static approximation of the growth rate ug can
be computed for each point in the raceway domain Q. At each point (z,y,2) € Q,
the perceived light is computed using (2.5) as I(z,y,2) = Ipe ¢E29)=2) "and the
volume-averaged growth rate can be defined by

1

(2.22) g = Vi)

/ us (I((E, Y, Z)) dxdydza
Q

where V() is the volume of the raceway. In [16], the static approximation fig is
used to compute the growth rate in a raceway pond. In [29], the relationship between
Tig and Tig, is discussed in a different type of photobioreactor. We focus on a more
accurate computation of the growth rate using 7z , and characterize the gain compared
to the static approximation computed with fg.

Instead of analyzing the flow of microalgae cells at a fixed location (Eulerian per-
spective), tracking Lagrangian trajectories provides a natural approach to monitor
the light exposure perceived by each cell. The light history derived from these tra-
jectories is then used to compute the growth rate 4. Notably, the growth rate Ji,
cannot be defined within a Eulerian framework, as the concept of light history is lost
in this perspective.

3. Formal analysis of the average growth rate.

3.1. Time-averaged growth rate. We first assess the difference between the
average growth rate i, and the approximation fig defined in (2.20).

THEOREM 3.1. Let I be a bounded continuous light signal perceived by a single
cell. Assuming that A(0) = 0, for a given time period T, the time-averaged growth
rate iy can be written as the sum of the time-averaged static approrimation fig, and
a correction term [iy representing the dynamical gain due to mizing:

(3.1) Tia = Jis + fig + O(1/T),
where
T t
(32) ﬁH = l/ dﬂ’s(t) ¢(t) dt, ¢(t) — / e~ f; ’Y(I(w))*Fk,,. dw dS,
T /o dt 0

and O(1/T) = f”ST(T)qb(T) which goes to zero when T — +00.
8
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Interpretation of Theorem 3.1: In a system mainly laminar, where cells stay
at a constant depth (or are slowly advected vertically), for which the growth rate gain
due to vertical mixing i is negligible, the average growth rate over a sufficiently long
time period 7' can be accurately computed using the static approximation fig based
on the Haldane model. In a system with high velocities in the direction of the light
gradient, this approximation must be refined.

Proof. Using (2.14) and integration by parts, we find

T T t
/ pa(t)dt = / us() (1) + k) / e S e du g
0 0

0

/ / s (D) (V1)) + kyJe 7T TR Ay

:/ p1s(s) — pg(T)e o @)tk dw g g
0

T T
n / / dus(®) — pry(z(w) i dw guqs
o o T

Dividing the latter by T, we get (3.1). Moreover, for a given time period T, the
function ¢ defined in (3.2) can be upper bounded by

1 _ e_("/(lmin)"l‘kr)T

'Y(Imin) + kr

b

T
(33) (ZS(T) g / e_('Y(Imin)"rkr)(T—s) ds =
0

and lower bounded by

1 — e~ (Y(Umasx)+kr)T

'Y(Imax) + kr

T
(3.4) o(T) > / e~ (Vmax)+hr) (T—5) 4 —
0

This reveals the fact that O(1/T) — 0 as T — oo. d

Note that [O(1/T)| < Femex 57 miinr < ”?"‘i. Then, for T > 1/k,, we can

approximate 4 by lig + fiy, where iy is defined in (3.2). The quantity 1/k, cor-
responds to the time needed to go from the state C' to B in the Han model, and
T > 1/k, means that the period T must be large enough to incorporate the effect of
recovery.

3.2. Space-time-averaged growth rate. We discuss here how the hydrody-
namics of the raceway pond affects the growth rate 714 defined in (2.21). For each
particle, the velocity in the z-axis is given by (2.4), i.e., v,(t, X,,) = Uy (X (¢)). The
next proposition relates the velocity of the z-axis and the growth rate 7 4.

PROPOSITION 3.2. The space-time-averaged dynamic growth rate can be bounded
by the average velocity v, in the z-axis as

— — Oéfa'plo 1 iy /T Hmax
3.5 < — (8, X )| dt .
(3:5) HaSBs ¥ = p = N 2 7, 16 Xl

Proof. For each particle X, and its perceived light signal I,,, we have iy (I,)| <
A fo ’d“s(l’”(t )‘¢> (t))dt = = fo )7@5(1”@)) dI"(t) ‘ (I, (t))dt. Using then the in-
9
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equality (3.3), we obtain

1 g I I 1 — ¢~ (YUn,mint+kr)t
B (L) < / dps (L(8) dL(8) | (1 e )
T'Jo dfy dt ’Y(In,min)ﬂ-kr
T
< b / dps(In(0) dIn(t)| 4,
Tkr 0 dIn dt

where I, min is the minimum value of I, in the interval [0,7]. From the Lambert—
Beer law, we have %In(t) = —ELye Ctmn.yn)=2n) (8" + gZUg; + g—Zvy - vz). Us-
ing (2.3) in the above, the derivative w.r.t. the light is aIn( )= —¢Lw,(t, X,). Tt

follows that [fZy (I, ’d”S(I n®) (t)v.(t, X )| dt. Note that $Lus(I) =

— Tk 0
aop (lfk,—r‘r((rl)2

(1+TJPI+Z—T(O'I) )

> < aop. Using the latter and the fact that I,,(t) < Iy, we have

[fig (I agUPIO fo |v.(t, X,,)| dt. Using (3.1), we get
N,
e )
fia=ps+ Z fig (In) — ?Gﬁ(fn(t))a
par n=1
R (1 (1)
= — Hs{in
<Ts+ 57— 2 () + =0 (1)),
par ,—
N ar
— 1 : OéfiTPIo T HMmax
< t, X,)|dt
SHS TN T, o6, Xn)ldt + 7=
which proves the inequality (3.5). d

Interpretation of Proposition 3.2: We can ignore the term pimax /7T in (3.5)
when the time period T' is large enough. Then, the difference between the space-
time—averaged growth rate 114 and fig cannot be greater than %\M with |v.| :=

ﬁ Zn S N |vz (t, X,)|dt. Here, [v.] is an indicator of how mixed the photobiore-

actor is on the z-axis. A non-mixed photobioreactor will have m =0, leading to no
difference between Tig and 7 4. Furthermore, the value of the light extinction & also
plays an important role. Lower values of this parameter present less variations of the
light gradient inside the reactor.

3.3. Periodic light signals. When the light signal is periodic, we can be more
accurate in the results presented in Theorem 3.1. Let 7" now be the period of the
continuous light signal I perceived by the cell, we have the following result.

PROPOSITION 3.3. Let I a continuous periodic function, i.e., I(t + T) = I(t),
Vt € [0,+00). Then, all solutions of (2.13) converge to a unique periodic solution.

Proof. The periodic solution C), is obtained by imposing C,,(T') = C,(0) in (2.16),

. fo I(s))e” ]b Y (w)+kp dw §o
and we find C,(0) = PR e T

Let C be a solution of (2.13)

and ¢ = C Cp, we have ¢ = —(y(I) 4+ k,)e. The solution is given by e(t) =
£(0)e™ Jo 7)) dse=krt which can be bounded by |e(t)| < |e(0)|e=/Tmin)+kr)!  Then
€ goes to zero as t goes to oo. 0

PROPOSITION 3.4 (Dynamic growth rate for periodic signal). Let us consider a
continuous periodic light signal I of period T, i.e., I(T) = I(0). Then the dynamic

10
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growth rate j14 associated with the only periodic solution C, is given by:

¢(T)O(T)

(3.6) Hat) = ps OO UE) + k) |60) + T—5 7

where ¢ is given by (3.2) and O(T) = e~ Jo v (@) +kr dw
Proof. From (2.17), we have

pa(T) = i) + kD) + al0) ) 3o b

As the function I is periodic I(T) = I(0), then C,(T) = Cp(0), and the growth

rate is also periodic. Imposing wa(T) = pa(0), we obtain pa(T) = ps(T )( (I(t) +
fo I(w))+k, dw — (’7 ()) ) ( )

£)OT) + pa(T)e ond thus jia(7) = s (1)~ P EIAD

Substituting then into (2.14), we find (3.6). O

In the same way, we obtain the following result for the time-averaged dynamic
growth rate 4 in the periodic case.

THEOREM 3.5 (Time-averaged growth rate in the periodic case). Considering
a periodic light signal I of period T'. The time-averaged dynamic growth rate [i, s

given by:
T
O [ o - ot dt] .

Interpretation of Theorem 3.5: This theorem clarifies the results of Theo-
rem 3.1, and better characterizes the dynamical component of the growth rate fiz
which must be added to the static approximation fig when the velocities along the
light gradient are marked.

o 1 _
(3.7) HA _MS+1—70(T) H

Proof. The proof follows the same steps as in Theorem 3.1 using the dynamic
growth rate computed in the periodic case (3.6). d

Note that when T is large enough, meaning that T > 1/k,., O(T) — 0, leading
again to the same approximation in the non-periodic case, i.e., iy = g + -

3.4. Characterization of the dynamical component [i; as a function of
the light regime. We have already seen that the actual time-averaged growth rate
can be approximated by Tiy & fig + iy, and fiy + O(1/T) goes to zero as the period
T goes to co. In other words, fig becomes an accurate approximation for large period
T, i.e., for slow movement against the light gradient. In this section, we provide a
lower and upper bounds for [y to understand its relationship with the variation rate
of the light signal I.

PROPOSITION 3.6. Let I : [0,T] — [0, +00) be a light signal of class Ct, such that
Tmin < I(t) < Imax, Yt € [0,T).  Assume that all the stationary points of the function
t— pus(I(t)) are isolated. For {t;}1" a partition of [0,T], where ty =0, t,, =T, and
() 0 phen

Hmax |Z_| _ Hmax |Z4|
3.8 - <7, < ,
( ) T ’Y(Irﬂax) + kr = Ha = T V(Imin) + kr
11
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where |Zy| and |Z_| are the cardinality of the sets:

IJr = {Z : %‘t[(t)) >0 Vte (ti7ti+i)}7 I = {Z : %‘i(t» <0Vte (t“t2+l)} .

Proof. According to the definition of |Z,| and |Z_|, iy can be decomposed into
positive and negative parts as fiy = [}, +/iy, where [if; == 7 Yier, ftt;“ d‘%(t)gb(t)dt
and Ty = 7Y 1 fttb“ d”%t(t)gé(t)dt. Now, we can give an upper bound for the
positive part 7}, using (3.3),

1 i+ dus 1
+

- t;
NH - T /7 mln + k ZEZI / T’y mm ’LEZI ’LLS 1+1 ( )

In the same way, we can give a lower bound for the negative part using (3.4),

Iy 1 oy T ke Z/Hl duis (1) i e ZHS ir1) — ps(ts).

T T ) + b 7

Note that 7i; < g < ﬁ}} due to the sign of each term. Then, using the lower
1>z #s(t1+1) ps(t:)

bound of fi; and the upper bound of uH, we ﬁnd — T T < g <
> ps(tiv1)—ps(ti) 1 Xier pmax
% €I+,Y( Tonin )+ Ko . Then7 as ,LLS( i+1) /’LS( ) < Hmax, W€ have — Tm S
> ier, Mmax
1 €
By < T 5ok 0

Interpretation of Proposition 3.6: A particle in a constantly mixed photo-
bioreactor cannot remain at the same depth. Therefore, the perceived light intensity
I cannot be constant in any interval, and the function ¢t — pg(I(t)) can only have
isolated stationary points. The value of fiy; is bounded by the number of times the
derivative of ug(I(t)) changes its sign. If I is a periodic function as the one analyzed
in Section 3.3, then the two sums > ;.7 p(tiv1) — p(ts) and 32,7 p(tiva) — p(ti)
are independent of 7. And if ' — +o0, then 7iy; converges to 0.

An efficient trajectory for a microalgae maximizes iy, i.e., increases growth rate
due to fast changes of light along the light gradient. So, the question is which type
of perceived light signals provide a higher value of fi;. To address this point, we give
a lower bound for ﬁgs

i+l t .
DY R R

i€L

i+1 ti
1 Z / + dus / e~ (VImax)) k) (b1 =) gt
0

zGI

| \%

_ % Z L(/_LS(I(ti-‘,—l)) - MS(I(ti)))v

= ’Y(Imax) + kr

where §; = e_('Y(Inxax)+kr)(ti+1_ti)(1 _ e—('y(Imax)-&-kT)ti).

The quantity 7y is instrumental to understand how growth 7, is stimulated
in a photobioreactor by the frequent oscillations along the light gradient. This key
observation will be determinant for the design and operation of photobioreactors. If

12
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we compute iy for different mixing strategies, it will inform about the most efficient
mixing strategy for growth. An increase in the value of fi; results from higher ﬁ}; and
iy To increase the value of i}, we can look at the value of §; (s (1 (tig1))—ps(1(t:))).
The value of §; is larger for a shorter time interval (¢;,¢;11), i.e., for faster movements
along the light gradient. Then, each short interval where the value pg(I(t;)) moves to
a higher value p15(I(t;11)) helps to increase the value of 7i};, and consequently, increase
the value of 4. Although computing 7 is challenging, the previous observation
offers a key insight to optimize productivity in a photobioreactor. In the particular
case of the raceway pond, Equation (3.8) can be used to get the bound:

Npar Npar

_ Hmax 1 |I— (In)|
T Npar el V(Imax) +

Ny,
1 & a1 7. (I,
LN < e Zo(L)]
k'r Npar n—1 T Npar n—1 ’V(Imin) + kr

Npar
n=1

Z_(I,)| represents the average number of visits below the

Npar
n=1

The quantity ﬁ

depth zopt. In the same way, the quantity ﬁ Z.(I,)| represents the average

number of potential visits above the optimal depth zop (see e.g., Figure 4.4). The
above bounds are not tight and they provide a potential for growth enhancement if
vertical hydrodynamics is sufficiently efficient.

4. Numerical study.

4.1. Periodic sketchy examples. For the numerical test, we chose the pa-
rameter values of the Han model from [13] as shown in Figure 2.3. To illustrate the
behavior of the dynamic growth rate, and specifically to compare it with the static
one, we consider two examples of periodic light signals. We first consider a simple
periodic function for the depth of a cell

(4.1) A(t) = % <1 + sin (?t)) .

The light signal, using the Lambert-Beer law, is given by I(t) = Ipe ¢*() and the
static approximation of the growth rate is pg(t) = ps(Z(t)). In this case, the value of
Tig is independent of T using a change of variable s = ¢/T,

1 T 1 Toe—8%(s)
s =~ | ps(I(t)dt = aIpec ds
STT k ?
0 0 14+ Toplpe=¢2(s) + T (oploe=82(9)

In Figure 4.1a, ua is illustrated for the periodic solution given by (3.6). As
expected, for T large enough, the difference i, — fig can be approximated by fiy.
Numerically, the value of Gy is close to zero. In fact, their relative difference in
percentage, computed as 100 x %, is lower than 2%, as illustrated in Figure 4.1b.
As shown in the same figure, i 4 is always greater than fig and the difference between
them becomes smaller as 7" increases. When light varies slower, the approximation
Tig for i 4 is still accurate.

The actual growth rate pu4 is not always greater than the static approximation
s as it is shown in the second example,

(42) Z(t) = Ho — 4HQ
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(a) The growth rate 4 (in red) and the static (b) Time-averaged growth rate fi, (contin-

approximation pg (in blue) for two different uous red line) and static approximation fig

values of T. As T increases, ua approaches (blue line) for different values of 7. The

to ps. dashed green line shows the difference in per-
centage.

Fig. 4.1: Dynamic growth rate and static approximation comparison when the light
signal is given by (4.1).

which also has a period T'. This function describes a movement closer to the surface
and does not travel to the deepest part of the culture as in (4.1). By doing the
same change of variable as above, the time-averaged static approximation fig is still
independent of T'. Similarly to Figure 4.1b, Figure 4.2b also shows the convergence
of iy to ig when T goes to co. The difference in percentage between g and fiy
is greater than in the first example. Moreover, unlike in Figure 4.1b, the value of
L4 in Figure 4.2b is always lower than the value of 7ig. For both examples, we use
Hy = 0.3m and Iy = 1200m~2pmol.

As predicted in Proposition 3.3, for both examples, the estimation of the actual
growth rate py converges to ug (see Figure 4.1a and Figure 4.2a) as T — oo. Mixing
effects are seen when the period is lower than 1500 (s). The first example shows how
mixing can increase the growth rate, while the second can decrease it. Figure 4.3
presents the cell trajectories in each case. In the second example, the trajectory
remains above the optimal depth, i.e., in the photoinhibited part of the reactor. In
this case, the effects of photoinhibition are enhanced by mixing, which explains the
decrease in growth rate. However, the growth rate in the second example is still
greater than in the first example. Above all, the second case represents a trajectory
staying above the optimal light for growth, which means that, in the photobioreactor,
other trajectories will always stay below this threshold, so that the resulting overall
average growth rate is likely to be low. In conclusion, it is difficult to find an optimal
mixing pattern that meets several criteria at the same time. In addition, due to the
incompressibility of the fluid, leading to particle equidistribution, the trajectories of
all cells fully explore the space. Only CFD simulation can eventually reconstruct
realistic light patterns.
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Fig. 4.2: Dynamic growth rate and static approximation comparison when the light
signal is given by (4.2).

I~ Zopt

Depth (m)
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Time (s)

Fig. 4.3: Cell trajectories for two typical examples. The continuous line represents
the trajectory given by (4.1) and the dashed line represents the trajectory associated
with (4.2).

4.2. CFD simulations in the raceway pond. To account for more realistic
light signals, we investigate light driven by the hydrodynamics. Figure 4.4 illustrates
the tracking of a single cell within a simulated raceway pond. We use the Freshkiss3D
Python library for the CFD simulation. We distinguish two areas within the pho-
tobioreactor: the photoinhibited section (light green) where the light perceived is
greater than the optimal light I, defined in (2.10), and the photolimited section
(dark green) where the light perceived is lower than I,p,. We denote by zgp the
optimal depth, which corresponds to the depth at which the algae perceive the light

Iopy given by zopy = %ln( Lo ) When the particle travels from the photolimited

Topt

15
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Fig. 4.4: Actual growth rate u4 and static approximation pg for a simulated trajectory
in a raceway pond operated at 20 RPM with an initial water height 0.3 (m). The
maximum value of the function pg is denoted by pmax and the depth at which this
value is reached by zgpt.

area to the photoinhibited area, crossing zop¢, the difference between pg and pa is
more observable. This occurs when the particle moves faster on the z-axis than the
photoinhibition mechanism. In this case, the actual growth rate 4 could reach larger
values than the estimation from the static approximation pug. When the cell does not
go through this section fast enough, then pug can accurately approximate p 4.

To account for the entire raceway system, we simulate 8 different hydrodynamical
conditions by changing the velocity of the paddle wheel for a simulated time of one
hour. The initial positions of the particles (Zno,¥yno,2no) are randomly generated
following an independent uniform distribution zno ~ Ule, i zmarls Yn0 ~ Uy ymas]
zmax]» Where the volume is defined by B := [©min, Tmax) X [Ymins Ymax] X
[2min, Zmax] such that Q@ C B, i.e., we ignore the particles outside the domain
of the raceway pond. Due to this process, the simulations have a slightly different
number of simulated particles N,,,. The table on the right of Figure 4.5 shows the
number of simulated particles for each simulation and the total CPU time. The
software Freshkiss3D solves (2.1) to get the velocity field, at the same time it tracks
the trajectories of particles by solving (2.4). The experiments were carried out on a
computer with an Intel Xeon w-2223 processor running at 1200 MHz with a total of
15677 MB of RAM and Fedora version 39.

The set of particles necessary to estimate accurately i, and fig should be repre-
sentative of the entire raceway pond, meaning that the distribution should be uniform,
at least on the z-axis. As experimentally validated and confirmed by simulations, per-
fect mixing is reached in the raceway, even at the slowest velocities. In theory, due
to the incompressibility of the fluid, all biochemical quantities should be uniformly
distributed. An initial uniform distribution is imposed here, but after some time,
the numerical error tends to accumulate turn after turn, and particles’ distribution
becomes higher both in the upper and lower layers. The particles’ distribution pro-
gressively drifts from equidistribution to a distribution with two pics. This error is
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Fig. 4.5: Left: Growth rate of the raceway simulated for 8 different velocities of
the paddle wheel in Revolutions Per Minutes (RPM). In red, the growth rate 7i,
and in blue, its static approximation ﬁg} In black, the growth rate computed with
the volume defined by the free surface fi. In green, the difference between them in
percentage. Right: Computation time in hrs and the number of simulated particles
for each velocity.

difficult to track, it results from the numerical approximations for solving Navier—
Stokes equations, together with the numerical error when tracking each single cell in
the Lagrangian approach. More particles could be simulated to mitigate this bias,
but this is very CPU intensive and time consuming as shown in Figure 4.5.

Another approach consists in correcting the particles’ distribution, so that the set
of particles stays equidistributed. We propose a weighted average for correcting the
numerical bias in the particles’ distribution and more accurately compute 7z, and fig,

Npar pa(Ly Npar ps(In ()

/Tznlh(tx dt and ,uS/TznlhtX")dt.

nmf ) nmf h(tlx 3
Here, pa(I,(+)) and ps(I,(-)) are computed from the light history I,,(-) perceived by
the algae, using (2.14) and (2.9) respectively, and h(t,-) is the probability density
function of the depth of the particles at the instant ¢. If the free surface is perfectly
flat with depth Hy, we have that h(0,-) = 1/Hy by construction (since all particles
are initialized with uniform distribution on the z-axis), and we recover the expres-
sion (2.21). Figure 4.5 shows the computation of iy and T .

4.3. Approximation of the growth rate. When the particle number Np,,
is large enough, the space-time-averaged static approximation defined in (2.21) con-
verges to the volume-averaged growth rate (2.22) in the sense that
(4.3) lim Tis(l,) = lim 7% (1) = Fig,

Npar—00 Npar—00
when the fluid is incompressible [29]. Figure 4.5 shows Ji, computed for eight different
paddle wheel velocities. We observe that this quantity is a constant independent of
the simulated velocities. In fact, the volume-averaged growth rate fi, depends only
17
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on the aquatic volume in the photobioreactor. Since the volume is constant in our
numerical tests, this quantity can then be computed only considering the geometry of
the raceway pond and the height of the water, making Ji, an efficient approximation
of the growth rate. Two raceway ponds with equivalent shape lead to the same
volume-averaged growth rate g, [20, Theorem 3]. The same holds for the corrected
space-time-averaged static approximation ﬁg} when Np,e — oo. And in the limit
case, ﬁgj no longer sees the effect of hydrodynamics. This explains the reason why
ﬁg} has a small variation when the paddle wheel velocity changes in Figure 4.5. More
precisely, the values of the corrected space-time-averaged static approximation ﬁg} are
1.1395 (d~1!) for 10 RPM and 1.12080 (d~!) for 27.5 PRM. The difference between
the actual growth rate computed using the dynamic description 7iy and the static
approximation Tig is lower than 8% (at 27.5 RPM). Then, the actual growth rate 7y
is almost not sensitive to the simulated velocity of the paddle wheel. In this way, it
is not worthwhile to simulate hydrodynamics to obtain a more accurate measurement
of the growth rate, as CFD simulations are very time consuming (see the table in
Figure 4.5). Hydrodynamics have a minor effect on the overall growth rate, this
conclusion is firmly related to the system presented here. A different photobioreactor
could lead to different conclusions.

5. Discussion. Simulating the coupling between hydrodynamics and photosyn-
thesis is a significant scientific challenge, involving multiple timescales and nonlinear
dynamic models. In this study, we demonstrated how the average growth rate of
microalgae in a bioreactor can be optimized through careful management of hydro-
dynamics. A key observation is that the increase in productivity is directly linked to
the movement of cells along the light gradient. This dynamic movement enhances the
growth rate compared to a static scenario, where cells remain immobile.

Better understanding hydrodynamics and their favorable impact on microalgae
productivity paves the way for optimizing photobioreactors. In particular, it enables
the design of systems capable of generating targeted movements along the light gradi-
ent, a key factor for maximizing microalgae growth. Other types of movements, while
essential for ensuring mixing homogeneity, have no significant effect on productiv-
ity. Therefore, a strategic approach aimed at exploiting beneficial movements within
the light gradient could significantly enhance the efficiency of microalgae cultivation.
However, modeling this coupling between physics and biology presents several chal-
lenges. On one hand, the dynamics of photosynthesis in response to light fluctuations
are complex to capture. Current models, which focus on the efficiency of photosys-
tems, require more robust experimental validation [10]. On the other hand, hydrody-
namic models have their own limitations, particularly when adopting a Lagrangian
approach. Indeed, the property of iso-distribution of particles tends to degrade over
time, an aspect often overlooked in previous studies but crucial in the context of pe-
riodic fluid circulations. To address this issue, we propose a strategy to compensate
distribution biases, essential to avoid numerical drifts and erroneous conclusions.

Our study focuses on a simplified case, where we assume no cell sedimentation
(i.e., cell density equal to that of the fluid) and perfect adherence to streamlines. A
range of biological mechanisms such as photoacclimation and photoprotection with
specific pigments to cope with high light have been neglected [10]. Additionally,
we neglect external light fluctuations, such as those induced by day-night cycles.
Although our approach is general from a mathematical perspective, the simulations
are specifically applied to high-rate ponds. Similar studies for photobioreactors could
validate these mechanisms in faster hydrodynamic regimes [26], where the productivity

18
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gain from cell agitation could be significantly higher than that observed in raceway
ponds. Mixing can also indirectly promote growth for other reasons. On top of
avoiding sedimentation, it enhances the mass transfer with gases [8], leading to higher
COs, transfer rate or increasing Os outgassing, both being favorable for photosynthesis.
Here, the study was carried out assuming a constant medium turbidity, i.e., a constant
microalgal biomass concentration. A higher growth rate would probably support
a higher biomass in the reactor, reducing the average light in the reactor. This
effect should be further studied with dedicated models also taking into account other
timescale of the photosynthesis [24].

An important conclusion of this study is that the productivity gain associated
with mixing velocity stays in the range of a few percent of the static approximation
of the growth rate. This most probably explains why, despite recurrent statements
in the literature [28], the increase of productivity with more intense agitation has
never been clearly demonstrated experimentally. Given the high computational cost
of simulating reactor hydrodynamics and tracking particles to compute the average
growth rate, a correction factor applied to the growth parameter, accounting for the
hydrodynamics, is probably the most efficient numerical approach. Such correction
term should be calibrated on real systems, to automatically capture the photosynthesis
stimulation due to the cell movement in the light field. It is crucial to balance the
gain in productivity with the energy required for mixing, which increases with the
cube of the fluid velocity [9, 30]. Excessive agitation could lead to disproportionate
energy costs without a significant improvement in productivity [21]. These results
could serve as a basis for a life cycle assessment (LCA) to determine the optimal
agitation intensity, taking into account environmental and energy impacts [22]. Such
an approach would help identify a trade-off between productivity and sustainability.

6. Conclusions. We presented a numerical method for calculating the average
growth rate in a photobioreactor, incorporating the effects of hydrodynamics. Our
approach was based on the Han model to represent the photosynthesis dynamics and
account for the light history of the microalgae. By coupling the Han model with
hydrodynamics, we captured the influence of mixing devices on microalgae growth.
We demonstrated analytically that cell advection along the light gradient is the de-
termining reason to stimulate photosynthesis efficiency.

We simulated the light harvesting model within the light field generated by the
hydrodynamics of a raceway pond. Many publications have been dedicated to improve
the mixing in photobioreactors, but the criterion of the resulting algal productivity
was not taken into account. Our study opens new routes to more directly optimize
bioreactor productivity through hydrodynamics management. The relationship be-
tween the growth rate in the raceway and the vertical velocity (z-axis) can be extended
to other photobioreactors, depending on their hydrodynamics and internal light distri-
bution. This insight provides a basis for optimizing the reactor geometry and mixing
to maximize the benefits of hydrodynamic effects by ensuring cell movements along
the light gradient.
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