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Abstract. Microalgae, as photosynthetic organisms, are cultivated in photobioreactors for vari-5
ous industrial applications. Light intensity, a critical factor influencing their growth rate, is inherently6
non-uniform within photobioreactors. In regions distant from the illuminated surface, microalgae ex-7
perience photolimitation due to insufficient photon availability, hindering optimal activation of the8
photosynthetic machinery. Conversely, near the illuminated surface, excessive light intensity can9
damage key photosynthetic proteins, leading to photoinhibition. While mixing in photobioreactors10
does not alter the light gradient, it influences the light exposure history of cells through hydrody-11
namic advection. In this study, we employ Han’s mechanistic model to describe the dynamics of12
photon harvesting and its consequences, including photoinhibition and photolimitation. First, we13
calculate the time-averaged growth rate for arbitrary continuous light signals, revealing how mixing14
impacts growth under the assumption of periodic light signals generated by hydrodynamics. Next,15
we address the computational challenge of estimating growth rates in photobioreactors using com-16
putational fluid dynamics (CFD), modeling a single-phase incompressible fluid. Finally, we analyze17
the case of a raceway pond, evaluating errors arising when growth rate is estimated without account-18
ing for hydrodynamics. We analytical demonstrate that the gain in growth is related to the cell19
movement along the light gradient. Our results show that in predominantly laminar hydrodynamic20
regimes, hydrodynamics has only a marginal effect on microalgal growth. Moreover, we show that21
the average productivity can be estimated based on a static approximation of the average growth22
rate taking into account the light distribution, with an error lower than 10%.23
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1. Introduction. Microalgae are capable of converting CO2 into biomass using26

energy from visible light. These microorganisms are cultivated industrially in ei-27

ther open or closed photobioreactors [19]. Open systems such as raceway ponds are28

simple and cost-effective, shallow, oval-shaped channels, mixed with a paddle wheel.29

Closed systems, like tubular reactors, represent more advanced technology with more30

controlled culturing conditions. These reactors can operate in batch mode or with31

continuous addition of growth medium. Two key characteristics define these systems:32

(1) microalgae cells act as light-absorbing particles, creating a heterogeneous light33

distribution within the reactor. Areas near the light source experience high illumi-34

nation, while deeper regions remain in darkness. (2) Intensive mixing is employed to35

prevent biomass sedimentation and ensure uniform nutrient distribution. As a result,36

cells are advected through light gradients, experiencing alternating periods of high37

and low light intensity.38

Photon harvesting in microalgae is a dynamic process, and the average growth39

rate in a photobioreactor emerges from the complex interplay between photosystem40

dynamics and hydrodynamics [7]. Accurately modeling this interaction is challenging,41

as it requires accurate representation of 1/ reactor hydrodynamics, 2/ light distribu-42

tion within the reactor, 3/ dynamic response of photon harvesting in response to light43

variations. This approach, which explicitly accounts for the light history of cells, is44

classified as type III in [3]. However, the complexity of type III models often limits45

their practical application, leading to the use of simplified growth rate (µ) calcula-46

tions. Type I models depend solely on incident light at the reactor surface, while47

type II models incorporate simple light transfer models like the Lambert–Beer law,48

coupled with Monod-like or Haldane-type functions for µ(I). Unlike type I and II49
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models, which are static, type III models are dynamic.50

Photosystem dynamics are typically described by three-population models, such51

as the Han model [14] or the Eilers–Peeters model [11]. These models use three dif-52

ferential equations to represent the probability of the photosystem being in one of53

three states: open and ready to process photons, closed and processing photons,54

or damaged due to excess light energy. These models capture two key phenom-55

ena—photoabsorption and photoinhibition—which operate on different timescales.56

The recovery rate after damage is significantly slower than photon harvesting, en-57

abling a slow-fast approximation in the three-population model [15].58

Cells in photobioreactor are exposed to continuous, fluctuating light signals over59

time resulting from their trajectories in the light gradient. In practice, they are60

most of the time exposed to suboptimal light conditions, reducing photosynthetic61

efficiency. Recent studies have explored optimizing light absorption in these reactors,62

by introducing specific topographies [5] or enhancing vertical mixing [6].63

Using the Han model, we investigate the impact of fluctuating light signals on64

growth rates. By considering the typical timescales of light variations, we simplify the65

Han model using a slow-fast approximation and compare its predictions with those66

assuming steady-state photosystems. We first apply our coupled model to simple67

periodic light signals, commonly used in laboratory-scale photobioreactors. Then, we68

reconstruct the cell trajectories in a raceway pond using computational fluid dynamics69

(CFD) simulations. The trajectories of the cells in the light gradient provide realistic70

light patterns whose effect on photosynthesis can be assessed using Han’s model.71

This paper is organized as follows. We first present the hydrodynamic and biolog-72

ical models in Section 2, where we compare two strategies for computing the growth73

rate: µA is a more realistic computation accounting for the dynamics of the photo-74

systems, and µS is an approximation easier to compute assuming a static response of75

the photosynthetic apparatus. The main results of this paper, is a characterization76

of the relationship between the dynamic growth rate (µA) and the static approxima-77

tion (µS). To better understand this relationship, we provide theoretical analysis in78

Section 3 and study the impact of continuous periodic light signals. We demonstrate79

that all solutions of the biological model converge to a unique periodic solution. Nu-80

merical studies are provided in Section 4, where we first illustrate the mixing in a81

photobioreactor using two typical periodic light signals. We then analyze the race-82

way pond using a CFD model to simulate the motion of particles, tracking the light83

perceived by individual microalgae. We compare the actual average growth rate and84

the static approximation by taking space into account. A detailed discussion is given85

in Section 5, where we comment our results and their applications on the design of86

photobioreactors. Finally, we conclude by demonstrating that the average growth rate87

computed assuming the steady state of the photosystems is a reliable approximation.88

2. Hydrodynamic and biological models.89

2.1. Computational fluid dynamic model model and cell tracking. The90

water flow in a raceway pond can be simulated with CFD, which integrates the Navier–91

Stokes equations. Several studies have used CFD to simulate the velocity field in open92

ponds [25, 27]. Lagrangian approaches have also been used to assess the mixing effi-93

ciency in algae cultures. For example, the mixing length is computed in [1] as a result94

of different paddle wheel velocities. In our study, we consider a real raceway pond from95

the Environmental Biotechnology Laboratory of INRAE Narbonne in France [17]. We96

use a layer-averaged Euler and Navier–Stokes model for the numerical simulation of97

incompressible free surface, as presented in [2]. The meshing of the raceway pond98
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Fig. 2.1: 2D mesh of the simulated raceway pond.

consists of a fixed 2D triangular mesh of the bottom of the raceway, as shown in Fig-99

ure 2.1. The layers are defined by the water depth, giving the third dimension of the100

system. This approximation of the Navier–Stokes equations is more accurate than101

the well-known shallow water system. It employs a multi-layered model based on a102

Galerkin-type approximation of the velocity field, utilizing piecewise constant basis103

functions. A decisive advantage for raceway ponds is also that this discretization of104

Navier–Stokes equations represents the free surface (and the waves) more simply, yet105

more accurately than the classical approaches. The incompressible and hydrostatic106

Navier–Stokes system with free surface is given by107

∇ ·U = 0,

∂u

∂t
+∇x,y · (u⊗ u) +

∂uw

∂z
=

1

ρ0
∇x,y · σ +

µ

ρ0

∂2u

∂z2
+ F ,

∂p

∂z
= −ρ0g,

(2.1)108

where U = (u, v, w)T is the velocity of the liquid, u = (u, v)T is the horizontal veloc-109

ity, σ is −pId +Σ, where Σ = µ∇x,yu is the total stress tensor, p is the pressure, g is110

the gravity acceleration constant, ρ0 is the fluid density and µ is the viscosity coeffi-111

cient. The fluid is assumed to be Newtonian. The hydrostatic Navier–Stokes system112

is relevant here, since vertical acceleration is negligible compared to the horizontal113

acceleration. The paddle wheel is indirectly represented by the force F as used in [4],114

(2.2) F = F
(√

(x− xwheel)2 + (z − zwheel)2ω
)2

cos(θ)
0

sin(θ)

 ,115

where F is a constant, θ is the angle between the vertical axis and the blade, ω = θ̇, and116

xwheel, zwheel are the coordinates of the paddle wheel in the x and z axis respectively.117

Note that the force does not affect the y-axis, which is parallel to the central axis of118

the paddle wheel. It has been shown that using a 2D (horizontal and vertical axis)119

representation of the raceway hydrodynamics [4] is computationally more efficient120

than using model (2.1)-(2.2).121

The fluid domain along the z-axis is delimited by the free surface denoted by122
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Fig. 2.2: Representation of a simulated raceway pond and the velocity field of some
particles. The height corresponds to 0.3 (m). Left: Simulated particles representa-
tion (paddle wheel simulated at 12.5 RPM). Top Right: Lagrangian tracers of few
particles (paddle wheel simulated at 20 RPM). Bottom Right: The streamline of
some particles’ trajectories (paddle wheel simulated at 15 RPM).

η(t, x, y), then the system (2.1) is completed with the following boundary condition:123

(2.3)
∂η

∂t
+ u · ∇x,yη = 0.124

The CFD model was validated in [2] using a velocity sensor in a smaller raceway pond.125

Our simulations are very similar to the one in [17], carried out with a commercial126

software, where a physical model of the paddle wheel was implemented.127

We assume that the microalgae have the same density as the medium, so that the128

trajectories of the cells match that of the background flow. Under this hypothesis,129

Lagrangian’s trajectories of these particles can be reconstructed from the Eulerian130

description (2.1) denoted by (Xn)
Npar

i=1 , where Npar is the number of simulated parti-131

cles. The position of each particle Xn(t) = (xn, yn, zn)
T is computed by solving the132

equation133

(2.4)
dXn(t)

dt
= U(t), Xn(0) = (xn0, yn0, zn0)

T ,134

where (xn0, yn0, zn0) is the initial position of the particle. We denote by Ω the domain135

of the raceway. We initiate the position of the particles randomly, following a uniform136

distribution in the domain Ω.137

Similar works on the same pond [16, 23] have considered a growth model tracking138

the position of Lagrangian trajectories, using the same model (2.1), (2.2), and (2.4).139

In our study, we have considerably improved the numerical schemes, so that much140

more particle trajectories could be simulated with a higher accuracy. In particular, it141

is challenging to reproduce with the simulation the expected equidistribution of the142

cells along time, and much of the biases appeared in previous schemes were reduced.143

To illustrate this photobioreactor, we show a simulated raceway pond in Figure 2.2144

together with the distribution of the velocity magnitude. The paddle wheel is posi-145

tioned just above the red surface. Some cells (in white) are represented together with146
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A B CσI kdσI

krτ−1
Photon I Photon I Parameter Value [Unit]

kr 6.8 · 10−3 [s−1]
kd 2.99 · 10−4 [-]
τ 0.25 [s]

σP 0.047 [m2µmol−1]
α 8.7 · 10−6 [-]

Fig. 2.3: Left: Illustration of the evolution between the three states in the Han model.
Right: Parameters of the Han model used in this study.

their respective streamlines. The trajectories of the cells are mainly horizontal in the147

straight sections of the raceway pond.148

2.2. Light distribution within the raceway pond. We assume that a pop-149

ulation of microalgae cells, each with a radius of 10 (µm), follows fluid streamlines150

within the light gradient. Due to the incompressibility of the fluid and the cells’ den-151

sity being equal to that of the medium, the particles are, in theory, uniformly distrib-152

uted throughout the raceway. This assumption justifies the use of the Lambert–Beer153

law to approximate the light distribution, taking into account the scattering and ab-154

sorption effects of the cells. The vertical motion of the cells in the light gradient can155

therefore provide the individual light history of each cell. We assume that light strikes156

perpendicularly to the ground surface. To reach a cell Xn, the light must travel a157

distance η(t, xn, yn)− zn, from the free surface. Then the light signal In perceived by158

this particle is computed with the Lambert–Beer law as159

(2.5) In(t) = I0e
−ξ(η(t,xn,yn)−zn),160

where I0 is the light perceived at the free surface, ξ > 0 is the light extinction constant.161

2.3. Biological model. To describe how photons are harvested by the photosys-162

tems under a varying light intensity, we consider the mechanistic model of Han [14],163

which characterizes the process of photon harvesting with possible photoinhibition164

induced by the photodamage of the photosystem II (PSII). There are three possible165

states for PSII: open or reactive state A, closed or activated state B, and inhibited166

or damaged state C. The relation of these three states are schematically presented in167

Figure 2.3. The dynamics of PSII can be described by the differential equations:168

(2.6)
dA

dt
= −IσPA+

B

τ
,
dB

dt
= IσPA−B

τ
+krC−kdσP IB,

dC

dt
= −krC+kdσP IB,169

where σP (µmol−1m2) is the effective cross-section of PSII, I (µmolm−2s−1) is the170

light intensity perceived by the microalgae, τ (s) is the minimal time required for171

an electron to transfer from water on the donor side of the photosynthetic unit to172

the terminal electron acceptors, which is also called the turnover time, kd (−) is the173

damage rate and kr (s−1) is the recovery rate of PSII. A,B and C represent the174

probability distribution of each state, therefore175

(2.7) A+B + C = 1.176

The algal growth rate is assumed to be proportional to the open state A and the177

light intensity I. More precisely, the growth rate given by the kinetic model (2.6)178
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corresponds to179

(2.8) µA(I, A) := ασP IA,180

where α is a constant of proportionality relating the flux of electrons triggered by181

the photons and cell growth. At steady state, the state A of the system (2.6) tends182

towards AS (see, e.g., [7]). This corresponds exactly to a Haldane model where the183

growth rate is a function of light, that is184

(2.9) µS(I) = ασP IAS = ασP I
1

1 + τσP I +
kd

kr
τ(σP I)2

.185

The maximum of µS is given by µmax = α

τ+2
√

kd
kr

τ
, and it is reached when the light186

intensity value is187

(2.10) Iopt =
1

σP

√
kd

kr
τ
.188

As shown in [12], using (2.7) and substituting it into the system (2.6), we end up with189

two equations190

dA

dt
= −

(
σP I +

1

τ

)
A− 1

τ
C +

1

τ
,

dC

dt
= kd

[
−σP IA−

(
σP I +

kr
kd

)
C + σP I

]
.

(2.11)191

In practice, the factor kd is in the range of 10−4, as shown in Figure 2.3. Therefore,192

system (2.11) has slow/fast timescales, and we can consider the slow manifold pro-193

posed in [18, Chapter 11], where A rapidly reaches a pseudo steady state depending194

on the value of C:195

(2.12) A =
1− C

1 + τσP I
,196

This reduces the system (2.11) to a single equation of C,197

(2.13)
dC

dt
= −(γ(I) + kr)C + γ(I),198

with γ(I) := kdτ(σP I)2

1+τσP I . In particular, the steady state of C is given by CS := γ(I)
γ(I)+kr

=199
kd
kr

τ(σP I)2

1+τσP I+
kd
kr

τ(σP I)2
. Consequently, the steady state of A can be obtained by substitut-200

ing CS into (2.12).201

For a continuous bounded light signal I : [0,+∞) → [Imin, Imax] with 0 ≤ Imin ≤202

Imax, we present an estimation of the actual growth rate µA as a function of the static203

approximation µS assuming the Han model in equilibrium. To simplify the notation,204

we write µA(t) instead of µA(I(t), A(A(0); t)) and µS(t) instead of µS(I(t)). We now205

demonstrate that the initial condition rapidly does not affect the dynamics anymore206

and can therefore be neglected after a time interval of 10/kr (about 25 minutes), much207

smaller than the typical timescale of growth.208
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Proposition 2.1. Let I : [0,+∞) → [Imin, Imax] be a continuous bounded light209

signal. Assuming that A(0) = 0, the growth rate µA can be written as210

(2.14) µA(t) = µS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+kr dw ds.211

Furthermore, the following estimations hold212

(2.15) µS(t)
γ(I(t)) + kr
γ(Imax) + kr

(
1− e−(γ(Imax)+kr)t

)
≤ µA(t) ≤ µS(t)

γ(I(t)) + kr
γ(Imin) + kr

.213

In general, for any initial condition A(0) = A0, the associated growth rate converges214

to (2.14) when t goes to infinity.215

Proof. The general solution of (2.13) is given by216

(2.16) C(t) = C(0)e−
∫ t
0
γ(I(w))+kr dw +

∫ t

0

γ(I(s))e−
∫ t
s
γ(I(w))+kr dw ds.217

Using then (2.12), the state A can be written as218

A(A(0); t) =A(0)
1 + τσP I(0)

1 + τσP I(t)
e−
∫ t
0
γ(I(w))+kr dw

+AS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+kr dw ds,

(2.17)219

which depends on the initial value A(0). If A(0) = 0, the latter becomes,220

(2.18) A(0; t) = AS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+krdw ds.221

Then, equation (2.14) is deduced from the definitions (2.8) and (2.9). The upper222

bound in (2.15) follows from the fact that γ is an increasing function of I and223 ∫ t

0

e−
∫ t
s
γ(I(w))+kr dw ds ≤

∫ t

0

e−
∫ t
s
γ(Imin)+kr dw ds =

1− e−(γ(Imin)+kr)t

γ(Imin) + kr

≤ 1

γ(Imin) + kr
.

224

For a similar reason, we find
∫ t

0
e−
∫ t
s
γ(I(w))+kr dw ds ≥

∫ t

0
e−
∫ t
s
γ(Imax)+kr dw ds =225

1−e−(γ(Imax)+kr)t

γ(Imax)+kr
. Substituting these two inequalities into (2.18) and using the defi-226

nitions (2.8) and (2.9), we obtain the estimation (2.15). Finally, if A(0) = A0 ̸= 0,227

using (2.17) and (2.18), we have228

(2.19)

|A(A(0); t)−A(0; t)| = |A(0)|1 + τσP I(0)

1 + τσP I(t)
e−
∫ t
0
γ(I(w))+kr dw

≤ |A(0)|1 + τσP Imax

1 + τσP Imin
e−krt.

229

The latter converges to zero at a rate kr, thus A(A(0); t) converges to A(0; t).230

Based on Proposition 2.1, for large timescales, we will assume that the initial231

condition of the state A is zero.232
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2.4. Growth rate in the raceway pond. To estimate the growth rate in the233

raceway pond, we need to define the average growth rate of all simulated particles234

moving within the photobioreactor. We first define the time-averaged dynamic growth235

rate and its static approximation by236

(2.20) µA :=
1

T

∫ T

0

µA(t) dt, µS :=
1

T

∫ T

0

µS(t) dt.237

Then the space-time-averaged dynamic growth rate and its static approximation are238

defined as239

(2.21) µA =
1

Npar

Npar∑
n=1

µA(In), µS =
1

Npar

Npar∑
n=1

µS(In).240

In the Eulerian description, the static approximation of the growth rate µS can241

be computed for each point in the raceway domain Ω. At each point (x, y, z) ∈ Ω,242

the perceived light is computed using (2.5) as I(x, y, z) = I0e
−ξ(η(t,x,y)−z), and the243

volume-averaged growth rate can be defined by244

(2.22) µΩ =
1

V (Ω)

∫
Ω

µS(I(x, y, z)) dxdydz,245

where V (Ω) is the volume of the raceway. In [16], the static approximation µS is246

used to compute the growth rate in a raceway pond. In [29], the relationship between247

µS and µΩ is discussed in a different type of photobioreactor. We focus on a more248

accurate computation of the growth rate using µA and characterize the gain compared249

to the static approximation computed with µS .250

Instead of analyzing the flow of microalgae cells at a fixed location (Eulerian per-251

spective), tracking Lagrangian trajectories provides a natural approach to monitor252

the light exposure perceived by each cell. The light history derived from these tra-253

jectories is then used to compute the growth rate µA. Notably, the growth rate µA254

cannot be defined within a Eulerian framework, as the concept of light history is lost255

in this perspective.256

3. Formal analysis of the average growth rate.257

3.1. Time-averaged growth rate. We first assess the difference between the258

average growth rate µA and the approximation µS defined in (2.20).259

Theorem 3.1. Let I be a bounded continuous light signal perceived by a single260

cell. Assuming that A(0) = 0, for a given time period T , the time-averaged growth261

rate µA can be written as the sum of the time-averaged static approximation µS, and262

a correction term µH representing the dynamical gain due to mixing:263

(3.1) µA = µS + µH +O(1/T ),264

where265

(3.2) µH :=
1

T

∫ T

0

dµS(t)

dt
ϕ(t) dt, ϕ(t) :=

∫ t

0

e−
∫ t
s
γ(I(w))+kr dw ds,266

and O(1/T ) = −µS(T )
T ϕ(T ) which goes to zero when T → +∞.267
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Interpretation of Theorem 3.1: In a system mainly laminar, where cells stay268

at a constant depth (or are slowly advected vertically), for which the growth rate gain269

due to vertical mixing µH is negligible, the average growth rate over a sufficiently long270

time period T can be accurately computed using the static approximation µS based271

on the Haldane model. In a system with high velocities in the direction of the light272

gradient, this approximation must be refined.273

Proof. Using (2.14) and integration by parts, we find274 ∫ T

0

µA(t)dt =

∫ T

0

µS(t)(γ(I(t)) + kr)

∫ t

0

e−
∫ t
s
γ(I(w))+kr dw dsdt

=

∫ T

0

∫ T

s

µS(t)(γ(I(t)) + kr)e
−
∫ t
s
γ(I(w))+kr dw dtds

=

∫ T

0

µS(s)− µS(T )e
−
∫ T
s

γ(I(w))+kr dw ds

+

∫ T

0

∫ T

s

dµS(t)

dt
e−
∫ t
s
γ(I(w))+kr dw dtds.

275

Dividing the latter by T , we get (3.1). Moreover, for a given time period T , the276

function ϕ defined in (3.2) can be upper bounded by277

(3.3) ϕ(T ) ≤
∫ T

0

e−(γ(Imin)+kr)(T−s) ds =
1− e−(γ(Imin)+kr)T

γ(Imin) + kr
,278

and lower bounded by279

(3.4) ϕ(T ) ≥
∫ T

0

e−(γ(Imax)+kr)(T−s) ds =
1− e−(γ(Imax)+kr)T

γ(Imax) + kr
.280

This reveals the fact that O(1/T ) → 0 as T → ∞.281

Note that |O(1/T )| ≤ µmax

T
1

γ(Imin)+kr
≤ µmax

T
1
kr
. Then, for T ≫ 1/kr, we can282

approximate µA by µS + µH , where µH is defined in (3.2). The quantity 1/kr cor-283

responds to the time needed to go from the state C to B in the Han model, and284

T ≫ 1/kr means that the period T must be large enough to incorporate the effect of285

recovery.286

3.2. Space-time-averaged growth rate. We discuss here how the hydrody-287

namics of the raceway pond affects the growth rate µA defined in (2.21). For each288

particle, the velocity in the z-axis is given by (2.4), i.e., vz(t,Xn) = Uw(Xn(t)). The289

next proposition relates the velocity of the z-axis and the growth rate µA.290

Proposition 3.2. The space-time-averaged dynamic growth rate can be bounded291

by the average velocity vz in the z-axis as292

(3.5) µA ≤ µS +
αξσP I0

kr

1

Npar

Npar∑
n=1

1

T

∫ T

0

|vz(t,Xn)|dt+
µmax

Tkr
.293

Proof. For each particle Xn and its perceived light signal In, we have |µH(In)| ≤294

1
T

∫ T

0

∣∣∣dµS(In(t))
dt

∣∣∣ϕ(In(t)) dt = 1
T

∫ T

0

∣∣∣dµS(In(t))
dIn

dIn(t)
dt

∣∣∣ϕ(In(t)) dt. Using then the in-295
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equality (3.3), we obtain296

|µH(In)| ≤
1

T

∫ T

0

∣∣∣∣dµS(In(t))

dIn

dIn(t)

dt

∣∣∣∣ (1− e−(γ(In,min+kr)t)

γ(In,min) + kr
dt,

≤ 1

Tkr

∫ T

0

∣∣∣∣dµS(In(t))

dIn

dIn(t)

dt

∣∣∣∣ dt,
297

where In,min is the minimum value of In in the interval [0, T ]. From the Lambert–298

Beer law, we have d
dtIn(t) = −ξI0e

−ξ(η(t,xn,yn)−zn)
(

∂η
∂t +

∂η
∂xvx + ∂η

∂y vy − vz

)
. Us-299

ing (2.3) in the above, the derivative w.r.t. the light is d
dtIn(t) = −ξInvz(t,Xn). It300

follows that |µH(In)| ≤ ξ
Tkr

∫ T

0

∣∣∣dµS(In(t))
dIn

In(t)vz(t,Xn)
∣∣∣ dt. Note that d

dIµS(I) =301

ασP

(
1− kd

kr
τ(σI)2

)
(
1+τσP I+

kd
kr

τ(σI)2
)2 ≤ ασP . Using the latter and the fact that In(t) ≤ I0, we have302

|µH(In)| ≤ αξσP I0
Tkr

∫ T

0
|vz(t,Xn)| dt. Using (3.1), we get303

µA = µS +
1

Npar

Npar∑
n=1

µH(In)−
µS(In(t))

T
ϕ(In(t)),

≤ µS +
1

Npar

Npar∑
n=1

|µH(In)|+
µS(In(t))

T
ϕ(In(t)),

≤ µS +
1

Npar

Npar∑
n=1

αξσP I0
Tkr

∫ T

0

|vz(t,Xn)|dt+
µmax

Tkr
,

304

which proves the inequality (3.5).305

Interpretation of Proposition 3.2: We can ignore the term µmax/T in (3.5)306

when the time period T is large enough. Then, the difference between the space-307

time-averaged growth rate µA and µS cannot be greater than αξσP I0
kr

|vz| with |vz| :=308

1
Npar

∑Npar

n=1

∫ T

0
|vz(t,Xn)|dt. Here, |vz| is an indicator of how mixed the photobiore-309

actor is on the z-axis. A non-mixed photobioreactor will have |vz| = 0, leading to no310

difference between µS and µA. Furthermore, the value of the light extinction ξ also311

plays an important role. Lower values of this parameter present less variations of the312

light gradient inside the reactor.313

3.3. Periodic light signals. When the light signal is periodic, we can be more314

accurate in the results presented in Theorem 3.1. Let T now be the period of the315

continuous light signal I perceived by the cell, we have the following result.316

Proposition 3.3. Let I a continuous periodic function, i.e., I(t + T ) = I(t),317

∀t ∈ [0,+∞). Then, all solutions of (2.13) converge to a unique periodic solution.318

Proof. The periodic solution Cp is obtained by imposing Cp(T ) = Cp(0) in (2.16),319

and we find Cp(0) =
∫ T
0

γ(I(s))e−
∫T
s γ(I(w))+kr dw ds

1−e−
∫T
0 γ(I(w))+kr dw

. Let C be a solution of (2.13)320

and ε = C − Cp, we have ε̇ = −(γ(I) + kr)ε. The solution is given by ε(t) =321

ε(0)e−
∫ t
0
γ(I(s)) dse−krt, which can be bounded by |ε(t)| ≤ |ε(0)|e−(γ(Imin)+kr)t. Then322

ε goes to zero as t goes to ∞.323

Proposition 3.4 (Dynamic growth rate for periodic signal). Let us consider a324

continuous periodic light signal I of period T , i.e., I(T ) = I(0). Then the dynamic325
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growth rate µA associated with the only periodic solution Cp is given by:326

(3.6) µA(t) = µS(t)(γ(I(t)) + kr)

[
ϕ(t) +

ϕ(T )O(T )

1−O(T )

]
.327

where ϕ is given by (3.2) and O(T ) = e−
∫ T
0

γ(I(w))+kr dw.328

Proof. From (2.17), we have329

µA(T ) = µS(T )(γ(I(t)) + kr)ϕ(T ) + µA(0)
I(T )

I(0)

1 + τσP I(0)

1 + τσP I(T )
e−
∫ T
0

γ(I(w))+kr dw.330

As the function I is periodic I(T ) = I(0), then Cp(T ) = Cp(0), and the growth331

rate is also periodic. Imposing µA(T ) = µA(0), we obtain µA(T ) = µS(T )(γ(I(t)) +332

kr)ϕ(T ) + µA(T )e
−
∫ T
0

γ(I(w))+kr dw, and thus µA(T ) = µS(T )
(γ(I(t)) + kr)ϕ(T )

1− e−
∫ T
0

γ(I(w))+kr dw
.333

Substituting then into (2.14), we find (3.6).334

In the same way, we obtain the following result for the time-averaged dynamic335

growth rate µA in the periodic case.336

Theorem 3.5 (Time-averaged growth rate in the periodic case). Considering337

a periodic light signal I of period T . The time-averaged dynamic growth rate µA is338

given by:339

(3.7) µA = µS +
1

1−O(T )

[
µH +

O(T )

T

∫ T

0

ϕ(T )− ϕ(t) dt

]
.340

Interpretation of Theorem 3.5: This theorem clarifies the results of Theo-341

rem 3.1, and better characterizes the dynamical component of the growth rate µH342

which must be added to the static approximation µS when the velocities along the343

light gradient are marked.344

Proof. The proof follows the same steps as in Theorem 3.1 using the dynamic345

growth rate computed in the periodic case (3.6).346

Note that when T is large enough, meaning that T ≫ 1/kr, O(T ) → 0, leading347

again to the same approximation in the non-periodic case, i.e., µA ≈ µS + µH .348

3.4. Characterization of the dynamical component µH as a function of349

the light regime. We have already seen that the actual time-averaged growth rate350

can be approximated by µA ≈ µS + µH , and µH +O(1/T ) goes to zero as the period351

T goes to ∞. In other words, µS becomes an accurate approximation for large period352

T , i.e., for slow movement against the light gradient. In this section, we provide a353

lower and upper bounds for µH to understand its relationship with the variation rate354

of the light signal I.355

Proposition 3.6. Let I : [0, T ] → [0,+∞) be a light signal of class C1, such that356

Imin ≤ I(t) ≤ Imax, ∀t ∈ [0, T ]. Assume that all the stationary points of the function357

t 7→ µS(I(t)) are isolated. For {ti}mi=0 a partition of [0, T ], where t0 = 0, tm = T , and358
dµS(I(ti))

dt = 0, then359

(3.8) − µmax

T

|I−|
γ(Imax) + kr

≤ µH ≤ µmax

T

|I+|
γ(Imin) + kr

,360
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where |I+| and |I−| are the cardinality of the sets:361

I+ :=

{
i :

dµS(I(t))

dt
> 0 ∀t ∈ (ti, ti+i)

}
, I− :=

{
i :

dµS(I(t))

dt
< 0 ∀t ∈ (ti, ti+i)

}
.362

Proof. According to the definition of |I+| and |I−|, µH can be decomposed into363

positive and negative parts as µH = µ+
H+µ−

H , where µ+
H := 1

T

∑
i∈I+

∫ ti+1

ti

dµS(t)
dt ϕ(t)dt364

and µ−
H := 1

T

∑
i∈I−

∫ ti+1

ti

dµS(t)
dt ϕ(t)dt. Now, we can give an upper bound for the365

positive part µ+
H using (3.3),366

µ+
H ≤ 1

T

1

γ(Imin) + kr

∑
i∈I+

∫ ti+1

ti

dµS(t)

dt
dt =

1

T

1

γ(Imin) + kr

∑
i∈I+

µS(ti+1)− µS(ti).367

In the same way, we can give a lower bound for the negative part using (3.4),368

µ−
H ≥ 1

T

1

γ(Imax) + kr

∑
i∈I−

∫ ti+1

ti

dµS(t)

dt
dt =

1

T

1

γ(Imax) + kr

∑
i∈I−

µS(ti+1)− µS(ti).369

Note that µ−
H ≤ µH ≤ µ+

H due to the sign of each term. Then, using the lower370

bound of µ−
H and the upper bound of µ+

H , we find
1

T

∑
i∈I−

µS(ti+1)−µS(ti)

γ(Imax)+kr
≤ µH ≤371

1
T

∑
i∈I+

µS(ti+1)−µS(ti)

γ(Imin)+kr
. Then, as µS(ti+1)−µS(ti) ≤ µmax, we have −

1

T

∑
i∈I−

µmax

γ(Imax)+kr
≤372

µH ≤ 1
T

∑
i∈I+

µmax

γ(Imin)+kr
.373

Interpretation of Proposition 3.6: A particle in a constantly mixed photo-374

bioreactor cannot remain at the same depth. Therefore, the perceived light intensity375

I cannot be constant in any interval, and the function t 7→ µS(I(t)) can only have376

isolated stationary points. The value of µH is bounded by the number of times the377

derivative of µS(I(t)) changes its sign. If I is a periodic function as the one analyzed378

in Section 3.3, then the two sums
∑

i∈I+
µ(ti+1) − µ(ti) and

∑
i∈I−

µ(ti+1) − µ(ti)379

are independent of T . And if T → +∞, then µH converges to 0.380

An efficient trajectory for a microalgae maximizes µH , i.e., increases growth rate381

due to fast changes of light along the light gradient. So, the question is which type382

of perceived light signals provide a higher value of µH . To address this point, we give383

a lower bound for µ+
H :384

µ+
H =

1

T

∑
i∈I+

∫ ti+1

ti

dµS(I(t))

dt

∫ t

0

e−
∫ t
s
γ(I(w))+kr dw dsdt

≥ 1

T

∑
i∈I+

∫ ti+1

ti

dµS(I(t))

dt

∫ ti

0

e−(γ(Imax))+kr)(ti+1−s) dsdt,

=
1

T

∑
i∈I+

δi
γ(Imax) + kr

(µS(I(ti+1))− µS(I(ti))),

385

where δi = e−(γ(Imax)+kr)(ti+1−ti)(1− e−(γ(Imax)+kr)ti).386

The quantity µH is instrumental to understand how growth µA is stimulated387

in a photobioreactor by the frequent oscillations along the light gradient. This key388

observation will be determinant for the design and operation of photobioreactors. If389

12

This manuscript is for review purposes only.



we compute µH for different mixing strategies, it will inform about the most efficient390

mixing strategy for growth. An increase in the value of µH results from higher µ+
H and391

µ−
H . To increase the value of µ+

H , we can look at the value of δi(µS(I(ti+1))−µS(I(ti))).392

The value of δi is larger for a shorter time interval (ti, ti+1), i.e., for faster movements393

along the light gradient. Then, each short interval where the value µS(I(ti)) moves to394

a higher value µS(I(ti+1)) helps to increase the value of µ
+
H , and consequently, increase395

the value of µA. Although computing µH is challenging, the previous observation396

offers a key insight to optimize productivity in a photobioreactor. In the particular397

case of the raceway pond, Equation (3.8) can be used to get the bound:398

−µmax

T

1

Npar

Npar∑
n=1

|I−(In)|
γ(Imax) + kr

≤ 1

Npar

Npar∑
n=1

µH(In) ≤
µmax

T

1

Npar

Npar∑
n=1

|I+(In)|
γ(Imin) + kr

.399

The quantity 1
Npar

∑Npar

n=1 |I−(In)| represents the average number of visits below the400

depth zopt. In the same way, the quantity 1
Npar

∑Npar

n=1 |I+(In)| represents the average401

number of potential visits above the optimal depth zopt (see e.g., Figure 4.4). The402

above bounds are not tight and they provide a potential for growth enhancement if403

vertical hydrodynamics is sufficiently efficient.404

4. Numerical study.405

4.1. Periodic sketchy examples. For the numerical test, we chose the pa-406

rameter values of the Han model from [13] as shown in Figure 2.3. To illustrate the407

behavior of the dynamic growth rate, and specifically to compare it with the static408

one, we consider two examples of periodic light signals. We first consider a simple409

periodic function for the depth of a cell410

(4.1) z(t) =
H0

2

(
1 + sin

(
2π

T
t

))
.411

The light signal, using the Lambert–Beer law, is given by I(t) = I0e
−ξz(t) and the412

static approximation of the growth rate is µS(t) = µS(I(t)). In this case, the value of413

µS is independent of T using a change of variable s = t/T ,414

µS =
1

T

∫ T

0

µS(I(t))dt =

∫ 1

0

ασP I0e
−ξz(s)

1 + τσP I0e−ξz(s) + kd

kr
τ
(
σP I0e−ξz(s)

)2 ds.415

In Figure 4.1a, µA is illustrated for the periodic solution given by (3.6). As416

expected, for T large enough, the difference µA − µS can be approximated by µH .417

Numerically, the value of µH is close to zero. In fact, their relative difference in418

percentage, computed as 100× µA−µS

µS
, is lower than 2%, as illustrated in Figure 4.1b.419

As shown in the same figure, µA is always greater than µS and the difference between420

them becomes smaller as T increases. When light varies slower, the approximation421

µS for µA is still accurate.422

The actual growth rate µA is not always greater than the static approximation423

µS as it is shown in the second example,424

(4.2) z(t) = H0 − 4H0
e
−
(
sin

(
2πt

T

)
− 1

2

)
(
1 + e−(sin(

2πt
T )− 1

2 )
)2 ,425
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(a) The growth rate µA (in red) and the static
approximation µS (in blue) for two different
values of T . As T increases, µA approaches
to µS .

(b) Time-averaged growth rate µA (contin-
uous red line) and static approximation µS

(blue line) for different values of T . The
dashed green line shows the difference in per-
centage.

Fig. 4.1: Dynamic growth rate and static approximation comparison when the light
signal is given by (4.1).

which also has a period T . This function describes a movement closer to the surface426

and does not travel to the deepest part of the culture as in (4.1). By doing the427

same change of variable as above, the time-averaged static approximation µS is still428

independent of T . Similarly to Figure 4.1b, Figure 4.2b also shows the convergence429

of µA to µS when T goes to ∞. The difference in percentage between µS and µA430

is greater than in the first example. Moreover, unlike in Figure 4.1b, the value of431

µA in Figure 4.2b is always lower than the value of µS . For both examples, we use432

H0 = 0.3m and I0 = 1200m−2µmol.433

As predicted in Proposition 3.3, for both examples, the estimation of the actual434

growth rate µA converges to µS (see Figure 4.1a and Figure 4.2a) as T → ∞. Mixing435

effects are seen when the period is lower than 1500 (s). The first example shows how436

mixing can increase the growth rate, while the second can decrease it. Figure 4.3437

presents the cell trajectories in each case. In the second example, the trajectory438

remains above the optimal depth, i.e., in the photoinhibited part of the reactor. In439

this case, the effects of photoinhibition are enhanced by mixing, which explains the440

decrease in growth rate. However, the growth rate in the second example is still441

greater than in the first example. Above all, the second case represents a trajectory442

staying above the optimal light for growth, which means that, in the photobioreactor,443

other trajectories will always stay below this threshold, so that the resulting overall444

average growth rate is likely to be low. In conclusion, it is difficult to find an optimal445

mixing pattern that meets several criteria at the same time. In addition, due to the446

incompressibility of the fluid, leading to particle equidistribution, the trajectories of447

all cells fully explore the space. Only CFD simulation can eventually reconstruct448

realistic light patterns.449
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(a) The growth rate µA (in red) and the static
approximation µS (in blue) for two different
values of T . As T increases, µA approaches
to µS .

(b) Time-averaged growth rate µA (contin-
uous red line) and static approximation µS

(blue line) for different values of T . The
dashed green line shows the difference in per-
centage.

Fig. 4.2: Dynamic growth rate and static approximation comparison when the light
signal is given by (4.2).

Fig. 4.3: Cell trajectories for two typical examples. The continuous line represents
the trajectory given by (4.1) and the dashed line represents the trajectory associated
with (4.2).

4.2. CFD simulations in the raceway pond. To account for more realistic450

light signals, we investigate light driven by the hydrodynamics. Figure 4.4 illustrates451

the tracking of a single cell within a simulated raceway pond. We use the Freshkiss3D452

Python library for the CFD simulation. We distinguish two areas within the pho-453

tobioreactor: the photoinhibited section (light green) where the light perceived is454

greater than the optimal light Iopt defined in (2.10), and the photolimited section455

(dark green) where the light perceived is lower than Iopt. We denote by zopt the456

optimal depth, which corresponds to the depth at which the algae perceive the light457

Iopt given by zopt = 1
ξ ln

(
I0
Iopt

)
. When the particle travels from the photolimited458
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Fig. 4.4: Actual growth rate µA and static approximation µS for a simulated trajectory
in a raceway pond operated at 20 RPM with an initial water height 0.3 (m). The
maximum value of the function µS is denoted by µmax and the depth at which this
value is reached by zopt.

area to the photoinhibited area, crossing zopt, the difference between µS and µA is459

more observable. This occurs when the particle moves faster on the z-axis than the460

photoinhibition mechanism. In this case, the actual growth rate µA could reach larger461

values than the estimation from the static approximation µS . When the cell does not462

go through this section fast enough, then µS can accurately approximate µA.463

To account for the entire raceway system, we simulate 8 different hydrodynamical464

conditions by changing the velocity of the paddle wheel for a simulated time of one465

hour. The initial positions of the particles (xn0, yn0, zn0) are randomly generated466

following an independent uniform distribution xn0 ∼ U[xmin,xmax], yn0 ∼ U[ymin,ymax],467

zn0 ∼ U[zmin,zmax], where the volume is defined by B := [xmin, xmax] × [ymin, ymax] ×468

[zmin, zmax] such that Ω ⊂ B, i.e., we ignore the particles outside the domain Ω469

of the raceway pond. Due to this process, the simulations have a slightly different470

number of simulated particles Npar. The table on the right of Figure 4.5 shows the471

number of simulated particles for each simulation and the total CPU time. The472

software Freshkiss3D solves (2.1) to get the velocity field, at the same time it tracks473

the trajectories of particles by solving (2.4). The experiments were carried out on a474

computer with an Intel Xeon w-2223 processor running at 1200 MHz with a total of475

15677 MB of RAM and Fedora version 39.476

The set of particles necessary to estimate accurately µA and µS should be repre-477

sentative of the entire raceway pond, meaning that the distribution should be uniform,478

at least on the z-axis. As experimentally validated and confirmed by simulations, per-479

fect mixing is reached in the raceway, even at the slowest velocities. In theory, due480

to the incompressibility of the fluid, all biochemical quantities should be uniformly481

distributed. An initial uniform distribution is imposed here, but after some time,482

the numerical error tends to accumulate turn after turn, and particles’ distribution483

becomes higher both in the upper and lower layers. The particles’ distribution pro-484

gressively drifts from equidistribution to a distribution with two pics. This error is485
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RPM Npar
Computation
time (hrs)

10 3094 714.8
12.5 3057 620.4
15 3064 742.2
17.5 3073 663.1
20 3064 779.3
22.5 3034 695.1
25 3034 810.5
27.5 3048 730.4

Fig. 4.5: Left: Growth rate of the raceway simulated for 8 different velocities of
the paddle wheel in Revolutions Per Minutes (RPM). In red, the growth rate µ

w
A

and in blue, its static approximation µ
w
S . In black, the growth rate computed with

the volume defined by the free surface µΩ. In green, the difference between them in
percentage. Right: Computation time in hrs and the number of simulated particles
for each velocity.

difficult to track, it results from the numerical approximations for solving Navier–486

Stokes equations, together with the numerical error when tracking each single cell in487

the Lagrangian approach. More particles could be simulated to mitigate this bias,488

but this is very CPU intensive and time consuming as shown in Figure 4.5.489

Another approach consists in correcting the particles’ distribution, so that the set490

of particles stays equidistributed. We propose a weighted average for correcting the491

numerical bias in the particles’ distribution and more accurately compute µA and µS ,492

µ
w
A =

1

T

∫ T

0

∑Npar

n=1
µA(In(t))
h(t,Xn)∑Npar

n=1
1

h(t,Xn)

dt and µ
w
S =

1

T

∫ T

0

∑Npar

n=1
µS(In(t))
h(t,Xn)∑Npar

n=1
1

h(t,Xn)

dt.493

Here, µA(In(·)) and µS(In(·)) are computed from the light history In(·) perceived by494

the algae, using (2.14) and (2.9) respectively, and h(t, ·) is the probability density495

function of the depth of the particles at the instant t. If the free surface is perfectly496

flat with depth H0, we have that h(0, ·) = 1/H0 by construction (since all particles497

are initialized with uniform distribution on the z-axis), and we recover the expres-498

sion (2.21). Figure 4.5 shows the computation of µ
w
A and µ

w
S .499

4.3. Approximation of the growth rate. When the particle number Npar500

is large enough, the space-time-averaged static approximation defined in (2.21) con-501

verges to the volume-averaged growth rate (2.22) in the sense that502

(4.3) lim
Npar→∞

µS(In) = lim
Npar→∞

µ
w
S (In) = µΩ,503

when the fluid is incompressible [29]. Figure 4.5 shows µΩ computed for eight different504

paddle wheel velocities. We observe that this quantity is a constant independent of505

the simulated velocities. In fact, the volume-averaged growth rate µΩ depends only506
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on the aquatic volume in the photobioreactor. Since the volume is constant in our507

numerical tests, this quantity can then be computed only considering the geometry of508

the raceway pond and the height of the water, making µΩ an efficient approximation509

of the growth rate. Two raceway ponds with equivalent shape lead to the same510

volume-averaged growth rate µΩ [20, Theorem 3]. The same holds for the corrected511

space-time-averaged static approximation µ
w
S when Npar → ∞. And in the limit512

case, µ
w
S no longer sees the effect of hydrodynamics. This explains the reason why513

µ
w
S has a small variation when the paddle wheel velocity changes in Figure 4.5. More514

precisely, the values of the corrected space-time-averaged static approximation µ
w
S are515

1.1395 (d−1) for 10 RPM and 1.12080 (d−1) for 27.5 PRM. The difference between516

the actual growth rate computed using the dynamic description µ
w
A and the static517

approximation µ
w
S is lower than 8% (at 27.5 RPM). Then, the actual growth rate µ

w
A518

is almost not sensitive to the simulated velocity of the paddle wheel. In this way, it519

is not worthwhile to simulate hydrodynamics to obtain a more accurate measurement520

of the growth rate, as CFD simulations are very time consuming (see the table in521

Figure 4.5). Hydrodynamics have a minor effect on the overall growth rate, this522

conclusion is firmly related to the system presented here. A different photobioreactor523

could lead to different conclusions.524

5. Discussion. Simulating the coupling between hydrodynamics and photosyn-525

thesis is a significant scientific challenge, involving multiple timescales and nonlinear526

dynamic models. In this study, we demonstrated how the average growth rate of527

microalgae in a bioreactor can be optimized through careful management of hydro-528

dynamics. A key observation is that the increase in productivity is directly linked to529

the movement of cells along the light gradient. This dynamic movement enhances the530

growth rate compared to a static scenario, where cells remain immobile.531

Better understanding hydrodynamics and their favorable impact on microalgae532

productivity paves the way for optimizing photobioreactors. In particular, it enables533

the design of systems capable of generating targeted movements along the light gradi-534

ent, a key factor for maximizing microalgae growth. Other types of movements, while535

essential for ensuring mixing homogeneity, have no significant effect on productiv-536

ity. Therefore, a strategic approach aimed at exploiting beneficial movements within537

the light gradient could significantly enhance the efficiency of microalgae cultivation.538

However, modeling this coupling between physics and biology presents several chal-539

lenges. On one hand, the dynamics of photosynthesis in response to light fluctuations540

are complex to capture. Current models, which focus on the efficiency of photosys-541

tems, require more robust experimental validation [10]. On the other hand, hydrody-542

namic models have their own limitations, particularly when adopting a Lagrangian543

approach. Indeed, the property of iso-distribution of particles tends to degrade over544

time, an aspect often overlooked in previous studies but crucial in the context of pe-545

riodic fluid circulations. To address this issue, we propose a strategy to compensate546

distribution biases, essential to avoid numerical drifts and erroneous conclusions.547

Our study focuses on a simplified case, where we assume no cell sedimentation548

(i.e., cell density equal to that of the fluid) and perfect adherence to streamlines. A549

range of biological mechanisms such as photoacclimation and photoprotection with550

specific pigments to cope with high light have been neglected [10]. Additionally,551

we neglect external light fluctuations, such as those induced by day-night cycles.552

Although our approach is general from a mathematical perspective, the simulations553

are specifically applied to high-rate ponds. Similar studies for photobioreactors could554

validate these mechanisms in faster hydrodynamic regimes [26], where the productivity555
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gain from cell agitation could be significantly higher than that observed in raceway556

ponds. Mixing can also indirectly promote growth for other reasons. On top of557

avoiding sedimentation, it enhances the mass transfer with gases [8], leading to higher558

CO2 transfer rate or increasing O2 outgassing, both being favorable for photosynthesis.559

Here, the study was carried out assuming a constant medium turbidity, i.e., a constant560

microalgal biomass concentration. A higher growth rate would probably support561

a higher biomass in the reactor, reducing the average light in the reactor. This562

effect should be further studied with dedicated models also taking into account other563

timescale of the photosynthesis [24].564

An important conclusion of this study is that the productivity gain associated565

with mixing velocity stays in the range of a few percent of the static approximation566

of the growth rate. This most probably explains why, despite recurrent statements567

in the literature [28], the increase of productivity with more intense agitation has568

never been clearly demonstrated experimentally. Given the high computational cost569

of simulating reactor hydrodynamics and tracking particles to compute the average570

growth rate, a correction factor applied to the growth parameter, accounting for the571

hydrodynamics, is probably the most efficient numerical approach. Such correction572

term should be calibrated on real systems, to automatically capture the photosynthesis573

stimulation due to the cell movement in the light field. It is crucial to balance the574

gain in productivity with the energy required for mixing, which increases with the575

cube of the fluid velocity [9, 30]. Excessive agitation could lead to disproportionate576

energy costs without a significant improvement in productivity [21]. These results577

could serve as a basis for a life cycle assessment (LCA) to determine the optimal578

agitation intensity, taking into account environmental and energy impacts [22]. Such579

an approach would help identify a trade-off between productivity and sustainability.580

6. Conclusions. We presented a numerical method for calculating the average581

growth rate in a photobioreactor, incorporating the effects of hydrodynamics. Our582

approach was based on the Han model to represent the photosynthesis dynamics and583

account for the light history of the microalgae. By coupling the Han model with584

hydrodynamics, we captured the influence of mixing devices on microalgae growth.585

We demonstrated analytically that cell advection along the light gradient is the de-586

termining reason to stimulate photosynthesis efficiency.587

We simulated the light harvesting model within the light field generated by the588

hydrodynamics of a raceway pond. Many publications have been dedicated to improve589

the mixing in photobioreactors, but the criterion of the resulting algal productivity590

was not taken into account. Our study opens new routes to more directly optimize591

bioreactor productivity through hydrodynamics management. The relationship be-592

tween the growth rate in the raceway and the vertical velocity (z-axis) can be extended593

to other photobioreactors, depending on their hydrodynamics and internal light distri-594

bution. This insight provides a basis for optimizing the reactor geometry and mixing595

to maximize the benefits of hydrodynamic effects by ensuring cell movements along596

the light gradient.597
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