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TOPOGRAPHY OPTIMIZATION FOR ENHANCING MICROALGAL
GROWTH IN RACEWAY PONDS*

OLIVIER BERNARD f, LIU-DI LU ¥, JACQUES SAINTE-MARIE §, AND JULIEN
SALOMONS

Abstract. Modeling the evolution process for the growth of microalgae in an artificial pond
is a huge challenge, given the complex interaction between hydrodynamics and biological processes
occurring across various timescales. In this paper, we consider a raceway, i.e., an oval pond where
the water is set in motion by a paddle wheel. Our aim is to investigate theoretically and numerically
the impact of bottom topography in such raceway ponds on microalgae growth. To achieve this goal,
we consider a biological model based on the Han model, coupled with the Saint—Venant systems that
model the fluid. We then formulate an optimization problem, for which we apply the weak maximum
principle to characterize optimal topographies that maximize biomass production over one lap of the
raceway pond or multiple laps with a paddle wheel. In contrast to a widespread belief in the field
of microalgae, we show that a flat topography in a periodic regime satisfies the necessary optimality
condition, and observe in the numerical experiments that the flat topography is actually optimal
in this case. However, non-trivial topographies may be more advantageous in alternative scenarios,
such as when considering the effects of mixing devices within the model. This study sheds light
on the intricate relationship between bottom topography, fluid dynamics, and microalgae growth in
raceway ponds, offering valuable insights into optimizing biomass production.

Key words. optimal control, weak maximum principle, microalgae, Han model, Saint—Venant
system, raceway pond, shape optimization

1. Introduction. The numerical design of microalgae production technologies
has been for decades a source of many interesting challenges not only in engineering
but also in the area of scientific computing [13, 24, 38, 21]. The potential of these
emerging photosynthetic organisms is found in cosmetics, pharmaceutical fields, food,
and - in the long term - in green chemistry and energy applications [37]. Outdoor
production is mainly carried out in open bioreactors with a raceway shape. Algae
grow while exposed to solar radiation in these circular basins, where the water is set
in motion by a paddle wheel. This mixing device homogenizes the medium, ensures
equidistribution of nutrients, and guarantees that each cell will have regular access to
light [9, 12]. The algae are harvested periodically, and their concentration is main-
tained around an optimal value [28, 31]. The penetration of light is strongly reduced
by the algal biomass, and less than 1% of the incident light reaches the reactor bot-
tom [6]. In the case of larger biomass, the light extinction is so high that a large
fraction of the population evolves in the dark and does not grow anymore. At low
biomass density, a fraction of the solar light is not used by the algae and the pro-
ductivity is suboptimal. Theoretical work has determined the optimal biomass for
maximizing productivity [23, 17, 2].

Here, we consider another approach which consists in improving the photopro-
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duction process by controlling the cell trajectories in the light field. We start from
the observation that algal raceway ponds are dynamical systems combining a phys-
ical aspect - the hydrodynamical behavior of the fluid transporting the algae cul-
ture, and a biological aspect - the light harvesting by the chlorophyll complexes in
the cells [1, 29, 30]. We then study the effect of topography (or bathymetry) on
growth to optimize the light received by the microalgae. Modeling this system is
challenging, since it also involves the free-surface incompressible Navier—Stokes sys-
tem [7, 10, 36, 27]. The complexity of this model generally prevents obtaining explicit
formulas, and large computational resources are required to perform simulations.

Several experimental campaigns [25, 32] have shown that in the straight sections
the raceway, the flow is not disturbed (which was further confirmed by CFD mod-
elling [19, 20]). Therefore, in these regions, despite turbulent dispersion, mixing is
relatively poor. This mixing is mainly induced locally by the paddle wheel and, to a
lesser extent, by the bends. The recent study of [20] confirms this finding, i.e., the
turbulence is mainly generated near the paddle wheel and close to the surface.

We therefore focus on the main part of the raceway, outside the paddle-wheel
area, and assume laminar flux. We study how to improve productivity in this part by
modifying the bottom topography. This enables us to discuss the common belief that
some specific topographies can bring more light to the algae in lowers parts of the
raceway, since cells get closer to the surface when reaching peaks in these topographies.

Let us detail our approach. We first introduce a coupled model to represent the
growth of algae in a one dimensional (1D) raceway pond, accounting for the light that
they receive. This model is obtained by combining the Han photosynthesis equations
with a hydrodynamic law based on the Saint—Venant system. This first step enables
us to formulate an optimization problem in which the topography of the raceway is
designed to maximize productivity. We then use an adjoint-based optimization scheme
to include the constraints associated with the Saint—Venant regime. We prove that the
flat topography satisfies the first-order optimality systems in a periodic case, focusing
on the fraction of the raceway in laminar regime. However, non-trivial topographies
can be obtained in other contexts, e.g., when the periodic assumption is removed or
when the mixing device is accounted for in conjunction with the bottom topography.
Numerical simulations show that a combination of turbulence-induced mixing and
non-flat topographies can slightly increase biomass production. However, enhancing
the turbulence by mixing significantly increases productivity and is definitely the most
efficient approach [5, 4], even if more energy is dissipated in this process.

The outline of the paper is as follows. In Section 2, we present the biological and
hydrodynamical models underlying our coupled system. In Section 3, we describe the
optimization problem and a corresponding numerical optimization procedure. Sec-
tion 4 is devoted to the numerical results obtained with our approach. We then
conclude with some perspectives opened up by this work.

2. Hydrodynamic and biological models. Our approach is based on a cou-
pling of the hydrodynamic transport of the particles with the photosystems evolution
driven by the light intensity they receive when traveling in the raceway pond.

2.1. Hydrodynamical model and Lagrangian trajectories. Saint—Venant
equations are a popular model of geophysical flows. This system is derived from the
free surface incompressible Navier—Stokes equations (see, for instance, [15]). Here, we
focus on its 1D smooth steady state solutions in a laminar regime, which satisfy

2
(2.1) 0u(hu) =0, 0, +9") = ~ghd,,
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Fic. 1. Representation of the one dimensional hydrodynamic model.

where h is the water depth, u is the horizontal averaged velocity of the fluid, the ¢

is the gravitational constant, and z; is the topography. The free surface n and the

average discharge are given by 1 := h + 2, and @) = hu respectively. This system is

presented in Figure 1. The z (resp. x) axis represents the vertical (resp. horizontal)

direction and Iy is the light intensity on the free surface (assumed to be constant).
Integrating the equation on the left of (2.1), we get

(2.2) hu = Qo,

for a fixed positive constant QQg. This implies a constant discharge in space. Then
the equation on the right-hand side of (2.1) can be rewritten by

(2.3) hudzu + hOygh + hdygzp, = 0.

Assume that h is non-zero, dividing then the equality (2.3) by h and using (2.2) to
2
eliminate u, we get 0, (2QT°2 +g(h+ zb)> = 0. Given h(0),z,(0) € R, we obtain

Q3
2h(z)?

Q3

= Shag) +90) +2(0)) =: Mo,

+9(h(z) + 2())

which holds for all z € [0, L], meaning that the topography z;, satisfies

M, Q3
2.4 - 70
(2.4) “ g 2gh?

Remark 2.1. Let Fr = ﬁ be the Froude number. The situation Fr < 1 cor-

responds to the subcritical case (i.e., the flow regime is fluvial), while Fr > 1 corre-
sponds to the supercritical case (i.e., the flow regime is torrential). In the steady case,

the threshold value h = h,. is obtained for Fr = 1; using (2.2), we find h, := (%?))%

Because of (2.4), h solves a third-order polynomial equation. Given a smooth topog-
2
raphy zp, if he + 2z + 2352 — % < 0, there exists a unique positive smooth solution

of (2.4) that satisfies the subcritical flow condition (see [26, Lemma 1]).
From the incompressibility of the flow, we have V-u = 0 with u = (u(x), w(z, 2)).
Here, w(x, z) is the vertical velocity. Incompressibility implies 9,u + d,w = 0. Inte-
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4 0. BERNARD, L.-D. LU, J. SAINTE-MARIE, J. SALOMON

grating the latter from the topography z; to an arbitrary vertical position z gives:

0= /Z (Opu(z) + Oew(z, £))dE

= (z — zp)0ru(x) + w(z, 2) — w(x, )
= (2 — 2p)0zu(x) — u(x)0p 2 + w(x, 2)
= 5‘95((2 — zb)u(x)) + w(z, 2),

where we have used the kinematic condition at the bottom, i.e., w(z, zp) = u(x)0y2p.
It follows from (2.4) that

My 3u2(3:)
(2.5) w(z,z) = (— — —2)u'(z),
= 5 9
with «'(x) the derivative of u with respect to .
Let the pair (x(t), z(t)) be the position of a particle (or an algal cell) at time ¢ in
the raceway pond. The Lagrangian trajectory is characterized by

. () = ().

with the initial position at time 0, (x(0), 2(0)) = (0o, 20)-

Remark 2.2. The geometry of the raceway pond with small dissipation and shear
effects (reduced wall friction and viscosity) justifies a laminar flow modeled by a
shallow-water model, such as the Saint—Venant system. This regime also minimizes
the mixing energy and hence is favored at the industrial scale.

A higher mixing energy would lead to a turbulent regime. A possible way to enrich
the representation of Lagrangian trajectories in this case would consist in including
a Brownian into (2.6). However, getting time-free expressions of the trajectories (as
n (2.7) and (2.12)) in this case is much more challenging, so that such a strategy
would require a large set of simulations together with an averaging strategy.

The Lagrangian trajectory given by (2.6) is a general formulation, which still
holds when we change the hydrodynamical model. In our setting, we can find a time-
free formulation of the Lagrangian trajectory. More precisely, we denote by z(z) the
depth of a particle at position z. From (2.5) and (2.6), we get

(2.7) v i (Mo 3 g

From (2.2), (2.4) and the definition of the free surface 7, we have

M, 2
n= h + Zy = 70 - ia
g 29
which implies that ' = —wuw//g. Multiplying then (2.7) on both sides by u, and using
the formulation of 1 and 7', one finds
u?
Zu+zu = (n— —)u' =nu' + 7'y,
g

which implies that (u
n(x) — z(x) =

7))’ = 0. Using again the identity (2.2), one obtains

(z -
(77(0) z(0)). This equation shows that given the initial water
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F1G. 2. Han’s model, describing the state transition probability, as a function of the photon flux.

Photon 1 Photon I

depth h(0) and the initial free surface position 7(0), the distance between a trajectory
z (starting from the position z(0)) and the free surface 7 depends only on the water
depth h. On the other hand, the time-free formulation of the trajectory reads

(2.8) 2(x) = n(@) — 7= (1(0) — 2(0))

We will further exploit the property of this formulation in Section 3.

Remark 2.3. Since @q is chosen to be positive, h is necessarily positive. More-
over, if z(0) belongs to [z,(0),7(0)], then z(x) belongs to [z(x), n(x)]. In particular,
choosing z(0) = 2,(0) in (2.8) and using (2.2) give z(z) = z,(z). In the same way, we
find that z(z) = n(z) when z(0) = 1(0).

2.2. Modelling the dynamics of the photosystems. To describe the dy-
namics of photosystems, we use here the Han model [18]. This model is generally
considered to characterize the photosynthetic process of these subunits as they har-
vest photons and transfer their energy to the cell to fix COs.

2.2.1. The Han model. The Han model is a compartmental model in which
the photosystems are described by three different states: open and ready to harvest a
photon (A), closed while processing the absorbed photon energy (B), or inhibited if
several photons have been absorbed simultaneously (C). The relation of these three
states are schematically presented in Fig. 2.

The evolution satisfies the following ordinary differential equations (ODEs)

A=—-0clA+ E,
-

: B
(2.9) B=olA—2 4 kC—kyolB,
T
C = —k,C + kqolB.

Here, I denotes the light density, a continuous time-varying signal. The states A, B,
and C are the relative frequencies of three possible states with A4+ B+ C =1, so
that (2.9) can be reduced to a system in dimension two by eliminating the state B.
Here, o stands for the specific photon absorption, 7 is the turnover rate, k, and ky
represent the photosystem repair and the damage rates, which are all positive.

The dynamics of the open state A can be shown to be much faster than the
dynamics of the photoinhibition state C. A slow-fast approximation by using singular
perturbation theory (as shown in details in [21]) leads to the simplification of the
dynamics driven by the slow dynamics of C:

(2.10) C = —a(I)C + B(I),
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6 O. BERNARD, L.-D. LU, J. SAINTE-MARIE, J. SALOMON

where

(01)?

(a)?
kop——"?
dTTO’I—l— 1

+ke, BUI) =k

Repeating the reasoning done to get (2.7) with (2.10) and (2.2), we can also find a
time-free reformulation, namely

(2.12) C':

_ g _ —a(I)C+,3(I)h

Qo

where all the functions on the right-hand side only depend on the spatial variable x.

2.2.2. Periodic setting. We consider the case where C' is periodic, with a pe-
riod corresponding to one lap of the raceway pond. This situation occurs, e.g., when
an appropriate harvest is performed after each lap. To describe the corresponding
model, we first consider a variant of the usual Cauchy problem (2.12):

Given I € C([0,L]; R), I >0, find (Co,C) € [0,1] x C([0, L]; [0,1]) such that

Oy - U@)Ow) +5(1)

(2.13) h(z), x€][0,L],

Let us show that the solution C(x) of (2.13) exists. Indeed, applying the Duhamel’s
formula on the Cauchy problem associated with (2.12) and the initial condition C'(0) =
Cy, and using the inequality 8(I) < «(I) gives

O@>cm_@aﬁ““%“@)%+/¢gﬁﬂwwm@MNmM@®
0

Qo
L a(I(s)h(s)
< (1—e_f0 Qo ds) (1-0Ch).

Hence the affine mapping ® : Cy — C(L) — Cy satisfies ®(0) > 0, and the inequality
implies that ®(1) < 0. It follows that there exists a unique Cy € [0, 1] that satisfies
C(L) — Cy = 0. Using Intermediate Value Theorem, we get the next result.

THEOREM 2.4. There exists a unique couple (Co,C') € [0,1] x C([0, L]; [0,1]) that
satisfies (2.13).

2.2.3. Growth rate. Finally, the net growth rate of the photosystem is defined
by balancing photosynthesis and respiration, which gives

(2.14) u(C, 1) = (1) = (D)C,
where

kol kol
(2.15) ) = #‘—kl’ () = TJ.;T—F 1 R

Here, k is a factor that relates the received energy with the growth rate and R repre-
sents the respiration rate.
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2.3. Coupling of two systems. As shown in the previous section, the light
intensity I plays an important role in algal growth, since it triggers photosynthesis.
On the other hand, the position of the algae influences the light perceived as well as
the efficiency of the photosynthesis process. Therefore, the light intensity is the main
connection which couples the hydrodynamic model and the physiological evolution of
the algae. To evaluate the light intensity observed on the trajectory z, we assume that
the growth process occurs at a much slower timescale than that of hydrodynamics and
is, as such, negligible for one lap over the raceway. In the same way, uncertainties
such as rainfall and evaporation, can also be neglected at this timescale. These fac-
tors can be taken into account for longer timescale using more detailed models, see for
instance [11, 8]. In this framework, the Beer—Lambert law describes how light is atten-
uated with depth ¢ by I(z,€) := Iy exp (—e(n(z) —&)), where ¢ is the light extinction
coefficient. Replacing £ in the previous formulation by the trajectory (2.8), we then
get the following expression for the captured light intensity along the trajectory z(x):

(2.16) I(z,2(z)) = I exp ( - EM (n(0) — Z(O)))

h(0)
In particular, we observe that for given data I, €, h(0), and 1(0), the perceived light
intensity along the trajectory z(z) only depends on its initial position z(0) and h(x).
In order to evaluate the quality of this coupled system, we define the average net
growth rate of the system by

1 L @)
(2.17) 0= — / / w(C(x,2),I(x,2)) dzdz,
VJo zp ()

where p is defined by (2.14) and V := fOL h(z)dz is the volume of our 1D raceway.

3. Optimal control problem. In this section, we define the optimal control
problems associated with our biological-hydrodynamic model. Depending on V| we
divide our study into two cases.

3.1. Objective function and vertical discretization. Our goal is to find
the optimal topography z;, that maximizes the average net growth rate (2.17). In
order to tackle numerically this optimization problem, let us first consider a vertical
discretization. Let N, denotes the number of trajectories, we consider a uniform

vertical discretization of their initial position:
i— 1
(3.1) 2;(0) :=n(0) — TQh(O), i=1,...,N,.

z

Using the formulation (2.8), we find the trajectories z;(z) := n(z) — Z;,z% h(z), 1=

1,...,N,. In particular, the distribution of trajectories z;(x) remains uniform along
the direction of z. Using (??), we obtain the perceived light intensity on z;(x):

(3.2) I(x, z,(a:)) = I exp ( — 62&8 (77(0) — zl(O))> =I,exp ( _ EiNf h(aﬁ)),

where we use the closed form of the light intensity (2.16) and the definition of z;(0).
To simplify notations and emphasis the dependence on the water depth h, we write
I;(h(x)) instead of I(x,z;(x)) hereafter. The photoinhibition state C; is then com-
puted using the evolution (2.12) for I = I;(h). In this setting, the semi-discrete
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average net growth rate in the raceway pond can be derived from (2.17) as

1 N, L
(33 i (1) = g 2 [ (i) 1) (o)

where h is the variable of the objective function, and p is given by (2.14). From now
on, we focus on the subcritical case, i.e., Fr < 1, see Remark 2.1. As mentioned
in Section 2.1, in this regime, a given topography z;, corresponds to a unique water
depth h which verifies this assumption.

Remark 3.1. Given a topography z,, usual shallow-water solvers typically con-
sider equations of type (2.4) to compute h in the simulations. Here, we use this
equation in the opposite way, i.e., to recover z, from h. In this way, we directly opti-
mize h instead of zp, since the expressions of the evolution of the state C' (2.12), the
light intensity (3.2) and the objective function (3.3) depend on h and not on zp.

3.2. Constant Volume. For simplicity, we omit from now on the variable x in
the notation and consider h as the variable of the light intensities (I;)i=1,.. .
fin, . For a fixed volume V' > 0 and a discharge (¢ > 0, we seek an admissible controls
h € L>([0,L]; R), h > 0 over a fixed length L > 0, that maximize the semi-discrete
average net growth rate (3.3). Thus, the optimal control problem (OCP) reads

=3 /OL (o) Lot) )h(x) ax.

heLN([(r)fl[%?(RL h>0 i p VN,
Bi(h)) — a((h)) Cs
r_
(P1) st. C; = 0o h,
Ci(0) = Cy(L), Vi=1,---,N,,
v = h,

v(0) =0, v(L) =V.

Here, we use formula (2.14) for y, h is the control variable, and (C;,v) are the state
variables, where v has been introduced to take into account the constraint V = hL.
The Hamiltonian associated with (P1) is given by

H(C’hvaprpv,po, h) :ZPCLB (Il(h)) _Q(z (Iz(h)) Czh
Ak Li(h)) — v (Li(h)) Cip| Ci, Ii (R
a0 32 SN 7 () u(on )

VN,

i=1

where (pc,, p,) are the co-states of (C;, v) respectively, and pg is a real number. Sup-
pose that h* € L*°([0, L]; R), h > 0 is a maximizer, and C}, v* are the corresponding
solutions of the problem (P1). Using the weak maximum principle [35, Pages 33—
35], there exist absolutely continuous functions pg, : [0,L] — R, py : [0,L] — R
and a real number p§ < 0, such that for almost every z € [0, L], the extremals
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(CF,v*,pE,, Py, b, h*) satisty the optimality system

(3.4)
y_ 00 _ BL(h) —aLi(h)Ciy  , _ OH _
= e, Q gy, T
po = — % =pcia(gf)h))h+p07%§h))h, P’ = —%I =0,
_OH 5 B(Li(h) — o (L(h) Gy, o= B(R) — a(Li(h) C;
0= - ;pci 0o Ii(h)h + ZPCi 0o
Nz / . — / . .
o] ¢ (Z;(h)) VXT () Cs L h+poZC (h)) V;(L(h))a

LEMMA 3.2. The extremal (CF,v*, pg,, Py, Po, M) which satisfies (3.4) is normal.

Proof. We use the equivalent dual form of the Mangasarian-Fromovitz constraint
270 qualification [33, p. 255-269], i.e., we prove that if pj = 0, then pf, and p} are equal

to zero on [0, L].
Substituting pj = 0 into (3.4), the ODE associated with p¢, then reads

x L aLi(h) N :
65 e = A )= g (D), Vie Lo N

where we complete by the periodic condition determined using C}(0) = Cr(L),
Vi = 1,---,N,. Note that Qo > 0 and « is a positive function from (2.11), and

6 h* > 0. Hence, we have %f*))h* > 0. Using then a similar reasoning as for the

system (2.13), we find that the only solution of (3.5) is pg,, = 0. Substituting pg, =0
and p§ = 0 into the last equation of (3.4), we obtain p} = 0, which contradicts the

fact that pg, and p; are not identically 0 on [0, L]. Therefore, p§ < 0.

|

When the extremal is normal, pg,, and pjy are usually normalized so that pj = —1

what we set hereafter. Let us show that the flat topography satisfies (3.4).
THEOREM 3.3. There exists p/ € R such that the constant water depth

Vv

f._ 2
W=,

and the corresponding solutions (Cif)l-:ly... (pé Yiz1... N., T satisfy (3.4).

Proof. From v = h/ with v(0) = 0, v(L) = V, we find v/ = ¥z. Given i €

{1,---,N.}, from (3.2), we deduce that

2 Iz(hf)a

1
L) =1, exp(—a’N 200y, (W) = —¢

which are constant on [0, L]. Solving the equation of C; in (3.4) gives
a(Ii(hl))

- LA e P BUi(hT))
(3.6) Ci(z)=e @ " a(o)+m(1_

aIi(hh)) g
——a, M

Since C; is periodic (i.e., C;(L) = C;(0)), we get from the previous equation that

)
C;(0) = SE%Z;;; Inserting this value in (3.6), we find

Ci(z) = Cf = 7(11(]1 5 veel.n)
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(ht
A similar reasoning applied to p¢, gives po,(z) = pa = %7 va € [0, L].
It follows that all the terms in the sums of the last equation in (3.4) are constant
on [0, L]. Hence, there exists a p/ € R such that the extremal (Cif,vf,péi,pjj,hf)

satisfies the optimality system (3.4). O

Remark 3.4. The previous theorem shows that the flat topography satisfies the
necessary conditions of optimality. One can explore further second-order conditions
to check whether the flat topography is a local maximizer. However, the sign of the
eigenvalues of the Hessian operator of the average growth rate Hess(fiy, ) is in general
not constant with respect to a flat topography hf = V/L and is rather difficult to
determine (see Appendix B).

Numerically, we observe that the flat topography is actually optimal in the peri-
odic case for standard values of the parameters (see Subsection 4.3.4).

Remark 3.5. If C is defined by a Cauchy problem and is not assumed to be
periodic (i.e., C(0) is not necessarily equal to C(L)), then (3.6) implies that C' may
depend on x and the computations in the proof above no longer hold. In other words,
the flat topography is not necessarily an optimum in a non-periodic setting, which is
confirmed by our numerical tests (see Subsection 4.3.2).

3.3. Non-constant volume problem for maximizing areal productivity.
In the general case, the volume of the system V can also vary, hence can be optimized.
We now assume that the water depth is of the form h + hg, where h € L*°([0, L]; R)

with h > —hy, fOL hdxz = 0, and hg > 0 so that V' = hgL. Here, V' depends only on

the parameter hg, as the length L > 0 is fixed. Moreover, we have % fOL h+ hodz =
W = hg,meaning that hy represents the average depth of the system.

On the other hand, when V' changes, the biomass concentration X (defined by
X = (i—D)X with D the dilution rate) also changes. In this case, the light extinction

€ in (2.16) can no longer be assumed to be constant. More precisely, we consider here
(3.7 e(X) :=e0X +e1,

where g9 > 0 is the specific light extinction coefficient of the microalgae species and
€1 > 0 stands for the background turbidity that summarizes the light absorption and
diffusion caused by all non-microalgae components [22].

To take into account the variation in X with respect to V', we also need to adapt
our objective function. More precisely, instead of considering the average net growth
rate 1, we maximize the areal productivity II. Given a biomass concentration X, this
quantity is defined by

v
(3.8) II:=pX g
where [ is the average net growth rate defined in (2.17) and S is the ground surface
of the raceway system which in our 1D system, actually means S = L.

Before stating the associated optimal control problem, we detail the relation be-
tween X and V. A standard criterion to determine this relation (see [23, 17]) consists
in regulating X, such that the steady state value of the net growth rate p, at the
average depth hg is 0, i.e.,

(3.9) 1o (I(ho)) = 0, with puy(I) = vmﬁg )
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TOPOGRAPHY OPTIMIZATION FOR ENHANCING MICROALGAL GROWTH 11

Using the definitions (2.11), (2.15) for «, 8, ¢ and =, one can solve (3.9) analytically,
and find that I(hg) is one of the two roots, denoted by I_ and I, of the second order
polynomial equation k;7R(c1)? + (k,7o0R — k,.ko)I + k.R =0 . In practice, I_, I
are two real roots with I_ < I, and us(I) > 0 on the interval [I_,I;]. Then, the
biomass concentration X in a given volume V is adjusted to get I(hg) = I—. More
precisely, using (2.16) with I(z,z) = I_, we get

1 /Y. I,
(3.10) X(ho)=— (=2 — ¢}, with Yo :=In(=2).
€0 ho I_

Here, X is function of hg, meaning that we can use the average depth hg to control
both V and X in the non-constant volume case.

Remark 3.6. In bioengineering, the assumption (3.9) is usually called the com-
pensation condition, which describes the situation where the growth at the bottom
compensates exactly for the respiration. We refer to [2] for a detailed analysis.

We keep using a uniform vertical discretization, as in Section 3.1, but now z;(0) :=
i1
n(0) — 1N: (ho + h(0)), i=1,...,N,. Then the growth rate fin, becomes

i (ho + h(ﬂﬂ)))
hoLN,

Neo o rLop| Ci(x)
(3.11) ian, (hyho) = Z/o H( (ho + h(x)) dz.

Using (3.10) and (3.11), we then derive the semi-discrete areal productivity from (3.8).
Note that V' = hoL, X (ho) and fin, (h, ho) explicitly depend on the average depth
hg > 0. To treat this parameter, we introduce an additional state variable y, such
that ¥’ = 0 and y = hg. This state variable plays the role of hy.

We are now in a position to state the optimal control problem. In the non-constant
volume case, we are looking for admissible controls h € L*°([0,L]; R), h > —y and
y > 0 over a fixed length L > 0, which maximize the semi-discrete areal productivity.
In view of (3.8), the OCP reads as

NeoL M(Ciali(y + h))
he L2 e Ty, (h) —Z:l/o TN (y+h)X (y)dz,
h>—-y, y>0
(P2) c! _BUi(h+y)) —QZY(Iz‘(h +y))Ci (h+),
Ci(0)=Ci(L),  Vi=1,--- N,
v =h,
v(0) =0, v(L) =0,
y' =0.

Here again, we use formula (2.14) for p and h is the control variable. Moreover
(Ci,v,y) are the state variables, and X is given by (3.10). The Hamiltonian denoted
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by H for the OCP (P2) is given by

Li(h+y)) — ali(h +y))C;

Qo
N: pu(Ci Ii(y + h)
+pvh+py~0+poz( N )

i=1

H(Ciav7yapCi7pv,pyvp07 ch (h+y)

(h+y)X(y).

Here, (pc,, pv, py) denote the co-states of (C;, v, y) respectively, and pg is a real num-

ber. Suppose that h* € L>([0, L]; R), h* > —y* is a maximizer, and (C},v*,y*) are

the corresponding solutions of the problem (P2). Using once again the weak maximum

pr1n01ple there exist absolutely continuous functions pg, : [0, L] — R, p; : [0, L] — R,
: [0, L] — R and a real number p§ < 0, such that for almost every = € [0, L], the

extremals (CF,v*,y*, D5, Py, Py, PG, ™) satisty the optimality system

(3.12)

v’:gizh, pv/:—aaf:o, y’zgpﬁy:a
por = = O e SOy YR 4y,
- ;i _ BUih+y) L (Lih+9) Cip o
b= %IZ _ ‘NZ o B ith+ ) —Qcou' LA Gy o it y)
g I(h+y)) - - a (Li(h +)) C;
pNZ ¢ (Li(h +)) ;;;(Immy))ci(hw)X(y)ayh(hw)
*POZ LNy BN () + ()X () e
,_ o ipc Ii(h + ) QO'<Lv<h+y>>ci(h+y)8h1i(h+y)
. im Pth ) o () €
oS0 U D) Tt W) Coy 01y

LN,

=
p CHOEI T REENE X ) £,

LEMMA 3.7. The extremals (C},v*,y*,p5., by, Py, Py, h*) which satisfies (3.12) is
normal.
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Proof. We follow the same reasoning as in the proof of Lemma 3.2. Suppose that
po = 0, and substitute it into the system (3.12), the ODE associated with pg, becomes

a(Li(h* +y*))

04 (h*+y*), p5,(0)=pg, (L), Vi=1,---,N..

pc/ = Pc;

Since y* = hg > 0 and the function h* > y*, we have 04(1,;(%7*04-3,*))(}1* +y*) > 0. This
implies that pg,, = 0. Substituting then pg, = 0 and pf§ = 0 into the last equation
in the system (3.12), we obtain that p} = 0, which then implies that p;’ =0. As
py is the co-state associated with the constant y = hg, we have p;(0) = p; (L) = 0,
meaning that pj equals also constantly to 0. Thus, pg. , py, pj, are identically 0 on
[0, L]; which concludes the proof. O

Based on Lemma 3.7, we can normalize the co-states such that pg = —1. However,
unlike Theorem 3.3, the flat topography does not satisfy the optimality system (3.12).

THEOREM 3.8. Given hg > 0, let b := 0, y/ := hg, po = —1 and assume that
I, € (I_,1.). Then there does not exist a triple (C’Z-f,p;:,p{) that satisfies the last
three equations in the optimality system (3.12).

Proof. Assuming that there exists such a triple, we start by solving the ODE
associated with C/ in (3.12). From (3.2), (3.7) and (3.10), we obtain

Yopt @ — 3
(3.13) Ii(h+y):ISeXp(—7P“N—2(h+y)),

where Yopy is defined in (3.10). Substituting the values of A and y/ into (3.13),
i1

we find that I;(h/ + y/) = Li(ho) = I;exp(—Yops =), which is a constant with

respect to hg. A similar analysis to that of in the proof of Theorem 3.3 shows that

Cif = B(I;i(ho))/a(I;i(ho)), which is also a constant. Furthermore, differentiating

I;(h + y) with respect to y gives 0,I;(h+y) = L(h+y)- };;"2“ : lgf h. Setting h = hf
in this expression, we get 0,1;(h/ +y) = 9,1;(0 +y) = 0. Substituting all these

expression into the last two equations in (3.12), we get

N N
X (ho) + ho X' (ho) X(ho)
fy — ) _pf f— )
(py) LNZ ;,LLS (I'L(ho)) pvv pv LNZ — p/s (Iz(ho))
This implies that (pf) = —LA)[:",‘;;EO 25\21 tts(Z;(ho)),s0 that, using (3.10), we get
X'(hg) = —Zg: Moreover, I;(ho) € [In,(ho),I1(ho)] € (I-,Is) C (I-,I})hence

ps(Li(ho)) > 0 for i € {1,--- ,N.}. We deduce that (p})’ < 0. As p/(0) = pJ(L) =0,
we find a contradiction, which concludes the proof. ]

Remark 3.9. Note that the coefficient hg considered in Theorem 3.8 must satisfy
he < ho to guarantee that the system remains in a subcritical regime (see Remark 2.1).

4. Numerical Experiments. In this section, we show some optimal topogra-
phies obtained in the various previous frameworks.

4.1. Numerical Methods. To solve our optimization problem numerically, we
introduce a supplementary space discretization with respect to x. In this way, let us
take a space increment Az, set N, = [L/Az] and 2™ = n,Az for n, = 0,..., N,.
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TABLE 1
Parameter values for Han Model

ky 6.8 1073 st

kq | 2.99 1077 -

T 0.25 S

o 0.047 m? zmol ~ 1
k 8.710°° -

R | 1.389 10°7 s~!

We use Heun’s method to compute (C;)N= via (3.4). Following a first-discretize-
then-optimize strategy, we get that the co-states (jvlc)f\[:z1 are also computed by a
Heun’s type scheme. Note that this scheme is still explicit, since it solves a backward
dynamics starting from p;(L) = 0. The optimization is then achieved by a standard
gradient method using (3.4) and (3.12), where the stopping criterion involves both the
magnitude of the gradient and the constraint h > h., see Remark 2.1. The numerical

tests are performed by MATLAB R2020a [34].
4.2. Parameter setting. We now detail the parameters used in our simulations.

4.2.1. Parameterization. In our tests, we parameterize h by means of a trun-
cated Fourier series. More precisely, the water depth reads:

N
) x
h(z;a) + ho = ho + Z an sm(Qrmf),
n=1
with @ = (a1, ...,an). This parameterization is motivated by three reasons.

e The regularity of the topography is controlled by the order of truncation N.
As an example, limit situations where N — 4oc are not considered in what
follows.This framework is consistent with the hydrodynamic regime under
consideration, where the solutions of the Saint-Venant equations are smooth.
e The constraint h(0;a) = h(L;a), is preserved, which fits the toric shape of
the raceway pond.
e The water depth has the form hg + h, as assumed in Section 3.3.
From (2.2) and (2.4), u and 2, also read as functions of a@. Once the vector a that
maximizes iy, is determined, we then find the optimal topography of our system.

4.2.2. Parameter for the models. The spatial increment is set to Az = 0.0l m
so that the convergence of the numerical scheme has been ensured, and we set the
raceway length I = 100m, the averaged discharge Qo = 0.04m?s™!, the average
depth (in the constant volume case) hg = h(0;a) = 0.4m and 2,(0) = —0.4m to stay
in standard ranges for a raceway [14]. The free-fall acceleration g = 9.81ms~2. The
values of all parameters in Han’s model are taken from [16] and given in Table 1.

In order to determinate the light extinction e, two cases must be considered:

e constant volume: we assume that only 1% of light can be captured by the cells
at the average depth of the raceway, meaning that I_ = 0.01[,, we choose
I, = 2000 pmolm~2s~! which approximates the maximum light intensity,
e.g., at summer in the south of France. Then ¢ can be computed by ¢ =
(1/ho) In(L,/1).

e non-constant volume: in the case, hg is also a parameter to be optimized.
We take from [22] the specific light extinction coefficient of the microalgae
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F1G. 3. Values of the functional fin, for N, = [1,80].

Jin.(0) =1.098, fix. (a*) =1.1006 Jin.(0) =0.95857, fiy.(a") =0.96824

FiGc. 4. Optimal topography for Co = 0.1 (left) and Co = 0.9 (right). The red thick line
represents the topography zp, the blue thick line represents the free surface n, and all the other curves
between represent the different trajectories. fin,(0): flat topography, i, (a*): optimal topography.

species g = 0.2m? - g and the background turbidity e; = 10m~!.

4.3. Numerical results. We test the influence of various parameters on opti-
mal topographies. In all of our experiments, we always observe that the obtained
topographies satisfy min,¢(o,z) h(z; @) > he.

4.3.1. Influence of vertical discretization. The first test consists in studying
the influence of the vertical discretization parameter N,. We choose N =5, Cy = 0.1
and consider 100 random values a. Note that the choice of a should respect the
subcritical condition. Let N, vary from 1 to 80, and we compute the average value of
iin, for each N,. The results are shown in Fig. 3. We observe numerical convergence
when N, grows, showing the convergence towards the continuous model in space. In
view of these results, we take hereafter N, = 40.

4.3.2. Influence of the initial condition. Here, we study the influence of the
initial condition C on the optimal shape of the raceway pond. We set the numer-
ical tolerance to Tol= 107'°, and consider the order of truncation N = 5. As for
the initial guess, we consider the flat topography, meaning that a is set to 0. We
compare the optimal topographies obtained with Cy = 0.1 and with Cy = 0.9. The
result is shown in Fig. 4. This test confirms Remark 3.5, since we obtain non-trivial
topographies which slightly enhance the algal average growth rate. Moreover, a slight
difference between the two optimal topographies is observed. We have observed that
this difference remains when the spatial increment Az goes to zero. Although it is
difficult to observe in Fig. 4, the free surface is not equal to zero, as can be seen for
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TABLE 2
Behaviour of the objective function for various orders of truncation N.

N | Tter | . (a)(d7) | logio(IVAn.(a")[) | Amaz(Hess fiy.(a”))
0] 0 1.098 = -

5 | 16 1.1006 -10.208017 -6.1400

10 | 17 1.1013 -10.240885 -5.9141

15 | 17 1.1016 -10.258798 -5.9074

20 | 18 1.1018 -10.269413 -5.9032

x € [35,55).

4.3.3. Influence of Fourier series truncation. The next test is dedicated to
the study of the influence of the order of truncation N used to parameterize the water
depth h. Set N =0, 5,10, 15,20], Cy = 0.1 and keep all the other parameters as in the
previous section. Table 2 shows the optimal value of iy, (a*) and the corresponding
maximum eigenvalue of the Hessian A,,q.(Hess fin, (a*)) for various values of N.

The result shows a slight increase in the optimal value of iy, (a*) when N becomes
larger. However, the corresponding values of fiy_(a*) remain close to the one associ-
ated with a flat topography. Furthermore, the maximum spectrum A, (Hess iy (a*))l]
is always negative, which confirms that local maximizers are obtained.

4.3.4. Optimal topographies in periodic case. We study the optimal to-
pographies in the constant volume case where the photoinhibition state C' is periodic.
In our discrete setting, the Hessian operator is actually of the form Hess jiy. (k') =
A dpy with Idy the identity matrix of size N. We observe that A < 0, which confirms
that the flat topography is a local maximizer. A precise computation of A together
with some remarks about its sign can be found in Appendix B.

In order to test whether this local maximizer is global, we run the optimization
procedure with random admissible topographies. We observe that the procedure
always converges to a flat topography (i.e. a* = as). This leads us to conjecture that
the flat topography corresponds to the global maximum for the average growth rate.
As for the variable volume case, let us set N =5 (i.e. a € R%) and hg = 0.4 as an
initial guess of the average depth. We observe that the optimization stops due to the
presence of the physical constraint h.. However, a smaller depth increases the areal
productivity, in some cases more than twice the initial areal productivity.

4.3.5. Simulation with paddle wheel. In this paragraph, we consider the full
raceway pond, where the mixing induced by the paddle wheel is also considered. More
precisely, we simulate several laps with a paddle wheel that mixes up the algae after
each lap. The turbulent mixing of the paddle wheel is modeled by a permutation
matrix P which rearranges the trajectories at each lap. In our test, P is chosen as an
anti-diagonal matrix with entries equal to one. This choice actually corresponds to
an optimum and, as shown in [4], where other choices are also investigated.

The permutation matrix P corresponds to the permutation = = (1 N,)(2 N, —
1)(3 N, — 2)..., where we use the standard notation of cycles in the symmetric
group. Note that 7 is of order two. The photoinhibition state C' is then set to be
2-periodic (i.e., C1(0) = PC?(L), where C! and C? correspond to the photoinhibition
state during the first and second lap, respectively). The details of the optimization
procedure are given in Appendix A.

We choose a truncation of order N = 5 in the Fourier series. The initial guess a is
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Tter=10, i =1.0685, log,o(|| Vfil|) =-10.379

Photoinhibition state C'

.06 . . . .
0 20 40 60 80 100

F1G. 5. Optimal topography (left) and evolution of the photo-inhibition state C (right) over two
laps.

set to zero. Fig. 5 presents the shape of the optimal topography and the evolution of
the photoinhibition state C' over two laps. The resulting optimal topography in this
case is not flat. However, the increase in the optimal value of the objective function
fn, compared to a flat topography with and without permutation are 0.217% and
0.265%, resptectively, meaning that the increase remains small. On the other hand,
we observe that the state C' is actually periodic for each lap. This result is actually
proved for arbitrary P in [4] in the case of a flat topography. This justifies that the
optimization strategy only need to focus on one lap of the raceway (whatever the
permutation), and leaves the door open to the optimization of such mixing strategies.
We refer to [3, 5] for more details on optimal mixing strategies.

5. Conclusions and future works. A flat topography cancels the average algal
growth rate gradient when C' is assumed to be periodic along the laminar parts of
the raceway. This is further confirmed by our numerical tests, in which maximum
productivity is obtained for a flat topography. However, considering a more complete
framework without periodicity and including a mixing device gives rise to an optimal
non-flat topography with a slight gain of the average growth rate. It is not clear
whether the difficulty in designing such a pattern could be compensated for by the
increase in the process productivity.

These results may no longer hold if the hydrodynamic regime is turbulent along
the entire raceway. In such a case, the increase in the algal productivity may compen-
sate for the higher energetic cost of mixing. However, without the laminar assumption,
the problem becomes challenging, and much work remains to be done in this direction.
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Appendix A. Two-lap system with a paddle-wheel.

Denote by P the permutation matrix associated with m = (1 N,)(2 N, —1)(3 N, —
2) ... (see Section 4.3.5), i.e., 1 as entries on the anti-diagonal and by C?! (resp. C?)
the photoinhibition state for the first (resp. second) lap of the raceway. We then
assume that the state C' is 2-periodic, meaning that C*(0) = PC?(L). From (3.3),
we define the objective function by

' 2 N. L Cf(a?),fz(h(x))
5 m =33 [ a VN, )

j=1 j=1i=1
For a fixed volume V > 0 and a discharge )y > 0, the associated OCP reads:

N. /L y(Cg(x), I; (h(x)))
0

hdzx.

1 _ 13
hELm((r)flLE’;XR), 102 ;HNZ (h) = 3 ;; VN, hdz,
/ Ii(h)) — a(Ii(h)) C}
(A1) i’ = BUEM) QC:( e,
CY(L) = PC?*(0), C'(0) = PC*(L),

v = h,
v(0) =0, v(L)="V.
Denote by H the Hamiltonian associated with this problem, which reads

B(Li(h)) — a(l;(h)CY
( Qo h) +poh

N

H(Czjavapéi;pvapmh) ZZZPJCZ

j=1i=1

1o~ & ¢ (Ii(h)) — ~ (Ii(h)) €Y
+p0§;; (())V]vvz( (),
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636 where péi, Py are the co-states of Cj, v, and pg is a real number. A similar analysis
637 to that of Section 3.2 gives a similar optimality system as (3.4), in which pjci satisfies
638 the conditions p¢ (L) = Pp?(0) and p% (L) = Pp(0).

639 Appendix B. Second order conditions. Consider second-order conditions
640 under the truncated Fourier parameterization. Since the Fourier modes (sin(2nm%))nenjj
641 are orthogonal, a direct computation gives Hess fin. (h/) = M dy with

N
i=1

+pe, (B”(Ti(h)) — o (L;(h)Ci) IL(h)*h
N

i 2 2C R = A (LC L) + (¢ Ti(h) = (L)) Y ()
+ (¢ (h)) — " (L:(h)) Ci) I} () h.

643  Using the definitions (2.11) and (2.15), we get o(I) = B(I) + k, and ¢(I) = ~v(I) — R.
644 As o/'(I) = p'(I) and '(I) = +'(I), one gets

642

Qo

* vpzovz (29 L) I} (R) + A/ (LRI (RR 42" (L () TR |.

. A= 30— [P (28 (L) k) + 8/ (L)L (W) + B (L (W) L))
645 . i=1

646 Furthermore, one can differentiate the closed forms of I(h), 8(I) and v(I) to have

Ik = "2 L), I = (2L,
647 z z
20T
1 I — ! I 1" I — /I .
g) (TUI—G—l)(TaI—&—Z)IB()’ 7D TUI+17()
648 Inserting these analytical forms into (B.1) gives
/\7%(1 C) i_%I(h) [pCiB/(Ii(h))(h i — % + 2h€i1:fz% 2)
649 = N Qo TN, T (roLi(h) + D(roLi(h) + 2)
H4¢
.1
(], i — 1 207he 2 ILi(R
L) = )
VN, N, TUIi(h)+1

650 Considering now the case h = h/ = V/L, one gets

ky Quy(Li(h'))
1 of — I
_ C; (L (h)) >0, pg, po‘,Nza(L_(hf)) <0,
v kqro?I(IoT + 2) ko
! /
= H=——-— .
B'(I) >0, ~'(I) Tor £1)° >0

(IoT + 1)

652  Hence, in the limit case, the sign in the big bracket becomes positive when h goes
653 to 0 and the flat topography is no longer a local maximizer for small values of i in
654 this case. Under the assumption that the hydrodynamics is subcritical, then A < 0 in
655 practice as shown in Section 4.3.3 and in Section 4.3.4.
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