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Abstract. Modeling the evolution process for the growth of microalgae in an artificial pond5
is a huge challenge, given the complex interaction between hydrodynamics and biological processes6
occurring across various timescales. In this paper, we consider a raceway, i.e., an oval pond where7
the water is set in motion by a paddle wheel. Our aim is to investigate theoretically and numerically8
the impact of bottom topography in such raceway ponds on microalgae growth. To achieve this goal,9
we consider a biological model based on the Han model, coupled with the Saint–Venant systems that10
model the fluid. We then formulate an optimization problem, for which we apply the weak maximum11
principle to characterize optimal topographies that maximize biomass production over one lap of the12
raceway pond or multiple laps with a paddle wheel. In contrast to a widespread belief in the field13
of microalgae, we show that a flat topography in a periodic regime satisfies the necessary optimality14
condition, and observe in the numerical experiments that the flat topography is actually optimal15
in this case. However, non-trivial topographies may be more advantageous in alternative scenarios,16
such as when considering the effects of mixing devices within the model. This study sheds light17
on the intricate relationship between bottom topography, fluid dynamics, and microalgae growth in18
raceway ponds, offering valuable insights into optimizing biomass production.19

Key words. optimal control, weak maximum principle, microalgae, Han model, Saint–Venant20
system, raceway pond, shape optimization21

1. Introduction. The numerical design of microalgae production technologies22

has been for decades a source of many interesting challenges not only in engineering23

but also in the area of scientific computing [13, 24, 38, 21]. The potential of these24

emerging photosynthetic organisms is found in cosmetics, pharmaceutical fields, food,25

and - in the long term - in green chemistry and energy applications [37]. Outdoor26

production is mainly carried out in open bioreactors with a raceway shape. Algae27

grow while exposed to solar radiation in these circular basins, where the water is set28

in motion by a paddle wheel. This mixing device homogenizes the medium, ensures29

equidistribution of nutrients, and guarantees that each cell will have regular access to30

light [9, 12]. The algae are harvested periodically, and their concentration is main-31

tained around an optimal value [28, 31]. The penetration of light is strongly reduced32

by the algal biomass, and less than 1% of the incident light reaches the reactor bot-33

tom [6]. In the case of larger biomass, the light extinction is so high that a large34

fraction of the population evolves in the dark and does not grow anymore. At low35

biomass density, a fraction of the solar light is not used by the algae and the pro-36

ductivity is suboptimal. Theoretical work has determined the optimal biomass for37

maximizing productivity [23, 17, 2].38

Here, we consider another approach which consists in improving the photopro-39
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duction process by controlling the cell trajectories in the light field. We start from40

the observation that algal raceway ponds are dynamical systems combining a phys-41

ical aspect - the hydrodynamical behavior of the fluid transporting the algae cul-42

ture, and a biological aspect - the light harvesting by the chlorophyll complexes in43

the cells [1, 29, 30]. We then study the effect of topography (or bathymetry) on44

growth to optimize the light received by the microalgae. Modeling this system is45

challenging, since it also involves the free-surface incompressible Navier–Stokes sys-46

tem [7, 10, 36, 27]. The complexity of this model generally prevents obtaining explicit47

formulas, and large computational resources are required to perform simulations.48

Several experimental campaigns [25, 32] have shown that in the straight sections49

the raceway, the flow is not disturbed (which was further confirmed by CFD mod-50

elling [19, 20]). Therefore, in these regions, despite turbulent dispersion, mixing is51

relatively poor. This mixing is mainly induced locally by the paddle wheel and, to a52

lesser extent, by the bends. The recent study of [20] confirms this finding, i.e., the53

turbulence is mainly generated near the paddle wheel and close to the surface.54

We therefore focus on the main part of the raceway, outside the paddle-wheel55

area, and assume laminar flux. We study how to improve productivity in this part by56

modifying the bottom topography. This enables us to discuss the common belief that57

some specific topographies can bring more light to the algae in lowers parts of the58

raceway, since cells get closer to the surface when reaching peaks in these topographies.59

Let us detail our approach. We first introduce a coupled model to represent the60

growth of algae in a one dimensional (1D) raceway pond, accounting for the light that61

they receive. This model is obtained by combining the Han photosynthesis equations62

with a hydrodynamic law based on the Saint–Venant system. This first step enables63

us to formulate an optimization problem in which the topography of the raceway is64

designed to maximize productivity. We then use an adjoint-based optimization scheme65

to include the constraints associated with the Saint–Venant regime. We prove that the66

flat topography satisfies the first-order optimality systems in a periodic case, focusing67

on the fraction of the raceway in laminar regime. However, non-trivial topographies68

can be obtained in other contexts, e.g., when the periodic assumption is removed or69

when the mixing device is accounted for in conjunction with the bottom topography.70

Numerical simulations show that a combination of turbulence-induced mixing and71

non-flat topographies can slightly increase biomass production. However, enhancing72

the turbulence by mixing significantly increases productivity and is definitely the most73

efficient approach [5, 4], even if more energy is dissipated in this process.74

The outline of the paper is as follows. In Section 2, we present the biological and75

hydrodynamical models underlying our coupled system. In Section 3, we describe the76

optimization problem and a corresponding numerical optimization procedure. Sec-77

tion 4 is devoted to the numerical results obtained with our approach. We then78

conclude with some perspectives opened up by this work.79

2. Hydrodynamic and biological models. Our approach is based on a cou-80

pling of the hydrodynamic transport of the particles with the photosystems evolution81

driven by the light intensity they receive when traveling in the raceway pond.82

2.1. Hydrodynamical model and Lagrangian trajectories. Saint–Venant83

equations are a popular model of geophysical flows. This system is derived from the84

free surface incompressible Navier–Stokes equations (see, for instance, [15]). Here, we85

focus on its 1D smooth steady state solutions in a laminar regime, which satisfy86

(2.1) ∂x(hu) = 0, ∂x(hu2 + g
h2

2
) = −gh∂xzb,87
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Fig. 1. Representation of the one dimensional hydrodynamic model.

where h is the water depth, u is the horizontal averaged velocity of the fluid, the g88

is the gravitational constant, and zb is the topography. The free surface η and the89

average discharge are given by η := h + zb and Q = hu respectively. This system is90

presented in Figure 1. The z (resp. x) axis represents the vertical (resp. horizontal)91

direction and Is is the light intensity on the free surface (assumed to be constant).92

Integrating the equation on the left of (2.1), we get93

(2.2) hu = Q0,94

for a fixed positive constant Q0. This implies a constant discharge in space. Then95

the equation on the right-hand side of (2.1) can be rewritten by96

(2.3) hu∂xu+ h∂xgh+ h∂xgzb = 0.97

Assume that h is non-zero, dividing then the equality (2.3) by h and using (2.2) to98

eliminate u, we get ∂x

(
Q2

0

2h2 + g(h+ zb)
)

= 0. Given h(0), zb(0) ∈ R, we obtain99

Q2
0

2h(x)2
+ g(h(x) + zb(x)) =

Q2
0

2h2(0)
+ g(h(0) + zb(0)) =: M0,100

which holds for all x ∈ [0, L], meaning that the topography zb satisfies101

(2.4) zb =
M0

g
− Q2

0

2gh2
− h.102

103

Remark 2.1. Let Fr = u√
gh

be the Froude number. The situation Fr < 1 cor-104

responds to the subcritical case (i.e., the flow regime is fluvial), while Fr > 1 corre-105

sponds to the supercritical case (i.e., the flow regime is torrential). In the steady case,106

the threshold value h = hc is obtained for Fr = 1; using (2.2), we find hc := (
Q2

0

g )
1
3 .107

Because of (2.4), h solves a third-order polynomial equation. Given a smooth topog-108

raphy zb, if hc + zb +
Q2

0

2gh2
c
− M0

g < 0, there exists a unique positive smooth solution109

of (2.4) that satisfies the subcritical flow condition (see [26, Lemma 1]).110

From the incompressibility of the flow, we have ∇·u = 0 with u = (u(x), w(x, z)).111

Here, w(x, z) is the vertical velocity. Incompressibility implies ∂xu + ∂zw = 0. Inte-112

This manuscript is for review purposes only.



4 O. BERNARD, L.-D. LU, J. SAINTE-MARIE, J. SALOMON

grating the latter from the topography zb to an arbitrary vertical position z gives:113

0 =

∫ z

zb

(
∂xu(x) + ∂ξw(x, ξ)

)
dξ

= (z − zb)∂xu(x) + w(x, z)− w(x, zb)

= (z − zb)∂xu(x)− u(x)∂xzb + w(x, z)

= ∂x
(
(z − zb)u(x)

)
+ w(x, z),

114

where we have used the kinematic condition at the bottom, i.e., w(x, zb) = u(x)∂xzb.115

It follows from (2.4) that116

(2.5) w(x, z) =
(M0

g
− 3u2(x)

2g
− z
)
u′(x),117

with u′(x) the derivative of u with respect to x.118

Let the pair (x(t), z(t)) be the position of a particle (or an algal cell) at time t in119

the raceway pond. The Lagrangian trajectory is characterized by120

(2.6)

(
ẋ(t)
ż(t)

)
=

(
u(x(t))

w
(
x(t), z(t)

)) ,121

with the initial position at time 0, (x(0), z(0)) = (x0, z0).122

Remark 2.2. The geometry of the raceway pond with small dissipation and shear123

effects (reduced wall friction and viscosity) justifies a laminar flow modeled by a124

shallow-water model, such as the Saint–Venant system. This regime also minimizes125

the mixing energy and hence is favored at the industrial scale.126

A higher mixing energy would lead to a turbulent regime. A possible way to enrich127

the representation of Lagrangian trajectories in this case would consist in including128

a Brownian into (2.6). However, getting time-free expressions of the trajectories (as129

in (2.7) and (2.12)) in this case is much more challenging, so that such a strategy130

would require a large set of simulations together with an averaging strategy.131

The Lagrangian trajectory given by (2.6) is a general formulation, which still132

holds when we change the hydrodynamical model. In our setting, we can find a time-133

free formulation of the Lagrangian trajectory. More precisely, we denote by z(x) the134

depth of a particle at position x. From (2.5) and (2.6), we get135

(2.7) z′ :=
ż

ẋ
=
(M0

g
− 3u2

2g
− z
)u′
u
.136

From (2.2), (2.4) and the definition of the free surface η, we have137

η = h+ zb =
M0

g
− u2

2g
,138

which implies that η′ = −uu′/g. Multiplying then (2.7) on both sides by u, and using139

the formulation of η and η′, one finds140

z′u+ zu′ =
(
η − u2

g

)
u′ = ηu′ + η′u,141

which implies that (u(z − η))′ = 0. Using again the identity (2.2), one obtains142

η(x) − z(x) = h(x)
h(0)

(
η(0) − z(0)

)
. This equation shows that given the initial water143
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Fig. 2. Han’s model, describing the state transition probability, as a function of the photon flux.

depth h(0) and the initial free surface position η(0), the distance between a trajectory144

z (starting from the position z(0)) and the free surface η depends only on the water145

depth h. On the other hand, the time-free formulation of the trajectory reads146

(2.8) z(x) = η(x)− h(x)

h(0)

(
η(0)− z(0)

)
.147

We will further exploit the property of this formulation in Section 3.148

Remark 2.3. Since Q0 is chosen to be positive, h is necessarily positive. More-149

over, if z(0) belongs to [zb(0), η(0)], then z(x) belongs to [zb(x), η(x)]. In particular,150

choosing z(0) = zb(0) in (2.8) and using (2.2) give z(x) = zb(x). In the same way, we151

find that z(x) = η(x) when z(0) = η(0).152

2.2. Modelling the dynamics of the photosystems. To describe the dy-153

namics of photosystems, we use here the Han model [18]. This model is generally154

considered to characterize the photosynthetic process of these subunits as they har-155

vest photons and transfer their energy to the cell to fix CO2.156

2.2.1. The Han model. The Han model is a compartmental model in which157

the photosystems are described by three different states: open and ready to harvest a158

photon (A), closed while processing the absorbed photon energy (B), or inhibited if159

several photons have been absorbed simultaneously (C). The relation of these three160

states are schematically presented in Fig. 2.161

The evolution satisfies the following ordinary differential equations (ODEs)162

(2.9)

Ȧ = −σIA+
B

τ
,

Ḃ = σIA− B

τ
+ krC − kdσIB,

Ċ = −krC + kdσIB.

163

Here, I denotes the light density, a continuous time-varying signal. The states A, B,164

and C are the relative frequencies of three possible states with A + B + C = 1, so165

that (2.9) can be reduced to a system in dimension two by eliminating the state B.166

Here, σ stands for the specific photon absorption, τ is the turnover rate, kr and kd167

represent the photosystem repair and the damage rates, which are all positive.168

The dynamics of the open state A can be shown to be much faster than the169

dynamics of the photoinhibition state C. A slow-fast approximation by using singular170

perturbation theory (as shown in details in [21]) leads to the simplification of the171

dynamics driven by the slow dynamics of C:172

(2.10) Ċ = −α(I)C + β(I),173
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where174

(2.11) α(I) = kdτ
(σI)2

τσI + 1
+ kr, β(I) = kdτ

(σI)2

τσI + 1
.175

Repeating the reasoning done to get (2.7) with (2.10) and (2.2), we can also find a176

time-free reformulation, namely177

(2.12) C ′ :=
Ċ

ẋ
=
−α(I)C + β(I)

Q0
h,178

where all the functions on the right-hand side only depend on the spatial variable x.179

2.2.2. Periodic setting. We consider the case where C is periodic, with a pe-180

riod corresponding to one lap of the raceway pond. This situation occurs, e.g., when181

an appropriate harvest is performed after each lap. To describe the corresponding182

model, we first consider a variant of the usual Cauchy problem (2.12):183

Given I ∈ C([0, L]; R), I ≥ 0, find (C0, C) ∈ [0, 1]× C([0, L]; [0, 1]) such that184

(2.13)

C
′(x) =

−α
(
I(x)

)
C(x) + β

(
I(x)

)
Q0

h(x), x ∈ [0, L],

C(L) = C(0) = C0.

185

Let us show that the solution C(x) of (2.13) exists. Indeed, applying the Duhamel’s186

formula on the Cauchy problem associated with (2.12) and the initial condition C(0) =187

C0, and using the inequality β(I) ≤ α(I) gives188

C(L)− C0 =−
(

1− e−
∫ L
0

α(I(s))h(s)
Q0

ds
)
C0 +

∫ L

0

e−
∫ L
s

α(I(y))h(y)
Q0

dy β
(
I(s)

)
h(s)

Q0
ds

≤
(

1− e−
∫ L
0

α(I(s))h(s)
Q0

ds
)

(1− C0) .

189

Hence the affine mapping Φ : C0 7→ C(L)− C0 satisfies Φ(0) ≥ 0, and the inequality190

implies that Φ(1) ≤ 0. It follows that there exists a unique C0 ∈ [0, 1] that satisfies191

C(L)− C0 = 0. Using Intermediate Value Theorem, we get the next result.192

Theorem 2.4. There exists a unique couple (C0, C) ∈ [0, 1]×C([0, L]; [0, 1]) that193

satisfies (2.13).194

2.2.3. Growth rate. Finally, the net growth rate of the photosystem is defined195

by balancing photosynthesis and respiration, which gives196

(2.14) µ(C, I) := ζ(I)− γ(I)C,197

where198

(2.15) γ(I) =
kσI

τσI + 1
, ζ(I) =

kσI

τσI + 1
−R.199

Here, k is a factor that relates the received energy with the growth rate and R repre-200

sents the respiration rate.201
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2.3. Coupling of two systems. As shown in the previous section, the light202

intensity I plays an important role in algal growth, since it triggers photosynthesis.203

On the other hand, the position of the algae influences the light perceived as well as204

the efficiency of the photosynthesis process. Therefore, the light intensity is the main205

connection which couples the hydrodynamic model and the physiological evolution of206

the algae. To evaluate the light intensity observed on the trajectory z, we assume that207

the growth process occurs at a much slower timescale than that of hydrodynamics and208

is, as such, negligible for one lap over the raceway. In the same way, uncertainties209

such as rainfall and evaporation, can also be neglected at this timescale. These fac-210

tors can be taken into account for longer timescale using more detailed models, see for211

instance [11, 8]. In this framework, the Beer–Lambert law describes how light is atten-212

uated with depth ξ by I(x, ξ) := Is exp
(
−ε(η(x)−ξ)

)
, where ε is the light extinction213

coefficient. Replacing ξ in the previous formulation by the trajectory (2.8), we then214

get the following expression for the captured light intensity along the trajectory z(x):215

(2.16) I
(
x, z(x)

)
= Is exp

(
− εh(x)

h(0)

(
η(0)− z(0)

))
.216

In particular, we observe that for given data Is, ε, h(0), and η(0), the perceived light217

intensity along the trajectory z(x) only depends on its initial position z(0) and h(x).218

In order to evaluate the quality of this coupled system, we define the average net219

growth rate of the system by220

(2.17) µ̄ :=
1

V

∫ L

0

∫ η(x)

zb(x)

µ
(
C(x, z), I(x, z)

)
dzdx,221

where µ is defined by (2.14) and V :=
∫ L
0
h(x)dx is the volume of our 1D raceway.222

3. Optimal control problem. In this section, we define the optimal control223

problems associated with our biological–hydrodynamic model. Depending on V , we224

divide our study into two cases.225

3.1. Objective function and vertical discretization. Our goal is to find226

the optimal topography zb that maximizes the average net growth rate (2.17). In227

order to tackle numerically this optimization problem, let us first consider a vertical228

discretization. Let Nz denotes the number of trajectories, we consider a uniform229

vertical discretization of their initial position:230

(3.1) zi(0) := η(0)−
i− 1

2

Nz
h(0), i = 1, . . . , Nz.231

Using the formulation (2.8), we find the trajectories zi(x) := η(x) − i− 1
2

Nz
h(x), i =232

1, . . . , Nz. In particular, the distribution of trajectories zi(x) remains uniform along233

the direction of x. Using (??), we obtain the perceived light intensity on zi(x):234

(3.2) I
(
x, zi(x)

)
= Is exp

(
− εh(x)

h(0)

(
η(0)− zi(0)

))
= Is exp

(
− ε

i− 1
2

Nz
h(x)

)
,235

where we use the closed form of the light intensity (2.16) and the definition of zi(0).236

To simplify notations and emphasis the dependence on the water depth h, we write237

Ii(h(x)) instead of I(x, zi(x)) hereafter. The photoinhibition state Ci is then com-238

puted using the evolution (2.12) for I = Ii(h). In this setting, the semi-discrete239
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average net growth rate in the raceway pond can be derived from (2.17) as240

(3.3) µ̄Nz
(
h
)

:=
1

V Nz

Nz∑
i=1

∫ L

0

µ
(
Ci(x), Ii

(
h(x)

))
h(x) dx,241

where h is the variable of the objective function, and µ is given by (2.14). From now242

on, we focus on the subcritical case, i.e., Fr < 1, see Remark 2.1. As mentioned243

in Section 2.1, in this regime, a given topography zb corresponds to a unique water244

depth h which verifies this assumption.245

Remark 3.1. Given a topography zb, usual shallow-water solvers typically con-246

sider equations of type (2.4) to compute h in the simulations. Here, we use this247

equation in the opposite way, i.e., to recover zb from h. In this way, we directly opti-248

mize h instead of zb, since the expressions of the evolution of the state C (2.12), the249

light intensity (3.2) and the objective function (3.3) depend on h and not on zb.250

3.2. Constant Volume. For simplicity, we omit from now on the variable x in251

the notation and consider h as the variable of the light intensities (Ii)i=1,...,Nz and252

µ̄Nz . For a fixed volume V > 0 and a discharge Q0 > 0, we seek an admissible controls253

h ∈ L∞([0, L]; R), h > 0 over a fixed length L > 0, that maximize the semi-discrete254

average net growth rate (3.3). Thus, the optimal control problem (OCP) reads255

(P1)

max
h∈L∞([0,L]; R), h>0

µ̄Nz (h) =

Nz∑
i=1

∫ L

0

µ
(
Ci(x), Ii

(
h(x)

))
V Nz

h(x) dx,

s.t. C ′i =
β (Ii(h))− α (Ii(h))Ci

Q0
h,

Ci(0) = Ci(L), ∀i = 1, · · · , Nz,
v′ = h,

v(0) = 0, v(L) = V.

256

Here, we use formula (2.14) for µ, h is the control variable, and (Ci, v) are the state257

variables, where v has been introduced to take into account the constraint V = hL.258

The Hamiltonian associated with (P1) is given by259

H(Ci, v, pCi , pv, p0, h) =

Nz∑
i=1

pCi
β (Ii(h))− α (Ii(h))Ci

Q0
h

+ pvh+ p0

Nz∑
i=1

ζ (Ii(h))− γ (Ii(h))Ciµ
(
Ci, Ii

(
h
))

V Nz
h,

260

where (pCi , pv) are the co-states of (Ci, v) respectively, and p0 is a real number. Sup-261

pose that h? ∈ L∞([0, L]; R), h > 0 is a maximizer, and C?i , v? are the corresponding262

solutions of the problem (P1). Using the weak maximum principle [35, Pages 33–263

35], there exist absolutely continuous functions p?Ci : [0, L] → R, p?v : [0, L] → R264

and a real number p?0 ≤ 0, such that for almost every x ∈ [0, L], the extremals265
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(C?i , v
?, p?Ci , p

?
v, p

?
0, h

?) satisfy the optimality system266

(3.4)

C ′i =
∂H

∂pCi
=
β (Ii(h))− α (Ii(h))Ci

Q0
h, v′ =

∂H

∂pv
= h,

pCi
′ = − ∂H

∂Ci
= pCi

α (Ii(h))

Q0
h+ p0

γ (Ii(h))

V Nz
h, pv

′ = −∂H
∂v

= 0,

0 =
∂H

∂h
=

Nz∑
i=1

pCi
β′ (Ii(h))− α′ (Ii(h))Ci

Q0
I ′i(h)h+

Nz∑
i=1

pCi
β (Ii(h))− α (Ii(h))Ci

Q0

+ p0

Nz∑
i=1

ζ ′ (Ii(h))− γ′ (Ii(h))Ci
V Nz

I ′i(h)h+ p0

Nz∑
i=1

ζ (Ii(h))− γ (Ii(h))Ci
V Nz

+ pv.

267

Lemma 3.2. The extremal (C?i , v
?, p?Ci , p

?
v, p

?
0, h

?) which satisfies (3.4) is normal.268

Proof. We use the equivalent dual form of the Mangasarian-Fromovitz constraint269

qualification [33, p. 255–269], i.e., we prove that if p?0 = 0, then p?Ci and p?v are equal270

to zero on [0, L].271

Substituting p?0 = 0 into (3.4), the ODE associated with p?Ci then reads272

(3.5) (p?Ci)
′ = p?Ci

α (Ii(h
?))

Q0
h?, p?Ci(0) = p?Ci(L), ∀i = 1, · · · , Nz,273

where we complete by the periodic condition determined using C?i (0) = C?i (L),274

∀i = 1, · · · , Nz. Note that Q0 > 0 and α is a positive function from (2.11), and275

h? > 0. Hence, we have α(Ii(h
?))

Q0
h? > 0. Using then a similar reasoning as for the276

system (2.13), we find that the only solution of (3.5) is p?Ci = 0. Substituting p?Ci = 0277

and p?0 = 0 into the last equation of (3.4), we obtain p?v = 0, which contradicts the278

fact that p?Ci and p?v are not identically 0 on [0, L]. Therefore, p?0 < 0.279

When the extremal is normal, p?Ci and p?v are usually normalized so that p?0 = −1280

what we set hereafter. Let us show that the flat topography satisfies (3.4).281

Theorem 3.3. There exists pfv ∈ R such that the constant water depth282

hf :=
V

L
,283

and the corresponding solutions (Cfi )i=1,··· ,Nz , (p
f
Ci

)i=1,··· ,Nz , vf satisfy (3.4).284

Proof. From v′ = hf with v(0) = 0, v(L) = V , we find vf = V
Lx. Given i ∈285

{1, · · · , Nz}, from (3.2), we deduce that286

Ii(h
f ) = Is exp(−ε

i− 1
2

Nz
hf ), I ′i(h

f ) = −ε
i− 1

2

Nz
Ii(h

f ),287

which are constant on [0, L]. Solving the equation of Ci in (3.4) gives288

(3.6) Ci(x) = e−
α(Ii(h

f ))

Q0
hfxCi(0) +

β(Ii(h
f ))

α(Ii(hf ))
(1− e−

α(Ii(h
f ))

Q0
hfx).289

Since Ci is periodic (i.e., Ci(L) = Ci(0)), we get from the previous equation that290

Ci(0) = β(Ii(h
f ))

α(Ii(hf ))
. Inserting this value in (3.6), we find291

Ci(x) = Cfi :=
β(Ii(h

f ))

α(Ii(hf ))
, ∀x ∈ [0, L].292
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A similar reasoning applied to pCi gives pCi(x) = pfCi = Q0γ(Ii(h
f ))

V Nzα(Ii(hf ))
, ∀x ∈ [0, L].293

It follows that all the terms in the sums of the last equation in (3.4) are constant294

on [0, L]. Hence, there exists a pfv ∈ R such that the extremal (Cfi , v
f , pfCi , p

f
v , h

f )295

satisfies the optimality system (3.4).296

Remark 3.4. The previous theorem shows that the flat topography satisfies the297

necessary conditions of optimality. One can explore further second-order conditions298

to check whether the flat topography is a local maximizer. However, the sign of the299

eigenvalues of the Hessian operator of the average growth rate Hess(µ̄Nz ) is in general300

not constant with respect to a flat topography hf = V/L and is rather difficult to301

determine (see Appendix B).302

Numerically, we observe that the flat topography is actually optimal in the peri-303

odic case for standard values of the parameters (see Subsection 4.3.4).304

Remark 3.5. If C is defined by a Cauchy problem and is not assumed to be305

periodic (i.e., C(0) is not necessarily equal to C(L)), then (3.6) implies that C may306

depend on x and the computations in the proof above no longer hold. In other words,307

the flat topography is not necessarily an optimum in a non-periodic setting, which is308

confirmed by our numerical tests (see Subsection 4.3.2).309

3.3. Non-constant volume problem for maximizing areal productivity.310

In the general case, the volume of the system V can also vary, hence can be optimized.311

We now assume that the water depth is of the form h+ h0, where h ∈ L∞([0, L]; R)312

with h > −h0,
∫ L
0
hdx = 0, and h0 > 0 so that V = h0L. Here, V depends only on313

the parameter h0, as the length L > 0 is fixed. Moreover, we have 1
L

∫ L
0
h+ h0 dx =314

0+h0L
L = h0,meaning that h0 represents the average depth of the system.315

On the other hand, when V changes, the biomass concentration X (defined by316

Ẋ = (µ̄−D)X with D the dilution rate) also changes. In this case, the light extinction317

ε in (2.16) can no longer be assumed to be constant. More precisely, we consider here318

(3.7) ε(X) := ε0X + ε1,319

where ε0 > 0 is the specific light extinction coefficient of the microalgae species and320

ε1 > 0 stands for the background turbidity that summarizes the light absorption and321

diffusion caused by all non-microalgae components [22].322

To take into account the variation in X with respect to V , we also need to adapt323

our objective function. More precisely, instead of considering the average net growth324

rate µ̄, we maximize the areal productivity Π. Given a biomass concentration X, this325

quantity is defined by326

(3.8) Π := µ̄X
V

S
,327

where µ̄ is the average net growth rate defined in (2.17) and S is the ground surface328

of the raceway system which in our 1D system, actually means S = L.329

Before stating the associated optimal control problem, we detail the relation be-330

tween X and V . A standard criterion to determine this relation (see [23, 17]) consists331

in regulating X, such that the steady state value of the net growth rate µs at the332

average depth h0 is 0, i.e.,333

(3.9) µs
(
I(h0)

)
= 0, with µs(I) := −γ(I)

β(I)

α(I)
+ ζ(I).334
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Using the definitions (2.11), (2.15) for α, β, ζ and γ, one can solve (3.9) analytically,335

and find that I(h0) is one of the two roots, denoted by I− and I+, of the second order336

polynomial equation kdτR(σI)2 + (krτσR − krkσ)I + krR = 0 . In practice, I−, I+337

are two real roots with I− ≤ I+, and µs(I) ≥ 0 on the interval [I−, I+]. Then, the338

biomass concentration X in a given volume V is adjusted to get I(h0) = I−. More339

precisely, using (2.16) with I(x, z) = I−, we get340

(3.10) X(h0) =
1

ε0

(
Yopt
h0
− ε1

)
, with Yopt := ln

(
Is
I−

)
.341

Here, X is function of h0, meaning that we can use the average depth h0 to control342

both V and X in the non-constant volume case.343

Remark 3.6. In bioengineering, the assumption (3.9) is usually called the com-344

pensation condition, which describes the situation where the growth at the bottom345

compensates exactly for the respiration. We refer to [2] for a detailed analysis.346

We keep using a uniform vertical discretization, as in Section 3.1, but now zi(0) :=347

η(0)− i− 1
2

Nz
(h0 + h(0)), i = 1, . . . , Nz. Then the growth rate µ̄Nz becomes348

(3.11) µ̄Nz (h, h0) :=

Nz∑
i=1

∫ L

0

µ
(
Ci(x), Ii

(
h0 + h(x)

))
h0LNz

(h0 + h(x)) dx.349

Using (3.10) and (3.11), we then derive the semi-discrete areal productivity from (3.8).350

Note that V = h0L, X(h0) and µ̄Nz (h, h0) explicitly depend on the average depth351

h0 > 0. To treat this parameter, we introduce an additional state variable y, such352

that y′ = 0 and y = h0. This state variable plays the role of h0.353

We are now in a position to state the optimal control problem. In the non-constant354

volume case, we are looking for admissible controls h ∈ L∞([0, L]; R), h > −y and355

y > 0 over a fixed length L > 0, which maximize the semi-discrete areal productivity.356

In view of (3.8), the OCP reads as357

(P2)

max
h ∈ L∞([0, L];R)

h > −y, y > 0

ΠNz (h) :=

Nz∑
i=1

∫ L

0

µ
(
Ci, Ii

(
y + h

))
LNz

(y + h)X(y)dx,

C ′i =
β(Ii(h+ y))− α(Ii(h+ y))Ci

Q0
(h+ y),

Ci(0) =Ci(L), ∀i = 1, · · · , Nz,
v′ =h,

v(0) =0, v(L) = 0,

y′ =0.

358

Here again, we use formula (2.14) for µ and h is the control variable. Moreover359

(Ci, v, y) are the state variables, and X is given by (3.10). The Hamiltonian denoted360
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by H̃ for the OCP (P2) is given by361

H̃(Ci, v, y, pCi ,pv, py, p0, h) =

Nz∑
i=1

pCi
β(Ii(h+ y))− α(Ii(h+ y))Ci

Q0
(h+ y)

+ pvh+ py · 0 + p0

Nz∑
i=1

µ
(
Ci, Ii

(
y + h

))
LNz

(h+ y)X(y).

362

Here, (pCi , pv, py) denote the co-states of (Ci, v, y) respectively, and p0 is a real num-363

ber. Suppose that h? ∈ L∞([0, L]; R), h? > −y? is a maximizer, and (C?i , v
?, y?) are364

the corresponding solutions of the problem (P2). Using once again the weak maximum365

principle, there exist absolutely continuous functions p?Ci : [0, L]→ R, p?v : [0, L]→ R,366

p?y : [0, L] → R and a real number p?0 ≤ 0, such that for almost every x ∈ [0, L], the367

extremals (C?i , v
?, y?, p?Ci , p

?
v, p

?
y, p

?
0, h

?) satisfy the optimality system368

(3.12)

v′ =
∂H̃

∂pv
= h, pv

′ = −∂H̃
∂v

= 0, y′ =
∂H̃

∂py
= 0,

pCi
′ = − ∂H̃

∂Ci
= pCi

α (Ii(h+ y))

Q0
(h+ y) + p0

γ (Ii(h+ y))

LNz
(h+ y)X(y),

C ′i =
∂H̃

∂pCi
=
β (Ii(h+ y))− α (Ii(h+ y))Ci

Q0
(h+ y),

py
′ = − ∂H̃

∂y
= −

Nz∑
i=1

pCi
β′ (Ii(h+ y))− α′ (Ii(h+ y))Ci

Q0
(h+ y)∂yIi(h+ y)

−
Nz∑
i=1

pCi
β (Ii(h+ y))− α (Ii(h+ y))Ci

Q0

− p0
Nz∑
i=1

ζ ′ (Ii(h+ y))− γ′ (Ii(h+ y))Ci
LNz

(h+ y)X(y)∂yIi(h+ y)

− p0
Nz∑
i=1

ζ (Ii(h+ y))− γ (Ii(h+ y))Ci
LNz

(
X(y) + (h+ y)X ′(y)

)
− pv,

0 =
∂H̃

∂h
=

Nz∑
i=1

pCi
β′ (Ii(h+ y))− α′ (Ii(h+ y))Ci

Q0
(h+ y)∂hIi(h+ y)

+

Nz∑
i=1

pCi
β (Ii(h+ y))− α (Ii(h+ y))Ci

Q0

+ p0

Nz∑
i=1

ζ ′ (Ii(h+ y))− γ′ (Ii(h+ y))Ci
LNz

(h+ y)X(y)∂hIi(h+ y)

+ p0

Nz∑
i=1

ζ (Ii(h+ y))− γ (Ii(h+ y))Ci
LNz

X(y) + pv.

369

Lemma 3.7. The extremals (C?i , v
?, y?, p?Ci , p

?
v, p

?
y, p

?
0, h

?) which satisfies (3.12) is370

normal.371
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Proof. We follow the same reasoning as in the proof of Lemma 3.2. Suppose that372

p?0 = 0, and substitute it into the system (3.12), the ODE associated with p?Ci becomes373

pCi
′ = pCi

α (Ii(h
? + y?))

Q0
(h? + y?), p?Ci(0) = p?Ci(L), ∀i = 1, · · · , Nz.374

Since y? = h0 > 0 and the function h? > y?, we have α(Ii(h
?+y?))
Q0

(h? + y?) > 0. This375

implies that p?Ci = 0. Substituting then p?Ci = 0 and p?0 = 0 into the last equation376

in the system (3.12), we obtain that p?v = 0, which then implies that p?y
′ = 0. As377

py is the co-state associated with the constant y = h0, we have p?y(0) = p?y(L) = 0,378

meaning that p?y equals also constantly to 0. Thus, p?Ci , p
?
v, p

?
y are identically 0 on379

[0, L]; which concludes the proof.380

Based on Lemma 3.7, we can normalize the co-states such that p0 = −1. However,381

unlike Theorem 3.3, the flat topography does not satisfy the optimality system (3.12).382

Theorem 3.8. Given h0 > 0, let hf := 0, yf := h0, p0 = −1 and assume that383

Is ∈ (I−, I+). Then there does not exist a triple (Cfi , p
f
y , p

f
v ) that satisfies the last384

three equations in the optimality system (3.12).385

Proof. Assuming that there exists such a triple, we start by solving the ODE386

associated with Cfi in (3.12). From (3.2), (3.7) and (3.10), we obtain387

(3.13) Ii(h+ y) = Is exp
(
− Yopt

y

i− 1
2

Nz
(h+ y)

)
,388

where Yopt is defined in (3.10). Substituting the values of hf and yf into (3.13),389

we find that Ii(h
f + yf ) = Ii(h0) = Is exp(−Yopt

i− 1
2

Nz
), which is a constant with390

respect to h0. A similar analysis to that of in the proof of Theorem 3.3 shows that391

Cfi = β(Ii(h0))/α(Ii(h0)), which is also a constant. Furthermore, differentiating392

Ii(h+ y) with respect to y gives ∂yIi(h+ y) = Ii(h+ y) · Yopt

y2 ·
i− 1

2

Nz
h. Setting h = hf393

in this expression, we get ∂yIi(h
f + y) = ∂yIi(0 + y) = 0. Substituting all these394

expression into the last two equations in (3.12), we get395

(pfy)′ =
X(h0) + h0X

′(h0)

LNz

Nz∑
i=1

µs
(
Ii(h0)

)
− pfv , pfv =

X(h0)

LNz

Nz∑
i=1

µs
(
Ii(h0)

)
.396

This implies that (pfy)′ = − Yopt

LNzh0ε0

∑Nz
i=1 µs

(
Ii(h0)

)
,so that, using (3.10), we get397

X ′(h0) = − Yopt

h2
0ε0

. Moreover, Ii(h0) ∈ [INz (h0), I1(h0)] ⊂ (I−, Is) ⊂ (I−, I+),hence398

µs(Ii(h0)) > 0 for i ∈ {1, · · · , Nz}. We deduce that (pfy)′ < 0. As pfy(0) = pfy(L) = 0,399

we find a contradiction, which concludes the proof.400

Remark 3.9. Note that the coefficient h0 considered in Theorem 3.8 must satisfy401

hc ≤ h0 to guarantee that the system remains in a subcritical regime (see Remark 2.1).402

4. Numerical Experiments. In this section, we show some optimal topogra-403

phies obtained in the various previous frameworks.404

4.1. Numerical Methods. To solve our optimization problem numerically, we405

introduce a supplementary space discretization with respect to x. In this way, let us406

take a space increment ∆x, set Nx = [L/∆x] and xnx = nx∆x for nx = 0, . . . , Nx.407
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Table 1
Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σ 0.047 m2 µmol−1

k 8.7 10−6 -
R 1.389 10−7 s−1

We use Heun’s method to compute (Ci)
Nz
i=1 via (3.4). Following a first-discretize-408

then-optimize strategy, we get that the co-states (pCi )Nzi=1 are also computed by a409

Heun’s type scheme. Note that this scheme is still explicit, since it solves a backward410

dynamics starting from pi(L) = 0. The optimization is then achieved by a standard411

gradient method using (3.4) and (3.12), where the stopping criterion involves both the412

magnitude of the gradient and the constraint h ≥ hc, see Remark 2.1. The numerical413

tests are performed by MATLAB R2020a [34].414

4.2. Parameter setting. We now detail the parameters used in our simulations.415

4.2.1. Parameterization. In our tests, we parameterize h by means of a trun-416

cated Fourier series. More precisely, the water depth reads:417

h(x;a) + h0 = h0 +

N∑
n=1

an sin(2nπ
x

L
),418

with a = (a1, . . . , aN ). This parameterization is motivated by three reasons.419

• The regularity of the topography is controlled by the order of truncation N .420

As an example, limit situations where N → +∞ are not considered in what421

follows.This framework is consistent with the hydrodynamic regime under422

consideration, where the solutions of the Saint-Venant equations are smooth.423

• The constraint h(0;a) = h(L;a), is preserved, which fits the toric shape of424

the raceway pond.425

• The water depth has the form h0 + h, as assumed in Section 3.3.426

From (2.2) and (2.4), u and zb also read as functions of a. Once the vector a that427

maximizes µ̄Nz is determined, we then find the optimal topography of our system.428

4.2.2. Parameter for the models. The spatial increment is set to ∆x = 0.01 m429

so that the convergence of the numerical scheme has been ensured, and we set the430

raceway length L = 100 m, the averaged discharge Q0 = 0.04 m2 s−1, the average431

depth (in the constant volume case) h0 = h(0;a) = 0.4 m and zb(0) = −0.4 m to stay432

in standard ranges for a raceway [14]. The free-fall acceleration g = 9.81 m s−2. The433

values of all parameters in Han’s model are taken from [16] and given in Table 1.434

In order to determinate the light extinction ε, two cases must be considered:435

• constant volume: we assume that only 1% of light can be captured by the cells436

at the average depth of the raceway, meaning that I− = 0.01Is, we choose437

Is = 2000µmol m−2 s−1 which approximates the maximum light intensity,438

e.g., at summer in the south of France. Then ε can be computed by ε =439

(1/h0) ln(Is/I−).440

• non-constant volume: in the case, h0 is also a parameter to be optimized.441

We take from [22] the specific light extinction coefficient of the microalgae442
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Fig. 3. Values of the functional µ̄Nz for Nz = [1, 80].

Fig. 4. Optimal topography for C0 = 0.1 (left) and C0 = 0.9 (right). The red thick line
represents the topography zb, the blue thick line represents the free surface η, and all the other curves
between represent the different trajectories. µ̄Nz (0): flat topography, µ̄Nz (a∗): optimal topography.

species ε0 = 0.2 m2 · g and the background turbidity ε1 = 10 m−1.443

4.3. Numerical results. We test the influence of various parameters on opti-444

mal topographies. In all of our experiments, we always observe that the obtained445

topographies satisfy minx∈[0,L] h(x;a) > hc.446

4.3.1. Influence of vertical discretization. The first test consists in studying447

the influence of the vertical discretization parameter Nz. We choose N = 5, C0 = 0.1448

and consider 100 random values a. Note that the choice of a should respect the449

subcritical condition. Let Nz vary from 1 to 80, and we compute the average value of450

µ̄Nz for each Nz. The results are shown in Fig. 3. We observe numerical convergence451

when Nz grows, showing the convergence towards the continuous model in space. In452

view of these results, we take hereafter Nz = 40.453

4.3.2. Influence of the initial condition. Here, we study the influence of the454

initial condition C0 on the optimal shape of the raceway pond. We set the numer-455

ical tolerance to Tol= 10−10, and consider the order of truncation N = 5. As for456

the initial guess, we consider the flat topography, meaning that a is set to 0. We457

compare the optimal topographies obtained with C0 = 0.1 and with C0 = 0.9. The458

result is shown in Fig. 4. This test confirms Remark 3.5, since we obtain non-trivial459

topographies which slightly enhance the algal average growth rate. Moreover, a slight460

difference between the two optimal topographies is observed. We have observed that461

this difference remains when the spatial increment ∆x goes to zero. Although it is462

difficult to observe in Fig. 4, the free surface is not equal to zero, as can be seen for463
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Table 2
Behaviour of the objective function for various orders of truncation N .

N Iter µ̄Nz (a
∗)(d−1) log10(‖∇µ̄Nz (a∗)‖) λmax(Hess µ̄Nz (a

∗))
0 0 1.098 − −
5 16 1.1006 -10.208017 -6.1400
10 17 1.1013 -10.240885 -5.9141
15 17 1.1016 -10.258798 -5.9074
20 18 1.1018 -10.269413 -5.9032

x ∈ [35, 55].464

4.3.3. Influence of Fourier series truncation. The next test is dedicated to465

the study of the influence of the order of truncation N used to parameterize the water466

depth h. Set N = [0, 5, 10, 15, 20], C0 = 0.1 and keep all the other parameters as in the467

previous section. Table 2 shows the optimal value of µ̄Nz (a
∗) and the corresponding468

maximum eigenvalue of the Hessian λmax(Hess µ̄Nz (a
∗)) for various values of N .469

The result shows a slight increase in the optimal value of µ̄Nz (a
∗) whenN becomes470

larger. However, the corresponding values of µ̄Nz (a
∗) remain close to the one associ-471

ated with a flat topography. Furthermore, the maximum spectrum λmax(Hess µ̄Nz (a
∗))472

is always negative, which confirms that local maximizers are obtained.473

4.3.4. Optimal topographies in periodic case. We study the optimal to-474

pographies in the constant volume case where the photoinhibition state C is periodic.475

In our discrete setting, the Hessian operator is actually of the form Hess µ̄Nz (h
f ) =476

λIdN with IdN the identity matrix of size N . We observe that λ < 0, which confirms477

that the flat topography is a local maximizer. A precise computation of λ together478

with some remarks about its sign can be found in Appendix B.479

In order to test whether this local maximizer is global, we run the optimization480

procedure with random admissible topographies. We observe that the procedure481

always converges to a flat topography (i.e. a∗ = af ). This leads us to conjecture that482

the flat topography corresponds to the global maximum for the average growth rate.483

As for the variable volume case, let us set N = 5 (i.e. ã ∈ R6) and h0 = 0.4 as an484

initial guess of the average depth. We observe that the optimization stops due to the485

presence of the physical constraint hc. However, a smaller depth increases the areal486

productivity, in some cases more than twice the initial areal productivity.487

4.3.5. Simulation with paddle wheel. In this paragraph, we consider the full488

raceway pond, where the mixing induced by the paddle wheel is also considered. More489

precisely, we simulate several laps with a paddle wheel that mixes up the algae after490

each lap. The turbulent mixing of the paddle wheel is modeled by a permutation491

matrix P which rearranges the trajectories at each lap. In our test, P is chosen as an492

anti-diagonal matrix with entries equal to one. This choice actually corresponds to493

an optimum and, as shown in [4], where other choices are also investigated.494

The permutation matrix P corresponds to the permutation π = (1 Nz)(2 Nz −495

1)(3 Nz − 2) . . ., where we use the standard notation of cycles in the symmetric496

group. Note that π is of order two. The photoinhibition state C is then set to be497

2-periodic (i.e., C1(0) = PC2(L), where C1 and C2 correspond to the photoinhibition498

state during the first and second lap, respectively). The details of the optimization499

procedure are given in Appendix A.500

We choose a truncation of order N = 5 in the Fourier series. The initial guess a is501
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Fig. 5. Optimal topography (left) and evolution of the photo-inhibition state C (right) over two
laps.

set to zero. Fig. 5 presents the shape of the optimal topography and the evolution of502

the photoinhibition state C over two laps. The resulting optimal topography in this503

case is not flat. However, the increase in the optimal value of the objective function504

µ̄Nz compared to a flat topography with and without permutation are 0.217% and505

0.265%, resptectively, meaning that the increase remains small. On the other hand,506

we observe that the state C is actually periodic for each lap. This result is actually507

proved for arbitrary P in [4] in the case of a flat topography. This justifies that the508

optimization strategy only need to focus on one lap of the raceway (whatever the509

permutation), and leaves the door open to the optimization of such mixing strategies.510

We refer to [3, 5] for more details on optimal mixing strategies.511

5. Conclusions and future works. A flat topography cancels the average algal512

growth rate gradient when C is assumed to be periodic along the laminar parts of513

the raceway. This is further confirmed by our numerical tests, in which maximum514

productivity is obtained for a flat topography. However, considering a more complete515

framework without periodicity and including a mixing device gives rise to an optimal516

non-flat topography with a slight gain of the average growth rate. It is not clear517

whether the difficulty in designing such a pattern could be compensated for by the518

increase in the process productivity.519

These results may no longer hold if the hydrodynamic regime is turbulent along520

the entire raceway. In such a case, the increase in the algal productivity may compen-521

sate for the higher energetic cost of mixing. However, without the laminar assumption,522

the problem becomes challenging, and much work remains to be done in this direction.523
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Appendix A. Two-lap system with a paddle-wheel.625

Denote by P the permutation matrix associated with π = (1 Nz)(2 Nz−1)(3 Nz−626

2) . . . (see Section 4.3.5), i.e., 1 as entries on the anti-diagonal and by C1 (resp. C2)627

the photoinhibition state for the first (resp. second) lap of the raceway. We then628

assume that the state C is 2-periodic, meaning that C1(0) = PC2(L). From (3.3),629

we define the objective function by630

1

2

2∑
j=1

µ̄jNz (h) =
1

2

2∑
j=1

Nz∑
i=1

∫ L

0

µ
(
Cji (x), Ii

(
h(x)

))
V Nz

hdx.631

For a fixed volume V > 0 and a discharge Q0 > 0, the associated OCP reads:632

(A.1)

max
h∈L∞(0,L; R), h>0

1

2

2∑
j=1

µ̄Nz (h) =
1

2

2∑
j=1

Nz∑
i=1

∫ L

0

µ
(
Cji (x), Ii

(
h(x)

))
V Nz

hdx,

Cji
′

=
β (Ii(h))− α (Ii(h))Cji

Q0
h,

C1(L) = PC2(0), C1(0) = PC2(L),

v′ = h,

v(0) = 0, v(L) = V.

633

Denote by H the Hamiltonian associated with this problem, which reads634

H(Cji , v, p
j
Ci
, pv, p0, h) =

2∑
j=1

Nz∑
i=1

pjCi

(β (Ii(h))− α(Ii(h))Cji
Q0

h
)

+ pvh

+ p0
1

2

2∑
j=1

Nz∑
i=1

ζ (Ii(h))− γ (Ii(h))Cji
V Nz

h,

635
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where pjCi , pv are the co-states of Ci, v, and p0 is a real number. A similar analysis636

to that of Section 3.2 gives a similar optimality system as (3.4), in which pjCi satisfies637

the conditions p1C(L) = Pp2C(0) and p2C(L) = Pp1C(0).638

Appendix B. Second order conditions. Consider second-order conditions639

under the truncated Fourier parameterization. Since the Fourier modes (sin(2nπ xL ))n∈N640

are orthogonal, a direct computation gives Hess µ̄Nz (h
f ) = λIdN with641

λ =
1

Q0

Nz∑
i=1

2pCi
(
β′(Ii(h))− α′(Ii(h))Ci

)
I ′i(h) + pCi

(
β′(Ii(h))− α′(Ii(h))Ci

)
I ′′i (h)h

+ pCi
(
β′′(Ii(h))− α′′(Ii(h))Ci

)
I ′i(h)

2
h

+
p0
V Nz

Nz∑
i=1

2
(
ζ ′(Ii(h))− γ′(Ii(h))Ci

)
I ′i(h) +

(
ζ ′(Ii(h))− γ′(Ii(h))Ci

)
I ′′i (h)h

+
(
ζ ′′(Ii(h))− γ′′(Ii(h))Ci

)
I ′i(h)

2
h.

642

Using the definitions (2.11) and (2.15), we get α(I) = β(I) + kr and ζ(I) = γ(I)−R.643

As α′(I) = β′(I) and ζ ′(I) = γ′(I), one gets644

(B.1)
λ =

Nz∑
i=1

(1− Ci)
[pCi
Q0

(
2β′(Ii(h))I ′i(h) + β′(Ii(h))I ′′i (h)h+ β′′(Ii(h))I ′i(h)

2
h
)

+
p0
V Nz

(
2γ′(Ii(h))I ′i(h) + γ′(Ii(h))I ′′i (h)h+ γ′′(Ii(h))I ′i(h)

2
h
)]
.

645

Furthermore, one can differentiate the closed forms of I(h), β(I) and γ(I) to have646

I ′i(h) = −ε
i− 1

2

Nz
Ii(h), I ′′i (h) = (ε

i− 1
2

Nz
)2Ii(h),

β′′(I) =
2

(τσI + 1)(τσI + 2)I
β′(I), γ′′(I) = − 2στ

τσI + 1
γ′(I).

647

Inserting these analytical forms into (B.1) gives648

λ =

Nz∑
i=1

(1− Ci)ε
i− 1

2

Nz
Ii(h)

[pCiβ′(Ii(h))

Q0
(hε

i− 1
2

Nz
+

2hε
i− 1

2

Nz

(τσIi(h) + 1)(τσIi(h) + 2)
− 2)

+
p0γ
′(Ii(h))

V Nz

(
hε
i− 1

2

Nz
−

2στhε
i− 1

2

Nz
Ii(h)

τσIi(h) + 1
− 2
)]
.

649

Considering now the case h = hf = V/L, one gets650

1− Cfi =
kr

α(Ii(hf ))
> 0, pfCi = p0

Q0γ(Ii(h
f ))

V Nzα(Ii(hf ))
< 0,

β′(I) =
kdτσ

2I(Iστ + 2)

(Iστ + 1)2
> 0, γ′(I) =

kσ

(Iστ + 1)2
> 0.

651

Hence, in the limit case, the sign in the big bracket becomes positive when h goes652

to 0 and the flat topography is no longer a local maximizer for small values of h in653

this case. Under the assumption that the hydrodynamics is subcritical, then λ < 0 in654

practice as shown in Section 4.3.3 and in Section 4.3.4.655
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